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ABSTRACT

Saquib, Suhail S. Ph. D., Purdue University, May 1997. Edge-Preserving Models and
Efficient Algorithms for Ill-Posed Inverse Problems in Image Processing.
Major Professor: Charles A. Bouman.

The goal of this research is to develop detail and edge-preserving image models to

characterize natural images. Using these image models, we have developed efficient

unsupervised algorithms for solving ill-posed inverse problems in image processing

applications. The first part of this research deals with parameter estimation of fixed

resolution Markov random field (MRF) models. This is an important problem since

without a method to estimate the model parameters in an unsupervised fashion, one

has to reconstruct the unknown image for several values of the model parameters

and then visually choose between the results. We have shown that for a broad se-

lection of MRF models and problem settings, it is possible to estimate the model

parameters directly from the data using the EM algorithm. We have proposed a fast

simulation technique and an extrapolation method to compute the estimates in a few

iterations. Experimental results indicate that these fast algorithms substantially re-

duce computation and result in good parameter estimates for real tomographic data

sets.

The second part of this research deals with formulating a functional substitution

approach for efficient computation of the MAP estimate for emission and transmission

tomography. The new method retains the fast convergence of a recently proposed

Newton-Raphson method and is globally convergent.

The third part of this research deals with formulating non-homogeneous models.

Non-homogeneous models have been largely ignored in the past since there was no
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effective means of estimating the large number of model parameters. We have tackled

this problem in the multiresolution framework, where the space-varying model param-

eters at any resolution are estimated from the coarser resolution image. Experimental

results on real tomographic data sets and optical flow estimation results on real im-

age sequences demonstrate that the multiresolution non-homogeneous model results

in cleaner and sharper images as compared to the fixed resolution homogeneous model.

Moreover, the superior quality is achieved at no additional computational cost.

The last part of this research deals with efficient image reconstruction from time-

resolved diffusion data, which employs a finite-difference approach to solve the diffu-

sion equation and adjoint differentiation to compute the gradient of the cost criterion.

The intended application is medical optical tomography.



- 1 -

1. OVERVIEW

1.1 Introduction

Many image processing applications require the estimation of the underlying un-

known image from noisy data that reflects some aggregate measurements of the object

of interest. For instance, in computerized tomography (CT) applications the mea-

surements consist of line integrals of the object of interest. In restoration applications

involving blurring due to motion or incorrect focus, the measurements are low-pass

filtered version of the original image.

Often the measurements that are collected are sparse and have a very low signal-to-

noise ratio (SNR). This is a consequence of physical constraints that are encountered

in practical applications. For example, in emission tomography where a radioactive

substance is injected into the human body, one is limited by the amount of radiation

exposure to the patient. The measurement time is also restricted when the internal

organs of the patient are moving. Both of these constraints can degrade the quality

of the measurements. In other instances the measurements are very sparse due to

the constraints of the hardware system and/or the object structure. For example,

in industrial CT applied to nondestructive inspection, the scanner cannot traverse

completely around the object due to its size or due to the object being obstructed by

other structure or because some rays are blocked entirely by X-ray opaque parts of

the object. In other applications such as seismic exploration of the earth, the physical

constraints on the placement of the sources and receivers restricts the number of the

views that can be taken.

The problem of reconstructing the unknown image from sparse and noisy mea-

surements is ill-posed and direct inversion methods that only employ a model for the
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measurements often yield inferior quality reconstructions. Bayesian methods on the

other hand are more useful in this context since they incorporate a model for the

underlying unknown image in addition to the data model. Consequently, the quality

of the reconstructed image is substantially improved if the image model accurately

describes the underlying unknown image. However, this approach could also degrade

the quality of the reconstruction when there is a mismatch between the image model

and the unknown image. This underlines the importance of formulating realistic im-

age models that better describe natural images and incorporating parameters in the

model that can be varied to reduce the model mismatch with the unknown image.

In practical applications, it is important to estimate these model parameters di-

rectly from the measurements to achieve the best possible results for each data set.

In the absence of such an unsupervised scheme, one has to compute the reconstruc-

tions for several values of the model parameters and then visually choose between

the results. This process is obviously very computationally expensive and therefore

undesirable.

