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Abstract— Optical diffusion tomography is a technique for
imaging a highly scattering medium using measurements
of the transmitted modulated light. Reconstruction of the
spatial distribution of the optical properties of the medium
from such data is a very difficult nonlinear inverse problem.
Bayesian approaches are effective, but are computationally
expensive, especially for three-dimensional imaging.

This paper presents a general nonlinear multigrid opti-
mization technique suitable for reducing the computational
burden in a range of non-quadratic optimization problems.
This multigrid method is applied to compute the maximum
a posteriori (MIAP) estimate of the reconstructed image in
the optical diffusion tomography problem. The proposed
multigrid approach both dramatically reduces the required
computation and improves the reconstructed image quality.

Keywords— optical diffusion tomography, Bayesian image
reconstruction, nonlinear multigrid optimization, multires-
olution image reconstruction

I. INTRODUCTION

Optical diffusion imaging is a technique for reconstruct-
ing the optical parameters in highly scattering media such
as tissue, polymer composites, sea ice, and aerosols, based
on measurements of the scattered and attenuated optical
energy. For tissue imaging, this technique presents signif-
icantly lower health risks as compared to X-ray imaging,
and is instrumentally much less expensive than X-ray CT
or MRI. Moreover, the potential of optical diffusion imag-
ing has been successfully demonstrated in biomedical appli-
cations [1]. However, a major difficulty with this approach
is that the relationship between the unknown scattering
and attenuation coefficients and the optical measurements
is highly nonlinear and described by a partial differential
equation; so reconstruction poses a very challenging non-
linear inverse problem.

Inversion approaches for optical diffusion tomography
based on the Born or Rytov approximations [2] produce
significant errors in the reconstruction for realistic material
parameters due to linearization errors of the forward model.
To overcome these drawbacks, iterative techniques have
been investigated. Usually, the Newton-Raphson (NR)
method has been used with a Levenberg-Marquardt pro-
cedure. A Levenberg-Marquardt method for a variational
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formulation of the diffusion equation has been applied to
the time-domain problem as well as the frequency-domain
problem [3], [4]. However, the constraint used in these ap-
proaches [3], [4], which imposes a penalty on the Ly norm
of the new update at each iteration, tends to over-smooth
edges in the image or produce excessively noisy images,
depending on a control parameter value. A fundamental
drawback of these methods is that the Ly penalty term
for the new update is not a form of regularization in the
Tikhonov sense [5], but is instead a “trust region” con-
straint designed to insure monotone convergence of the op-
timization criterion [6], [7].

The artifacts due to poor regularization can be reduced
by incorporation of prior information using a Bayesian
framework. Recently, Bayesian (and other regularization)
methods have been applied to nonlinear inverse problems
such as microwave imaging and optical diffusion imaging
[3], [8], [9], [10], [11], [12]. The individual approaches have
differed both in terms of the prior model (or stabilizing
functional) used and the optimization algorithms employed
to compute the reconstruction. For example, Paulsen and
Jiang added a quadratic regularization term to their pre-
vious formulation [3] to stabilize the reconstruction [8]. In
this case, each iteration of the optimization performed a
linearization (similar to the Born approximation) followed
by a full matrix inversion to solve the linearized problem.
The computational complexity of this method is very high
since O(N3) complex multiplications are required at each
iteration where IV is the number of image pixels. Saquib,
Hanson and Cunningham proposed a more computation-
ally efficient algorithm for the time-domain diffusion prob-
lem in which each iteration alternates a linearization step
with a single step of a conjugate gradient algorithm [9],
[13]. This work drew on the concept of adjoint differen-
tiation [14] for the efficient computation of the gradient.
Arridge and Schweiger applied this gradient method to fre-
quency domain optical diffusion imaging [10], [15]. How-
ever, the complexity of the line search [7] required in a
conjugate gradient algorithm is an important factor in the
total computational burden for both approaches.

More recently, Bayesian approaches based on iterative
coordinate descent (ICD) optimization have been investi-
gated [11], [12]. The ICD method is a fast implementation
of the Gauss-Seidel method that is well-suited for tomogra-



phy applications [16], [17]. In particular, we have developed
an ICD/Born method that provides high quality recon-
structions and is computationally efficient when compared
to the conventional iterative Born approximation methods
[12]. Since the photon paths are not restricted to a plane,
practical and accurate optical diffusion imaging will require
inversion for three-dimensional images, with a concomitant
increase in the number of unknowns. The computational
complexity of the ICD/Born method is still prohibitive for
such problems.

Multigrid algorithms are a specific form of multiresolu-
tion algorithm that can be used to reduce the computa-
tional requirements of large numerical problems [18], [19],
[20]. These algorithms work by recursively moving between
different resolutions thereby propagating information be-
tween coarse and fine scales. Multigrid methods have been
primarily used for solving partial differential equations [21],
but more recently they have been applied to a variety of
imaging problems such as image analysis [22], [23] and
anisotropic diffusion [24].

Perhaps surprisingly, multigrid algorithms have not been
widely applied in tomography problems. In earlier work,
Bouman and Sauer [25] used multigrid algorithms to solve
the non-quadratic optimization problems resulting from
projection tomography applications such as computed to-
mography (CT), and photon emission tomography (PET).
While this formulation used nonlinear multigrid, it was
based on a conventional nonlinear multigrid PDE solver.
Other research by McCormick and Wade [26] used multi-
grid algorithms for impedance tomography problems. This
work linearized the impedance tomography problem, and
therefore used a standard linear multigrid equation solver.
Bhatia et al. [27] and Zhu et al. [28] used wavelet methods
to solve linear or linearized tomography problems.

In this paper, we develop a multigrid optimization
method suitable for solving general non-quadratic opti-
mization problems; and we apply this method to the prob-
lem of optical diffusion tomography. Multigrid algorithms
are well suited to this problem for three reasons. First,
our simulations indicate that our multigrid algorithm con-
verges much faster than fixed grid algorithms. This is par-
ticularly important for the optical diffusion tomography
problem since it is inherently three-dimensional. Second,
multigrid algorithms are well suited for implementation of
positivity constraints because the optimization at each grid
resolution is done in the space-domain where positivity
constraints are easily enforced. In general, positivity can
be important for improving reconstruction quality, particu-
larly when the problem is underdetermined. In the optical
diffusion tomography problem the physical parameters be-
ing inverted can have only positive values. Finally, multi-
grid algorithms tend to better avoid local minima, or tend
to find a better local minimum, in the functional being op-
timized. Since the diffusion tomography problem results in
a nonconvex optimization problem, this robustness to local
minima helps insure that a good solution is reached.

A key innovation of our work is the direct formulation
of the multigrid algorithm in an optimization framework.

Historically, multigrid techniques were developed for solv-
ing linear or nonlinear elliptic PDE’s [18]. While they can
be used to solve optimization problems, this is generally
done by differentiating the cost function, and using multi-
grid algorithms to solve the resulting equation. In con-
trast, we have derived expressions for the direct applica-
tion of multigrid methods to optimization problems. This
approach greatly simplifies the application of multigrid to
our problem.

Section II describes the forward diffusion equation model
and reviews the Bayesian cost function in this context. Al-
ternating estimation of the data term noise variance and
the updated image is then described as a means to vary
the degree of regularization and improve convergence. The
multigrid algorithm we develop for non-quadratic optimiza-
tion is presented in Section III. Section IV presents a com-
plexity analysis of the multigrid and fixed grid algorithms.
In Section V we present the results of simulations using
our multigrid method in comparison with a fixed grid al-
gorithm. Concluding remarks are made in Section VI.

II. BAYESIAN FRAMEWORK FOR OPTICAL DIFFUSION
TOMOGRAPHY

In this section, we develop the Bayesian framework that
we use for reconstructing the material parameters of highly
scattering media from measurements of scattered light. In
Section II-A we develop the forward model based on the
diffusion equation, and in Section II-B, we use this model to
formulate the maximum a posteriori (MAP) optimization
problem.

A. Forward Model for Optical Diffusion Tomography

In a highly scattering medium, the coherence of light is
so quickly lost that it is useful to look only at the intensity
of the electromagnetic wave. Here, photons are essentially
treated as particles which elastically scatter through the
random medium. The theoretical framework for this model
is Boltzmann transport theory [29], which applies conser-
vation of energy for the photon density scatter and source
mechanisms. A common approximation to the Boltzmann
transport equation is the diffusion approximation [29], [30],
which assumes that the flux has a weak angular depen-
dence, that all photons travel at the same speed, that the
sources are isotropic, and that the photon current density
changes slowly with time, relative to the mean collision
time [29]. The diffusion approximation is accurate in soft
tissue over the 650-1300 nm wavelength range where scatter
dominates absorption [31], [32], [33], and provides a com-
putationally tractable forward model for tissue imaging.

Let the scalar quantity Ni(r) be the photon density
(with the dimensions of energy per unit volume) at posi-
tion r € © due to a point source of light at position s, € Q)
where () is the domain of interest. Then, the photon flux
is defined as ¥ (r,t) = ¢ Ni(r), with being ¢ the speed of
light in the medium. The photon flux vy (r,t), which de-
scribes the optical power density as a function of position
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Fig. 1. Geometry used for simulation of optical diffusion measure-
ments. The 12 detectors and 12 sources are uniformly spaced
around the perimeter of the object.

and time, satisfies the time domain diffusion equation
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where S(t) is the time varying photon source density, and
D(r) is the diffusion constant given by
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with e (r) the absorption coefficient, and p, (1) the reduced
scattering coefficient. The reduced scattering coefficient is
defined by i, (r) = (1—g)us(r) where ug(r) is the scattering
coefficient and g is the mean cosine of the scattering angle.
Practical systems based on time domain measurements
have been implemented [34], [31], but these systems tend
to be expensive and noise sensitive. In order to circum-
vent these problems, we adopt a frequency domain ap-
proach to the optical diffusion problem [35], [3]. To do
this, we assume that the light source is amplitude modu-
lated at a fixed angular frequency w(# 0), so that S(t) =
Re[l + Bexp(—jwt)] where 3 is the modulation depth. At
the detector, the complex modulation envelope is then mea-
sured by demodulating the in-phase and quadrature com-
ponents of the measured sinusoidal signal, which is propor-
tional to vk (r,t). This technique allows low noise narrow-
band heterodyne detection of the modulation envelope of
Vi (r,t) [36], which is denoted as the complex quantity
¢r(r). By taking the Fourier transform of (1), the partial
differential equation that governs the complex modulation

envelope, ¢k (r), becomes

V- D(r)Vér(r) + (—pa(r) + jw/c)pr(r)
= —B6(r — sg) - (3)

In the frequency domain imaging approach, (3) is used as
the forward model, and the energy measured by a detector
is then proportional to the photon current J = —DV¢(r)
[29].

Figure 1 shows a two-dimensional imaging domain with
interspersed source and detector points uniformly dis-

tributed around the boundary. We will use this as a rep-
resentative experimental scenario for optical diffusion to-
mography. The region to be imaged is denoted by € and is
surrounded by K point sources at positions s € Q2 and M
detectors at positions d,,, € Q. In general one could image
both the absorption and scattering coefficients as a func-
tion of position. However, here we consider the absorption
imaging problem where we determine the values of . (r)
from the measured values of ¢y (d,,), while assuming p, (1)
known.

Using the same notation as in [12], measurements of the
complex envelope ¢y (d,,) for source k and detector m are
denoted by yin,,. We also organize these measurements as
a single column vector of length P = KM where K de-
notes is the number of sources, and M denotes the number
detectors.