The first part of this thesis addresses the issue of unsupervised estimation of model

parameters directly from the data. Fast algorithms are introduced that compute these

estimates in a computationally efficient manner. The second part deals with efficient

algorithms to compute tomographic reconstructions with desirable convergence prop-

erties. The third part deals with formulating a multiresolution non-homogeneous

model that better characterizes natural images. The last part deals with an efficient

model-based image reconstruction technique from time-resolved diffusion data, the

intended application being medical optical tomography.

1.2 Outline

The following is an outline of each of the chapters in this thesis.

• Chapter 2:

Markov random fields (MRF) have been widely used to model images in Bayesian

frameworks for image reconstruction and restoration. Typically, these MRF
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models have parameters that allow the prior model to be adjusted for best

performance. However, optimal estimation of these parameters (sometimes re-

ferred to as hyperparameters) is difficult in practice for two reasons: 1) Direct

parameter estimation for MRF’s is known to be mathematically and numeri-

cally challenging. 2) Parameters can not be directly estimated because the true

image cross-section is unavailable.

In this chapter, we propose a computationally efficient scheme to address both

these difficulties for a general class of MRF models, and we derive specific

methods of parameter estimation for the MRF model known as generalized

Gaussian MRF (GGMRF).

The first section of the chapter derives methods of direct estimation of scale

and shape parameters for a general continuously valued MRF. For the GGMRF

case, we show that the ML estimate of the scale parameter, σ, has a simple

closed form solution, and we present an efficient scheme for computing the ML

estimate of the shape parameter, p, by an off-line numerical computation of the

dependence of the partition function on p.

The second section of the chapter presents a fast algorithm for computing ML

parameter estimates when the true image is unavailable. To do this, we use

the expectation maximization (EM) algorithm. We develop a fast simulation

method to replace the E-step, and a method to improve parameter estimates

when the simulations are terminated prior to convergence.

Experimental results indicate that our fast algorithms substantially reduce com-

putation and result in good scale estimates for real tomographic data sets.

• Chapter 3:

Statistical tomographic reconstruction algorithms generally require the efficient

optimization of a functional. A recent algorithm known as iterative coordinate

descent with Newton-Raphson updates (ICD/NR) has been shown to be much

more computationally efficient than indirect optimization approaches based on
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the EM algorithm. However, while the ICD/NR algorithm has experimentally

been shown to converge stably, no theoretical proof of convergence is known.

In this chapter, we prove that a modified algorithm, which we call ICD func-

tional substitution (ICD/FS), has guaranteed global convergence in addition

to the computational efficiency of ICD/NR. The ICD/FS method works by

approximating the log-likelihood at each pixel by an alternative quadratic func-

tional. Experimental results show that the convergence speed of the globally

convergent algorithm is nearly identical to that of ICD/NR.

• Chapter 4:

A good image model needs to be non-homogeneous to be able to adapt to

the local characteristics of the different regions in an image. Toward this end,

in this Chapter we propose a non-homogeneous Markov random field (MRF)

model that has space-varying scale parameters. This formulation poses two

difficulties: first, the number of scale parameters to estimate is on the order

of the number of pixels in the image. Second, the scale parameters depend on

the structure of the underlying image which is unknown. These two difficulties

are solved by employing a generalized Gaussian MRF (GGMRF) based image

model in a multiresolution framework. While the choice of the GGMRF enables

us to estimate the local scale parameters in an intuitive fashion, the multires-

olution framework yields two significant advantages: first, it makes it possible

to estimate the space-varying scale parameters of the non-homogeneous MRF

at any resolution by using the image at the coarser resolution. Second, it yields

a multiresolution algorithm that is computationally efficient and more robust

than its single resolution counterpart.

Since the local scale parameters estimated from the coarser resolution image

may over or under estimate the image variation by a fixed constant, we introduce

a resolution dependent global scaling parameter in the model. These global
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scaling parameters are estimated directly from the data using the EM algorithm

yielding a practical unsupervised reconstruction algorithm.

Experimental results on real tomographic data sets and optical flow estimation

results on real image sequences demonstrate that the proposed non-homogeneous

model and multiresolution reconstruction algorithm is superior to the homoge-

neous fixed resolution model in terms of quality of reconstruction and slightly

better in terms of computational efficiency.