Y = [y, Y yer, o Ykm )T (4)

The domain ) is discretized into N pixels where the posi-
tion of the i-th pixel is denoted by r; for 1 < i < N. The
set of unknown absorption coefficients is denoted by the
vector x where

X =

cHa(rn) 1T (5)

In order to formulate this problem in a Bayesian frame-
work, we require the data likelihood p(y|x). With the de-
tectors operating at a sufficiently low temperature, photon
detection can be modeled using shot noise statistics [12],
which has its origin in Poisson statistics [36]. With ¢y (d,,)
sufficiently large, i.e., with an adequate number of detected
photons, the measurements are independent complex Gaus-
sian random variables, and the data likelihood is given by
12]

[ pra(ra), -
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where « is a parameter related to the noise variance, A
is a diagonal covariance matrix, ||w||3 = wH Aw, and the
complex vector valued function f(x) represents the “exact”
value of the photon flux for the assumed value of the ab-
sorption coefficient x. More specifically, f(x) = E[y]| where
E[-] denotes expectation, is given by

[ fl(x)va(X)ﬂ"'afP(X) ]
= [ ¢1(d1,x),¢1(d2,%x),- -,
¢1(dM>X)a¢2(d17X)7"'7¢K(dM7X) ]T .

For our problem, the measurements are statistically inde-
pendent with the variance of each measurement equal to
its mean; so A is diagonal. For our simulations, we make
the assumption that

f(x)

L~
1 —

, wherei=M((k—-1)+m. (7)
|ykm|
This approximation results from the assumption that the
DC and modulated light undergo the same loss, which is
approximately true for low modulation frequencies [12].



B. Formulation of the Bayesian Optimization Problem

Bayesian methods provide a natural framework for in-
corporating prior information about the behavior of the
unknown quantity x. The MAP estimate of x given the
measurement vector y, is

Xmap = argmax{ logp(y[x) +logp(x) }  (8)

where p(x) is the prior density for the image and maximiza-
tion over x > 0 enforces the required positivity constraint,
i.e., that u, > 0, as required for the physical problem. As
in [12], we use the generalized Gaussian Markov random
field (GGMRF) prior model [37]

1 1
T D | > biglm P (9)
o"#(p) PO s yen

p(x) =

where ¢ is a normalization hyperparameter and 1 < p <2
controls the degree of edge smoothness, with p = 2 cor-
responding to the Gaussian case. This prior model en-
forces smoothness in the solution while preserving sharp
edge transitions.

We adaptively estimate o during the reconstruction pro-
cedure. Initially, the estimated value of « is large when x is
far from its true value. In this case, the strong prior term
restricts the solution to be smoother. As the optimization
proceeds, the value of a decreases, making the data term
more important and consequently reducing the relative im-
portance of the regularization term. We have found that
this progression of a from large to small values increases
the robustness of convergence to the minimum. This is
particularly important because f(x) is highly nonlinear, so
the computation of the MAP estimate can become trapped
in local minima.

If we consider o unknown, referring to (6) and (9), the
optimization problem (8) can be re-written as

1
— ly-f 2 Pl
ugagmax g o lly ~ £ - Ploga

1

pr Z bi—jlx; — ;[P + const

{i,j}eN

(10)

Viewing (10) as a cost function, and setting the derivative
with respect to a equal to zero, we obtain the closed form
expression

o =

(11)

By substituting (11) into (10), the optimization problem
(10) is converted into

1
Slly £}

. 1 2
= argmag { — P~ Plog (5 ly ~ 1003

1
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(12)

where X is an estimate of the unknown x. After neglecting
constant terms, we can define the log posterior probability
l(x) as

—Plog|ly — f(x)||3

1
T ooP Z bi—jlw: — x5lP
PO iiven

I(x) =
(13)

The log posterior probability (13) is used as a criterion for
the convergence in our experimental results. For compu-
tational simplicity, we maximize [(x) by alternately max-
imizing with respect to a and x using the following two
equations:

R 1 .
& = Sy~ IR (14)
¢ = Ly — £0)113
X = argrilzaéc 2y x)||A
1 P

{i,j}eEN

Equation (14) is a straight-forward computation, but
(15) is a computationally expensive optimization problem,
especially for large images x. To circumvent this problem,
we employ multigrid optimization algorithms to efficiently
compute (15). At the beginning of each multigrid itera-
tion the nonlinear functional f(x) is first linearized using a
Taylor series expansion as

ly — £l = [ly — (%) — £'(x)Ax|[} (16)
where Ax = x— X%, and f’(X) represents the Fréchet deriva-
tive of f(-) at X. Note that the Taylor series expansion of
(16) turns out to be exactly the same as would result from
a Born approximation [38], [39], [40]. The details of how
the matrix f'(X) is computed for this problem are given in
Appendix A. Using (16), an approximate cost function for
the original problem (15) is

1 1
c(x) = <|lz— Ax|[} + — > biglei—alP (17)
a poP 4
{igteN

where

f'(%)
y — £(X) + £/ (R)% .

Our overall strategy for the optimization of (10) is listed
in the pseudo-code of Figure 2 and is illustrated in Figure 3.
Each iteration of our algorithm starts with an update of
a using (14), followed by a new linearization (17). This
results in a non-linear optimization problem that we then
solve using either V-cycle or full multigrid. This sequence
is repeated until the desired level of convergence is reached.



main {
1. Initialize X with a background absorption coefficient estimate.
2. Repeat until converged: {
(a) & Ly — £l -
(b) Compute the Fréchet derivative f/(x) using (34), (35), (36).
(¢) Compute the following:

z «— y-—f(x)+f(&x%x
A — &
(d) Apply a multigrid optimization algorithm to minimize (17).
% «— MultigridV(%,r =0,2,A,k =0)

or

% «— TFMG(,r=0,2Ak=0)

}
3. Stop.
}
Fig. 2. Pseudo-code specification for the optimization procedure.