• Chapter 5:

This chapter addresses the problem of reconstructing the unknown image of ab-

sorption and diffusion coefficients from time-resolved measurements of diffused

light in a computationally efficient manner. The intended application is med-

ical optical tomography, which has generated considerable interest in recent

times. The inverse problem is posed in the Bayesian framework. The maxi-

mum a posteriori (MAP) estimate is used to compute the reconstruction. The

diffusion model used for the measurements is solved forward in time using a

finite-difference approach known as the alternating-directions implicit method.

This method requires the inversion of a tridiagonal matrix at each time step and

is therefore of O(N) complexity, where N is the dimensionality of the image.

Adjoint differentiation is used to compute the sensitivity of the measurements

with respect to the unknown image. The novelty of our method lies in the

computation of the sensitivity since we can achieve it in O(N) time as opposed

to O(N2) time required by the perturbation approach. Experimental results

using simulated data show that the proposed method yields superior quality

reconstructions with substantial savings in computation.
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2. ML PARAMETER ESTIMATION FOR MARKOV
RANDOM FIELDS

2.1 Introduction

Over the past decade, Bayesian methods for image reconstruction and restoration

have become increasingly popular because they allow accurate modeling of both data

collection, and image behavior. For example, Bayesian methods have been widely

studied for emission tomography [1, 2, 3], transmission tomography [4, 5, 6], and

image restoration [7, 8].

While the model used for data collection (also known as the forward model) has

varied depending on the application, most of these approaches have used Markov

random fields (MRF) to model the unknown image. This is because the MRF model is

computationally tractable and can also capture many non-Gaussian aspects of images

such as edges. A variety of continuously valued MRF models have been proposed for

accurately modeling images [9, 2, 3, 10, 11, 12, 13]. Most of these are distinguished by

the choice of potential function that assigns cost to differences between neighboring

pixels.

While Bayesian methods can improve the quality of reconstructed images, they

also have the potential to create errors when the models do not accurately characterize

the data. To avoid this problem, modern approaches usually include parameters

which allow the prior model and/or forward model to be adjusted to achieve the

best possible results for each data set. Often the prior model parameters are referred

to as hyperparameters because their effect is only indirectly apparent through the

measured data.

Ideally, model parameters must be estimated for each data set as part of the image

reconstruction or restoration process. However, estimation of these model parameters



- 7 -

is often difficult for two reasons. First, direct maximum likelihood (ML) estimation

of MRF parameters from example images is known to be a difficult problem. This

is because in most cases the normalizing constant of the distribution, known as the

partition function, is an intractable function of the parameters.

Second, in most applications example images are not available for estimation of

parameters. Instead, parameters must be estimated indirectly from collected data

because the true image cross-section is not known. This is a classic example of an

incomplete data problem for which the expectation-maximization (EM) algorithm

was developed [14, 15]. Intuitively, the EM algorithm works by iteratively computing

the expectation of the unknown image statistics, and then maximizing the likelihood

with respect to those statistics1.

Most previous research for the direct estimation of MRF parameters has focused

on discrete MRF’s [17, 18, 19, 20, 21, 22] and used approximations to the ML esti-

mate based on maximum pseudolikelihood [19, 20] or least squares [21]. The meth-

ods of these papers are not directly applicable to estimation of parameters from the

continuously valued MRF’s which are the subject of this Chapter. More recently,

researchers such as Ogata, Geyer, Thompson, and Gidas have developed methods

which attempt to directly compute the partition function during the estimation pro-

cess [23, 24, 25, 26]. Since computation of the partition function requires on-line

stochastic simulation, fast methods of simulation, such as those proposed by Potami-

anos, Goutsias, Jerrum and Sinclair, have been of considerable interest [27, 28].

Alternatively, estimation of parameters for Gaussian MRF’s has received wide

attention. This problem is essentially equivalent to estimation of regularization pa-

rameters in quadratic regularization. For a review of these approaches, see [29]. We

do not consider these methods since, for the purposes of this research, Gaussian prior

models lead to excessive smoothing of image edges.

1We note that this application of the EM algorithm is unrelated to Shepp and Vardi’s classic use
of EM in image reconstruction[16]. In Shepp and Vardi’s work the image is treated as the unknown
parameter.
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A number of researchers have specifically studied the problem of estimating con-

tinuous MRF parameters from incomplete data. The simplest and perhaps most

natural approach to this problem is joint MAP estimation of both the image and

parameters [30]. Unfortunately, this leads to an inconsistent estimator that may even

be divergent [31, 32]. Mohammad-Djafari has reported good results by using a joint

MAP estimation method which is stabilized with an appropriate prior distribution

for the parameters [33]. Schultz, Stevenson, and Lumsdaine have proposed a method

for ML estimation of parameters by employing a signal-dependent approximation to

the partition function and a quadratic approximation to the posterior distribution of

the image [34]. Recently, Higdon et. al. have independently proposed a method for

sampling from the posterior distribution of the MRF parameters using direct precom-

putation of the partition function [35]. Samples from the posterior distribution can

be used to compute confidence intervals, and if the posterior distribution is peaked,

then individual samples are likely to be good estimates.

In an effort to avoid the computationally expensive E-step of the EM algorithm,

Zhou and Leahy have developed an approach which uses a mean field theory approx-

imation to compute the required expectation [36, 32]. This method is philosophically

similar to mean field approximations used by Zhang in segmentation problems [37].

Pun and Jeffs have taken an approach similar in concept to EM, but replacing the

maximum likelihood step with a estimator designed specifically for the p parameter

used in a Generalized Gaussian MRF (GGMRF) [38, 39].

True EM approaches have often been avoided due to the perception of excessive

computation. One of the earliest attempts was by Geman and McClure when they

proposed computing the shape parameter of a MRF by precomputing the partition

function and replacing the expectation step with stochastic integration [1, 40].

In this Chapter, we propose a computationally efficient scheme to compute ML

estimates of MRF model parameters from incomplete observations [41, 42, 43, 44].
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Our method hinges on two innovations:

• Simple direct parameter estimation for continuous MRF’s based on closed form

expressions for the dependence of the partition function on the scale parameter.

• Computationally fast algorithms for computing the E-step of the EM algorithm

based on fast simulation and parameter extrapolation.

In addition, we present a method for computing forward model parameters such as

dosage which are often required for Bayesian reconstruction of transmission tomo-

grams [45].

The first section of the Chapter derives methods for direct estimation of param-

eters for a general continuously valued MRF. To do this, we re-parameterize many

well known potential functions using two parameters referred to as scale and shape.

We show that in the general case, the scale parameter, σ, may be computed as the

numerical solution to a simple equation. Interestingly, for the specific case of the

generalized Gaussian MRF (GGMRF) [12], σ has a closed-form solution that is anal-

ogous to estimation of standard-deviation for Gaussian random variables [31]. Based

on this result, we derive a general approach to ML estimation of the shape parameter

through precomputation of an one-dimensional function of the shape parameter. We

then illustrate the method for the case of the GGMRF by showing computed values

of σ and p for a variety of images.

The second section of the Chapter presents a fast algorithm, based on the expec-

tation maximization (EM) algorithm, for computing ML parameter estimates when

the true image is unavailable. We develop a fast simulation method to replace the

E-step based on extensions to the conventional Metropolis algorithm [46, 47, 48], and

the heuristics suggested by Green and Han [49]. For the case of both transmission

and emission tomography problems, our updates may be efficiently computed using

the techniques described in [50]. To further reduce computation, we introduce a

method to extrapolate the parameter estimates when the simulations are terminated

prematurely.
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Experimental results are presented for real transmission and emission data sets,

as well as for image restoration. These results indicate that our fast algorithms sub-

stantially reduce computational cost and result in useful scale parameter estimates.

2.2 ML Parameter Estimation for Continuously Valued MRF’s

Let X be a continuously valued unknown random image, and let Y be measured

random observations. We use upper case letters to denote random quantities and

lower case letters to denote their corresponding deterministic realizations. The un-

known image is modeled by its probability density function, Pσ,p(x), where σ and

p are unknown scale and shape parameters to be defined. We will assume that X

contains N pixels indexed by Xs for s ∈ S, and that X takes values in the convex

set Ω = {x : xi ≥ 0 for all i ∈ S}. The observations are modeled by their conditional

density function, P(y|x). If Y is discrete, then P(y|x) is a probability mass function.