Each iteration of the procedure estimates the parameter &, re-
computes the Born approximation, and then applies the multigrid
optimization of Section III.
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Fig. 3. Multigrid inversion algorithms. Each iteration alternates a
Born approximation step with a single iteration of a nonlinear
multigrid algorithm. (a) V-cycle inversion algorithm, and (b) full
multigrid inversion algorithm.

III. NONLINEAR MULTIGRID INVERSION ALGORITHM

In this section, we derive a general algorithm for multi-
grid optimization of any functional, and we also derive the
specific expressions for optimization of the cost functional
in (17). Our approach is unique because it is formulated
directly in an optimization framework. This is in contrast
to conventional multigrid algorithms which are formulated
to solve differential or integro-differential equations [19],
[21], [22], [25], [26]. To derive our method, we start with
the two-grid case, and then generalize this solution using
standard recursions for the V-cycle and full multigrid cases
[41].

A. Two Grid Algorithm

For the two grid algorithm, we first consider optimiza-
tion without the positivity constraint. We then discuss the
addition of the positivity constraint in Section ITI-B.

Let x(©) = x denote the finest grid absorption image, and
let x(*) be a coarser scale representation of x(9) with a grid
sampling period of 2¥ times the finest grid sampling period.
In general, x***1) may be computed from x*) by some
linear transformation x*+t1) = HE:;Ll)X(k) where HE:;I) is

an 4,9% X 41,9 decimation matrix for the two-dimensional

case. The corresponding linear interpolation matrices are

k
denoted by I()), .

Assume we need to minimize a cost functional c¢(®)(x(*))
at scale k. Also assume that we have an initial solution x(*)
which approximately minimizes the cost functional, i.e.

%® ~~ arg min {c(k)(x(k))} . (18)
x (k)
Our objective is to compute the solution at the next coarser
grid, x**1D  and then use this solution to improve or cor-
rect the fine grid solution. This fine-grid correction may
be done using the formula

~ ~ k ~ k+1) A
PO +H§k)+1> (X<k+1> _ HEJ )XW) , (19)

In order to compute the coarse grid solution, x**1)  we
must formulate a corresponding coarse grid optimization
problem. To do this, we first choose a coarse grid cost func-
tional, c*+1) (x(*+1)) which we believe to be a good ap-
proximation to ¢*) (x(*)). Of course, the particular choice
of this functional is very important and depends on the de-
tails of the problem being solved. However, for now, sim-
ply assume that c(k+1)(x(k+1)) reasonably approximates
the finer grid cost functional. To correct for possible dis-
cretization errors, we then solve an adjusted coarse scale
optimization problem

%) = arg min
x(h+1)

{c<’€+1>(x<k+1>) _ r<k+1>x(k+1)} (20)
where r(*+1) is a constant row vector which may be used
to adjust for errors in the cost function. This row vector is
equivalent to the so-called residual term used to partially
correct errors between coarse and fine grids in conventional
multigrid [41].

The question remains as to how we should choose the
residual term r*t1 . Ideally, we would like the following
approximate equality to hold for all values of x(k*+1):

D (x B+ p(HD (D) 4 const

o (509 41 ()] o
The left hand side of (21) is the corrected coarse scale cost
function, while the right hand side is the fine grid cost
function evaluated using the corrected result of (19). If
these two functions are equal, within a constant, then their
minimum will occur for the same value of x(*+1),



In the general case, the difference between the left and
right hand sides of (21) is not linear, so no choice of the
row vector r*t1) can achieve equality. However, we can
choose r**1) to match the derivatives of the two sides when
x(k+1) = ngjl)i(k). This condition results in the following
key expression for r(+1)

~ k
ple+1) — vc(k+1)(x) _ Vc(k)(x(k))ﬂgkl_l) (22)

(k1)
x_]I(k> %x(k)

where V¢(x) denotes the row vector formed by the gradient
of the functional ¢(x).

There are a number of observations to be made about
(22). The expression holds for general choices of the cost
functionals, the interpolating operators, and the decimat-
ing operators. It is interesting to note that the interpo-

lation matrix, I actually functions as a decimation

(kzrl)v
operator in equation (22) because it is being multiplied by
the gradient vector from the left.

Perhaps the most important observation is that the exact
solution to (18) is a fixed point to this two grid update
procedure. More precisely, the following theorem is proved
in Appendix B.

Theorem Let ¢(®) (x(®)) and c*+1) (x(*+1) be strictly con-
vex continuously differentiable functionals on RN and
IRN/, respectively, where N' < N, and let x*¥) ¢ RN
be the global minimum of ¢*)(-). Furthermore, consider
the two grid update formed by applying (20) followed by
(19) using the residual calculation of (22). Then the exact
solution, x*%)  is a fized point of the two grid update.

B. Recursive Formulations of Multigrid Inversion

Multigrid optimization is implemented by recursively ap-
plying the two-grid update of the previous section. In par-
ticular, we use the two recursions known as V-cycle and
full multigrid [41]. The pseudo-code recursions for V-cycle
(MultigridV) and full multigrid (FMG) with the use of pos-
itivity constraints are shown in Figures 4 and 5. Each of
these algorithms moves back and forth through coarse and
fine resolution in characteristic patterns as shown in Fig-
ures 3a) and 3b).

The V-cycle algorithm is a straight-forward generaliza-
tion of the two grid algorithm. In V-cycle algorithm, the
fine grid optimization problem is solved by calling the re-
cursive MultigridV subroutine starting at the finest grid
resolution. Each subroutine call starts by applying v iter-
ations of a fixed grid optimizer. The Multigrid V subroutine
then recursively calls itself for the next coarser resolution
in order to compute a coarse grid correction to the current
fine grid solution. At each coarsening grid resolution, 14
iterations are performed using the residual, r'*), for that
level. Finally, the solution is further improved by apply-
ing vy iterations of a fixed grid optimizer at each refine-
ment step, using the residuals from the coarsening steps
and the decimated solution for the coarser grid. This re-
cursive structure causes the algorithm to move from fine to
coarse grids, and then back to fine grids as shown in the
“V” pattern of Figure 3(a).