Our objective is to estimate the parameters σ and p so that we may compute the

maximum a posteriori (MAP) estimate of X given Y

X̂MAP = arg max
x∈Ω
{logP(Y |x) + logPσ,p(x)} (2.1)

where the constraint of x ∈ Ω enforces positivity in the image. In this section, we

develop methods for computing ML parameter estimates from direct observations of

X.

2.2.1 MRF prior models

We model the unknown image X as an MRF with Gibbs distribution

Pσ,p(x) =


1

σNz(p)
exp

{
−1
p
u(x/σ, p)

}
if x ∈ Ω

0 if x 6∈ Ω
(2.2)

where σ is a parameter that controls scale or variation inX, and p is a shape parameter

that we will see appears in many common MRF models. We use the notation p

because this is the traditional variable used in the GGMRF model which will be the

focus of our analysis. The function u(x/σ, p) is referred to as the energy function.
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The normalizing constant of the distribution, σNz(p), is known as the partition

function, and is computed as
∫
x∈Ω exp

{
−1
p
u(x/σ, p)

}
dx. It is easily verified that this

function is proportional to σN where N is the number of pixels.

We consider energy functions of the form

u(x/σ, p) =
∑
{i,j}∈N

bi−jρ
(
xi − xj
σ

, p

)
(2.3)

where N is the set of all neighboring pixel pairs, and ρ(·, ·) is the potential function

which assigns a cost to differences between neighboring pixel values2.

Depending on the choice of the potential function, (2.2) includes many common

MRF models that have been proposed in the literature. Table 2.1 lists a variety of

such potential functions. Notice that only the GGMRF model depends on p through

the potential function. All other models listed depend on p solely through its explicit

role in (2.2).

While these MRF models include Gaussian MRF’s, Gaussian MRF’s are of less

interest because they tend to be excessively smooth. In an effort to better model im-

age edges, a variety of functions have been suggested for ρ(∆, p). These generally can

be separated into functions which are convex or nonconvex in ∆. Convex potential

functions often allow global optimization of (2.1) and are therefore computationally

preferable. In addition, convex potential functions have been shown to lead to contin-

uous or stable MAP estimates [12]. On the other hand, nonconvex potential functions

tend to result in sharp discontinuities, which may be advantageous in applications

such as edge detection.

The GGMRF model will be of particular interest to us because it will result in

simple closed form expression for the ML estimate of σ. For this model, the density

function for X ∈ Ω is given by

Pσ,p(x) =
1

σNz(p)
exp

− 1

pσp

∑
{i,j}∈N

bi−j|xi − xj|
p

 (2.4)

2Notice that this distribution is not proper since its integral is infinite. The distribution may be
made proper by adding terms of the form ερ(xi/σ, p) to the energy function. All results of the paper
may then be obtained by taking the limit as ε→ 0.
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Table 2.1 List of nonconvex and convex potential functions that have been used.

Nonconvex potential functions

Author (name) Reference ρ(∆, p)

Geman and McClure [1, 40] ∆
1+∆2

Blake and Zisserman

(weak spring)

[9, 51] min{∆2, 1}

Hebert and Leahy [2] log(1 + ∆2)

Geman and Reynolds [11] |∆|
1+|∆|

Convex potential functions

Author (name) Reference ρ(∆, p)

(Gaussian) ∆2

Besag (Laplacian) [52] |∆|

Green [3] log cosh ∆

Stevenson and Delp

(Huber)

[10] min{|∆|2, 2|∆| − 1}

Bouman and Sauer

(GGMRF)

[11] |∆|p
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where normally p ∈ [1, 2]. Notice that (2.4) has a form which is analogous to a

Gaussian distribution where σ plays the role of standard deviation. When p = 2,

(2.4) reduces to a Gaussian model. Smaller values of p tend to produce sharper

edges.

The GGMRF model has the advantage that its behavior is scale invariant [12, 13].

This property results from the fact that for all x ∈ Ω, and σ > 0

u (x/σ, p) =
1

σp
u (x, p) . (2.5)

While Bouman and Sauer [12] showed that the function |x|p characterized all scale

invariant functions of ∆ = xi − xj , Brette, Idier, and Mohammad-Djafari [13] have

shown that the class of scale invariant potential functions can be expanded if functions

of both xi and xj are considered. For example, consider the divergence potential

function proposed by O’Sullivan [53] and listed in Table 2.2. This function also leads

to the scalable property of equation (2.5) for p = 1, and therefore results in a scale

invariant prior. In addition, the divergence function is known to be a convex function

of (xi, xj) [54]. A third example, which we call the generalized divergence, is given in

Table 2.2. This function behaves like the divergence in the limit as p→ 1, but is well

defined for xi = xj = 0. For a more detailed discussion of scale invariant priors, see

[13].