MultigridV(x, r, k) {
1. Apply v; fixed grid iterations to compute:

X R arg m>ir6 {c(k)(x) - rx}
x2

N

If k is the coarsest desired grid, Return(x).
3. Compute the following:

Xdee ng;rl)x

rtD) Vc(k+1)(xdec)7Vc(k)(x)]IE::_1)

4. x(F+1)  MultigridV (xgee, r*+ k4 1)
5. Perform coarse grid correction:

k
x «— x4+ Hgkl_l)(x(k'*'l) — Xdec)
x <« max{x,0}
6. Apply v2 fixed grid iterations to compute:

X R arg m>ir6 {c(k)(x) - rx}
xZ

7. Return(x)
}

Fig. 4. Pseudo-code specification of the proposed multigrid opti-
mization method using the V-cycle recursion and a positivity
constraint on the solution x.

FMG(x,r, k) {
1. If k is the coarsest grid, go to 5.
2. Compute the following:

Xdee ]Ig:;'l)x

) P )~ et
3. x(FtD) FMG (xgee, r*tD k +1)
4. Perform coarse grid correction

(k)
x + H(k+1)

x <+« max{x,0}

X (X(k+1) - xdec)

5. x «MultigridV(x, r, k).
6. Return(x)

Fig. 5. Pseudo-code specification for the full multigrid optimization
algorithm using a positivity constraint on the solution x.

The V-cycle algorithm of Figures 4 includes specific steps
to ensure positivity of the result. In particular, the coarse
grid correction (Step 5) can potentially result in an x with
negative values. So the pixel values are limited to a mini-
mum value of 0. We have found this method of enforcing
positivity to be very effective in our experiments. However,
we note that this step complicates the analysis of the algo-
rithm since it violates the assumptions of our fixed point
theorem.

The full multigrid algorithm of Figure 5 is based on re-
cursive calls of both the full multigrid and V-cycle subrou-
tines. This structure causes the algorithm to initially move
to the coarsest grid. The resulting coarsest grid solution
is interpolated to the next finer grid and used as the ini-



tial condition for the corresponding fixed grid optimization
problem, which is then solved by a multigrid V-cycle. This
process is repeated, until the final solution is obtained on
the finest level.

C. Multigrid Optimization for Optical Diffusion Problem

For the optical diffusion tomography problem, we use the
ICD optimization method [16], [17], [11], [12] as the fixed
grid optimizer at each resolution. The ICD algorithm is a
good choice for optimization problems because it has fast
convergence at high spatial frequencies [16].

The specific multigrid expressions for the optical diffu-
sion imaging problem are now derived. In all cases, we

k+1)

choose ]I( to be the separable extension of the one-

dlmensmnal decimation matrix

1 1 1
13 300 00 00
00 & 11 00 00
4 2 4 (23)
o0o0o0®O0O--0 1% 11

and we choose the corresponding interpolation matrix to
be

k) g (gD
Lhyry = 4(%) )

The finest scale cost function, ¢(9(x(?)), is given in (17).
At each scale, the cost functional ¢*)(x(®)) consists of a
quadratic data likelihood term and a non-quadratic prior
term. Referring to (19), the quadratic term of (17) can be
expressed as

(24)

||Z(k) —_ AF) (k) 12
~ k k+1) A~
= [l2® = AB(x® + 1, ) (xEH- TR0 IR

— ||z(’“+1)—A(k+1)x(’“+1)||i (25)
where
k+1 k)r(k)
Ak+1) Al )H(k+1) (26)
k+1 k k (k) p(k+1)\ o (k
74D 25— A (I ¥, 10 )X< ) (27)

and I denotes the identity matrix.

For the coarse grid prior term, we assume that the deriva-
tive of x is locally smooth [25]. In this case, the correspond-
ing prior term can be represented as

EE S PRI
ba {i,jyeN
(k) (k) |P
4k x; z;
i,

Note that the factor of 4% is chosen to account
for the reduced number of terms in the sum, and
the smoothness assumption justifies the approximation

MultigridV(x, r, z, A, k)
1. Apply v; ICD iterations with initial condition x and compute:
2R k) P
Ty Ty }
—— | —rx

x<—~argm1n{||z—Ax||A+— Zbl j o

{i,5YeN

2. If k is the coarsest desired grid, Return(x).
3. Compute the following;:

Xdec ng;rl)x
ARHD AL (Bquation (26))

k k .
Z(k+1) Ekl—l) Ek?l)) (*)  (Equation (27))

- ve® eIl )

z—A(I

r(k+1) - VC<k+l>(xdec)

(Equation (31))
4. x(k+1) — MultigridV (xgec, r#+t1D) | z(k+1)  AG+D) k4 1)

5. Perform coarse grid correction

( (k+1) _ xdec)

(k)
x + ]I(k+1

x <« max{x,0}

X —

6. Apply v ICD iterations with initial condition x and compute:
P
- rx}
}

Fig. 6. Pseudo-code specification for the specific V-cycle multigrid
inversion algorithm used for the optical tomography problem.

NOEINE)
J

7,

x<—~argm1n{||z—Ax||A+T sz —j oF

{i,JYEN

7. Return(x)

xEO) - x;o) o~ (mgk) - x;k))/Zk. Based on (25) and (28), we
then define the coarse grid cost function.

W) = iuz““) ABXO |2 (29)
(k) (k)
+oo? > by (30)
{i,j}eN

Referring to (22) and (30), the i-th component of r*) is
then given by

{r(k"'l)L = (31)
p—1

sgn(z;

2D _ D)
]

ok+1

(k+1) _ (_k+1))
J

2k
o7 |22 b |~

JEN;

(k) P71

By E?H)] S b, g

l b meN;

sgn(a;" z(}))

k+1) _ H(k)+1)

the i-th pixel and [ Ekll)}m

the interpolation operator.

Figure 6 shows the pseudo-code for the multigrid V-cycle
subroutine that results for the optical diffusion tomography
problem using the cost functions given above.

where x( x(*) | N; denotes the neighborhood of

is the (4, 7)-th component of



Green’s ICD Total

function

update
Fixed 5(M+K)FN| 5MKN 5M K N+5(M+K)FN
Grid
V-cycle 5(M+K)FN| Z2uvMKN | 20MKN+5(M+K)FN
Full 5(M+K)FN| £vMKN | $vMKN+5(M+K)FN
multigrid

TABLE I

COMPUTATIONAL COMPLEXITY OF THE FIXED GRID ICD/BORN AND
THE MULTIGRID INVERSION ALGORITHMS IN TERMS OF NUMBER OF
COMPLEX MULTIPLICATIONS PER FULL ITERATION. M = NUMBER OF
DETECTORS; K = NUMBER OF SOURCES; ' = NUMBER OF ITERATIONS
REQUIRED FOR THE LINEAR FORWARD PDE SOLVER; N = NUMBER OF
PIXELS; ¥ = NUMBER OF THE ICD OPTIMIZATIONS FOR EACH GRID.

Parameters Fixed V-cycle Full

grid %106 multigrid
%106 %108

v N K|MT]|F

2 1297 12 12 | 20 | 51 71 82

6 | 1292 | 12 | 12 | 20 | 51 135 167

2 1292 | 24 | 24 | 20 | 127 207 250

6 | 1292 | 24 | 24 | 20 | 127 463 591

TABLE 11
ESTIMATES OF THE COMPLEX MULTIPLICATIONS REQUIRED FOR EACH
ITERATION OF THE LISTED INVERSION ALGORITHMS.

IV. COMPLEXITY ANALYSIS

To compare the relative computational costs of the
multigrid inversion algorithms with that of the fixed grid
ICD/Born algorithm [12], we determine the number of com-
plex multiplications required for one iteration of the V-
cycle or the full multigrid inversion algorithm.

Let us assume that the grid resolutions range from k = 0
to L — 1, and that the unknown absorption images at grid
resolution k are approximately of size N/4*. For simplicity,
we neglect the computational cost required for decimation
and interpolation of the absorption images. Therefore, the
main computational cost is assumed to come for the com-
putation of the Fréchet derivative and the multigrid opti-
mization by the ICD algorithm. We note that the compu-
tation of the Fréchet derivative is dominated by solution
of the PDE required in evaluating the Green’s function as
described in Appendix A.

The V-cycle algorithm performs a total of v = v + 15
fixed grid ICD optimization passes at each grid resolution

(a) (b) (©) (d) (e) ()
NRMSE 0.030 | 0.070 | 0.055 | 0.195 | 0.208 | 0.217
CPU time 221 224 236 239 234 223
(sec)
TABLE IIT

NRMSE aAnD CPU TIME FOR THE EXAMPLES OF FIGURE 14 AFTER
10 ITERATIONS OF THE FULL MULTIGRID INVERSION ALGORITHM.

where v; and vy are defined in Figure 4. The number of
complex multiplications required for one iteration of ICD
is BMK x (image size) [12]. This means that the total
computation due to ICD iterations in a single iteration
of the V-cycle algorithm, is given by Zf;& SMKN/4% <
DYMKN. In addition, the Fréchet derivative must be
computed at the beginning of each multigrid iteration.
This adds 5(M + K)FN complex multiplications for com-
putation of the Fréchet derivative where F' is the number
of iterations chosen for the PDE solver used in the com-
putation of the Green’s function [12]. A larger value of F'
increases the accuracy of the computed Fréchet derivative.
We found that F' = 20 was sufficient for the problems we
have studied. The total per iteration computational com-
plexity of the V-cycle algorithm is then listed in Table I as
BDUYMKN +5(M + K)FN.

The full multigrid algorithm performs vk ICD itera-
tions at grid resolution k. Therefore, the total computa-
tion of the ICD iterations at resolution k is 5M K Nk /4%,
and the total ICD computation is therefore bounded by

FZo SMKNEK/4F < 39yMKN. Adding the computa-
tion of the Fréchet derivative results in the final expression
of BUMKN +5(M + K)FN listed in Table 1.

Table II lists the estimated number of complex multipli-
cations required for each iteration of the fixed grid, V-cycle
and the full multigrid inversion algorithms, using typical
values of parameters. The point to notice here is that al-
though the number of operations per iteration is larger for
the multigrid algorithms than for the fixed grid algorithm,
it is not dramatically so. We will see later that the num-
ber of iterations required for the multigrid algorithms is
substantially less than is required using the fixed grid al-
gorithm, so that overall there is a dramatic decrease in the
computation required for the multigrid algorithms.