2.2.2 ML estimation of σ

We first derive the ML estimate of the scale parameter, σ, in the general case,

and then specialize it to the GGMRF or any other scale invariant MRF model which

obeys the property of (2.5).

The normalized log-likelihood may be computed from (2.2) to be

1

N
logPσ,p(x) =

−1

Np
u(x/σ, p)− log σ −

1

N
log z(p) . (2.6)
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Table 2.2 List of scalable potential functions. The divergence and generalized
divergence are examples of scalable potential functions which require two positive

arguments.

Scalable potential functions

Author (name) Reference ρ(xi, xj, p) range of p

Bouman and Sauer

(GGMRF)

[11] |xi − xj|p p > 0

O’Sullivan

(divergence)

[53, 13] (xi − xj) log(xi/xj) p=1

(generalized

divergence)

This Chapter (xi − xj)(x
p−1
i − xp−1

j ) p > 1
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Differentiating (2.6) with respect to σ and equating the result to zero yields the

equation for σ̂, the ML estimate of σ [41].

σ̂

Np

∂

∂σ
u(x/σ, p)

∣∣∣∣∣
σ=σ̂

= −1 (2.7)

While this expression may look complex, σ̂ may be easily evaluated to any desired

precision using a standard root finding algorithm such as half interval search. Perhaps

this is somewhat surprising since in the general case ML estimation of MRF param-

eters is considered intractable due to the complex nature of the partition function.

It is interesting to note that a similar parameterization by Ogata and Tanemura [55]

did not lead to such a simple solution due to the assumption that P(x) had bounded

support. In this case, the support of P(x) is dependent on σ and the result no longer

holds.

For any scale invariant prior of Table 2.2, we may evaluate the expression of (2.7)

by substituting in the scaling relation of (2.5). This results in the simple expression

σ̂p =
1

N
u(x, p) . (2.8)

The above result is very appealing since it is quite simple, and applies for the GGMRF,

divergence, and generalized divergence cases. In order to gain intuition, consider the

case when Xi are i.i.d. Gaussian random variables. In this case p = 2, σ2 is simply

the variance, and (2.8) reduces to the familiar expression σ̂2 = 1
N

∑N
i=1 x

2
i . Lange

obtained a result equivalent to (2.8) in [31].

2.2.3 Joint ML estimate of σ and p for Scalable Priors

In this section, we will derive a method for computing the joint ML estimate of p

and σ for the GGMRF model or any other model which obeys (2.5).

We can reduce this problem to a one-dimensional optimization since we have the

closed form ML estimate of σ (2.8) in terms of p. To do this, we substitute the ML

estimate of σ from (2.8) into the log-likelihood function of (2.6).

1

N
logPσ̂,p(x) =

−1

p
−

log(u(x, p)/N)

p
−

log z(p)

N
(2.9)
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The ML estimate of p is then given by

p̂ = arg min
p

{
log(u(x, p)/N)

p
+

1

p
+

log z(p)

N

}
. (2.10)

In this form, we can see that the function σp = u(x, p)/N is a sufficient statistic for

the parameter p.

The first two terms of (2.10) are easily computed, but the third term, log z(p)
N

,

is generally an intractable function of p since it requires the computation of a N-

dimensional integral. However, we next show that the derivative of this term may be

computed using stochastic integration. The derivative is given by

d

dp

log z(p)

N
=

d

dp

1

N
log

∫
x∈Ω

exp

{
−

1

p
u(x, p)

}
dx

=
−1

Nz(p)

∫
x∈Ω

(
d

dp

1

p
u(x, p)

)
exp

{
−

1

p
u(x, p)

}
dx

=
1

p2
−

1

Np
E

[
d

dp
u(X, p)

∣∣∣∣∣σ = 1, p

]
(2.11)

where the last equality uses the consistency of the ML estimator for σ. The rest of

the development in this section will be for the GGMRF prior. The extension to other

scalable priors is similar.