V. NUMERICAL RESULTS

Simulation results are presented here to assess the per-
formance of the new algorithms. Figure 7 shows an 8 x 8cm
phantom used for one of the numerical experiments. The
phantom is discretized on a 129 x 129 grid and the ab-
sorption coefficient at each grid point, including the back-
ground, is considered unknown. The unknown background
absorption coefficient is 0.02 cm™!, and p/, is assumed uni-
form throughout € with a value of 10.0 cm™'. The values
of the absorption coefficient for each sub-domain are given
in Figure 7(b). Figure 7(b) also shows the locations of the
12 sources and 12 detectors used in the simulations. The
modulation frequency is 200 MHz. The synthetic scattering
datum for the k-th source and the m-th detector pair is gen-
erated by adding random noise with a complex Gaussian
distribution and with noise variance of «|¢y(d,,)| resulting
in the SNR of [12]

SNRyni, = 101og;, (é |¢5k(dm)|> (32)

where « is the noise parameter in (6). This procedure
is independently performed for every source and detector
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Fig. 7. A two-dimensional 8 cm X 8 cm phantom used for simulation: (a) gray scale image showing the spatial

variation of absorption coefficient, and (b) contour plot showing absorption coeffient with units of cm~ L,
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Fig. 8. Gray-scale view of (a) log magnitude and (b) phase of measurements for each source and detector pair. The
numbers on the axis denote the indices for the sources and detectors.
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Fig. 10. Reconstructions by (a) the fixed resolution ICD/Born algorithm, and (b) the full multigrid inversion
algorithm.
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Fig. 9. (a) Log posterior probability and (b) NRMSE as a function

of CPU time.

pair. The value of « is chosen so that the lowest amplitude
measurement has an SNR of 10 dB.

Figure 8 shows the magnitude and the phase of the sim-
ulated data measurements used in the results of Figures
9-11. Here, the abscissa indexes the detector location, and
the ordinate indexes the source location. The gray levels
of Figure 8(a) and (b) are proportional to the log magni-
tude and phase (from —7 to 7), respectively. Note that the
magnitude peaks at the positions corresponding to nearby
source/detector pairs, and attenuates as the distance be-
tween source and detectors becomes larger.

For inversion, we chose an 8 point neighborhood model
for the GGMRF prior model with normalized weights
{b;_;} summing to 1.0 for each 4, with b;_; = (2v/2 +4)7*
for nearest neighbors and b;_; = (4v/2 + 4)~! for diago-
nal neighbors. We used a fixed value of 1.1 for p in all
the reconstructions, which has been found suitable for the
class of problems considered here [12]. For each iteration
of the ICD algorithm, we scanned through the points in a
new randomized order. Four grid levels were used in the
multigrid algorithm, obtained by decimating the finest grid
image with a size of 129 x 129 pixels until we obtain a grid
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Fig. 11. Estimation of a by (14) as a function of number of iterations
of full multigrid algorithm. Note the bias of the estimate from
the true value of a.

of 17 x 17 pixels. All reconstructions were initialized with
a constant absorption coefficient of 0.02 em ™!, correspond-
ing to the background level.

We use the normalized root-mean-square error (NRMSE)
of the reconstructed profile as a measure of the quality of
the reconstructions. The NRMSE is defined as

SN {ftalr:) = pa(rs)}?

NRMSE N
Zi:1{ﬂa(ri)}2

(33)

where fi,(r;) is the reconstructed value of the absorption
coefficient at mesh location r; and p.(r;) is the correct
value, and the NRMSE is computed at the finest resolution.
Furthermore, the log posterior probability (13) is used as
a measure of convergence of the algorithms.

Figure 9 shows the convergence of the log posterior prob-
ability and the NRMSE for the full multigrid inversion al-
gorithm and the fixed grid ICD/Born algorithm, as a func-
tion of CPU time. Several hyper-parameter values were
tested for the full multigrid solution and it was found that,
of these, ¢ = 0.04 cm~! qualitatively gave the best re-
sult. While the quality of the image should not be a func-
tion of the optimization procedure, the convergence of the
fixed grid ICD algorithm with ¢ = 0.04 cm~! was so poor
that after 1000 iterations it still had not achieved a solu-
tion close to the optimum achieved by the multigrid algo-
rithm. Therefore, to improve the convergence speed of the
fixed grid algorithm, we used a larger value of the hyper-
parameter, choosing ¢ = 0.1 cm~!. This value of ¢ al-
lowed ICD to converge but produced a reconstruction of
somewhat lower quality.

Note in Fig. 9 the significant computational savings of
the multigrid algorithm over the fixed grid ICD/Born.
With the same hyper-parameter value (o = 0.04 cm™1),
the full multigrid solution converges dramatically faster.
Even when a larger hyper-parameter (o = 0.1 cm™!) is



used in the fixed grid solution, the multigrid approach is
still about twenty times faster. Figure 10 shows the recon-
structions produced by the fixed grid ICD/Born after 1000
iterations (8,923 sec of CPU time on a Sun Ultra Sparc
30 machine), and by the full multigrid algorithm after 200
iterations with v = 2 (4,115 sec of CPU time). It is evident
that the full multigrid algorithm produces a more accurate
reconstruction of the phantom. Note that the per-iteration
CPU times are 8.93 seconds for the fixed grid algorithm
and 20.51 for the multigrid algorithm. This is consistent
with the per-iteration complexity listed in Table II. The
faster convergence of the multigrid algorithm is due to the
substantially fewer iterations required.

Figure 11 shows the convergence of the a estimation by
(14) with respect to the number of full multigrid iterations.
The estimation of « also converges rapidly to a constant
nonzero value. However, there is a bias in the estimate
from the true value of o which was used to generate the
synthetic noisy measurement by (32). This is because the
joint estimation of o and x by (14) and (15) produces a
biased estimate [42].

Reconstructions using the different recursion patterns of
the multigrid inversion algorithms, as well as for different
values of v = 11 + 1o (the total number of ICD optimiza-
tion passes for each grid), are shown in Figure 12. Fig-
ures 12(a)(b) show reconstructions using the V-cycle in-
version algorithm after 20 iterations with v = 2 and v = 6,
respectively, and Figures 12(c)(d) show the reconstructions
using the full multigrid inversion algorithm after 20 itera-
tions with v = 2 and v = 6, respectively. All the recon-
structions are similar and quite accurate. The log posterior
probability and the NRMSE versus CPU time are shown
in Figure 13. We found that V-cycle or full multigrid with
v = 2 gave slightly better results.

Figure 15 shows reconstructions for a variety of absorp-
tion cross sections (with true images shown in Figure 14).
In all cases /(r) is known and fixed at 10.0 cm~!, the
peak values of the absorption coefficient of the inhomo-
geneities are 0.08 cm™!, and the unknown background is
pa(r) = 0.02 cm~!. The reconstructions are shown for
10 iterations of the full multigrid inversion algorithm with
v =2, using p= 1.1 and ¢ = 0.02 cm~!. The NRMSE and
CPU time after 10 iterations of the full multigrid inversion
algorithm is given in Table III. The reconstructions are
accurate quantitatively and qualitatively, and have a small
computational burden (approximately 200 seconds). Note
that the NRMSE is higher for Figure 15(d)-(f). This is
because the original images, Figure 14(d)-(f), have abrupt
edges while the original images in Figures 14(a)-(c) have
smoother changes.

VI. CONCLUSION

Optical diffusion tomography attempts to reconstruct
an object cross-section from measurements of scattered
and attenuated light. While Bayesian approaches are well
suited to this difficult nonlinear ill-posed problem, the re-
sulting optimization problem is very computationally ex-
pensive.
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We have developed a general multigrid optimization
technique for solving nonlinear inverse problems. This
technique incorporates a coarse grid correction scheme to
reduce discretization errors. A Bayesian framework has
been used for the optical diffusion imaging problem. The
algorithm alternately maximizes the log posterior proba-
bility with respect to a noise parameter and the unknown
image. In each iteration, the noise parameter and Fréchet
derivative (calculated using a Born approximation) are up-
dated at the finest grid level. The multigrid optimization
is then applied, updating the image by ICD at each grid
level.

Simulation results show that the multigrid algorithms
dramatically reduce the computational burden as well as
improve the reconstruction quality. This improved per-
formance will be essential for realistic three-dimensional
imaging.

APPENDIX

I. COMPUTATION OF THE FRECHET DERIVATIVE

Computation of the Fréchet derivative, f'(x) for the for-
ward model f(x) of equation (6) is described here. The
Fréchet derivative is a P x N complex matrix given by

f'(x) =
[ 9¢1(d1%) 0¢1(d1,%) 0¢1(d1,%)
(9.’1:1 8.’1:2 81‘]\]
0¢1(d2,%) 091 (d2,%) 0¢1(d2,%)
oxq Oxo ox N
991 (dar,%) 91 (dar,%) 91 (dar,%) (34)
oxq Oxo or N
O2(d1,%) O2(d1,%) O2(di,%)
Oxq Oxo ox N
8¢K(.d1v175() 8¢K(.d1v175() 8¢K(;ZJM75€)
L oz Oz orn _

In [12], [40], [43], it is shown that each element of the matrix
is approximately given by

8¢k (d'rru )A() ~
a.fi o

9(dm, i, X) (i, X) {—1 +

(35)

ba
where A is the pixel area, [i,(r;) is the current estimate

of unknown absorption coefficient at r;, and g(d,,, r;, X) is
the Green’s function computed as the solution to

—ha(ri) +jw/c

/la (Tl) + ,u/s (Tz)

V- (D(T)Vg(r, n-,f{)) + (—fia(r) + jw/c)g(r,ri, X)
—0(r —m;)

(36)
with D(r) = 1/3(jia(r) + p.(r)). Note that g(dm,rs,%)
is the Green’s function evaluated at the receiver location
dm- In the actual implementation, reciprocity allows us to
reduce the computation in the evaluations of the Green’s
function by interchanging the source location r; and the
detector location d,, [2].



0.08

0.06

|
|

08

07

0.
0.1
0.06
0.05
0.04
0.

2|
22

Fig. 12. V-cycle inversion results with (a) v = 2, and (b) v = 6 after 20 iterations; and full multigrid inversion results
with (¢) v = 2, and (d) v = 6 after 20 iterations. CPU times were (a) 352 sec, (b) 436 sec, (c) 663 sec, and (d)
855 sec. All the reconstructions are similar and quite accurate.

300Q 0.6
V-cycle v=2 e
25007 \ o2l 1
£ « 0.5 |
g ! : V-cycle v=6 -
52000 g » Y 1 full multigrid v=2
a { ; 0.4} 1
= : / w
7]

s150q NP \full multigrid v=6 ] =
@ . Q c V-cycle v=6
¢ ] “o.3f .
= 100( "’ ; .
[=2) - / e e E -
S I 4 full multigrid v=2 \*“/ full multigrid v=6

soct f ] 0.2 . S 1

§
3 V-cycle v=2
0 200 400 600 800 1000 0'10 200 400 600 800 1000
CPU time (sec.) CPU time (sec.)
(2T b ]

Fig. 13. (a) Log posterior probability and (b) NRMSE as a function of CPU time. Increasing v increases both the
NRMSE and the CPU time.

12



Fig. 14. A variety of absorption image phantoms.

Fig. 15. Reconstructions of the phantoms shown in Figure 14.
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II. Two-GRID FIXED POINT THEOREM

This appendix shows that for an initial value of x*(*) | the
two-grid update does not change the solution from this ini-
tial value, i.e., x**) is a fixed point of the two-grid update.
It is sufficient to show that the unique global minimum of
the cost function

C(k+1)(x) _ I.(/’~chl)X (37)

occurs for the value x = Hgﬁjl)x*(k), because in this case

the correction term of (19) produces the result x*(*). To
see that (37) is true, notice that

\Y (C(k"’l)(x) - r(k“)x)‘

(Rt (ke
xf]l(k) x*(k)

— (k+1) (5 _ plktD)
Ve ( ) x:HEE;H)X*(k)

_ k) (o*(k)\T(F)
= Vel (x*( ))H(kﬂ)

= ony

(k1) =0

where the second equality results from (22) and the third
equality results from the assumption that x*(*) is the global
minimum of ¢*)(x). Since the functional ¢*+1)(x) is as-
sumed strictly convex, x = HE:;—DX*(M must therefore be
its unique global minimum.
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