Rewriting equation (2.11) for the GGMRF prior, we obtain

d

dp

log z(p)

N
=

1

p2
−

1

Np2

∑
{i,j}∈N

bi−j E [ |Xi −Xj|
p log(|Xi −Xj|

p)| σ = 1, p]

where the function ∆plog(∆p) is interpreted to be 0 for ∆ = 0. Next, define the

function f(p) so that

df(p)

dp
=
−1

Np2

∑
{i,j}∈N

bi−j E [ |Xi −Xj|
p log(|Xi −Xj|

p)|σ = 1, p] . (2.12)

Then the ML estimate of p is given by

p̂ = arg min
p

{
log(u(x, p)/N)

p
+ f(p)

}
. (2.13)

The minimization of (2.13) may be evaluated by first computing f ′(p) of (2.12) using

stochastic integration. The stochastic integration may be done by generating samples
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from the desired MRF using σ = 1, and computing the desired average. We note that

this result rests on the reduction of the 2-D parameter estimation problem to a 1-D

problem since in 1-D a derivative of f ′(p) is easily integrated to yield f(p).

Note that all expectations are normalized by N . While the limN→∞ logPσ,p(x)

generally does not exist, the normalized log-likelihood, limN→∞
1
N

logPσ,p(x) does.

Therefore, if we compute f(p) for a sufficiently large lattice, we may assume that it

does not vary with N .

2.2.4 ML estimate of σ and p for non-scalable priors

In this section, we derive methods to compute the joint ML estimates of σ and p

when the potential function is not scalable. This includes all the potential functions

of Table 2.1 except the Gaussian, Laplacian, and GGMRF.

Notice that u(x, p) is not a function of p for any of the non-scalable potential

functions. This means that for σ = σ̂ the log-likelihood of (2.6) may be simplified to

be
1

N
logPσ̂,p(x) =

−1

Np
u(x/σ̂)− log σ̂ −

log z(p)

N
. (2.14)

where σ̂ is given by (2.7). The term log z(p)/N may be computed in a manner similar

to f(p) by first computing its derivative.

d

dp

log z(p)

N
=

1

Np2
E [u(X) | σ = 1, p] (2.15)

Therefore the solution may be computed as the simultaneous solution to (2.7) and

p̂ = arg min
p

{
u(x/σ̂)

Np
+ log σ̂ +

log z(p)

N

}
.

2.3 Parameter Estimation from Incomplete Data

The previous section dealt with the problem of estimating the prior model pa-

rameters σ and p from the observed image X. However, in many applications the

image X is never directly observed. For example, in tomography the photon counts,

Y , are only indirectly related to the image X. In this case, there may be additional

parameters, φ, related to the forward model, Pφ(y|x).
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Ideally, the ML parameter estimate is then given by

(φ, σ, p) = arg max
(φ,σ,p)

∫
x∈Ω
Pφ(y|x)Pσ,p(x)dx . (2.16)

While (2.16) is often difficult to compute directly, the EM algorithm is an effective

method for iteratively maximizing (2.16) [14, 15].

In order to simplify notation, we will use the parameterization (γ, p) where γ = σp.

Then a single update of the EM algorithm is given by

φk+1 = arg max
φ

E[logPφ(y|X)|Y = y, φk, γk, pk] (2.17)

(γk+1, pk+1) = arg max
(γ,p)

E[logPγ,p(X)|Y = y, φk, γk, pk] (2.18)

where γk and pk are the parameters generated at the kth iteration of the EM algorithm.

It can be shown that each iteration of the EM algorithm increases the likelihood, so

that the likelihood value is guaranteed to converge to a local maximum.

For the GGMRF prior, the EM update of (2.18), may be explicitly computed as

pk+1 = arg min
p

{
1

p
logE [u(X, p)/N | Y = y, φk, γk, pk] + f(p)

}
(2.19)

γk+1 =
1

N
E [u(X, pk+1) | Y = y, φk, γk, pk] (2.20)

The expectations of (2.19) and (2.20) may be approximated using on-line stochastic

integration. This is done by generating samples from the posterior distribution of

X given Y , and then computing the desired sample averages in place of the true

expectations [1, 40, 22]. Unlike the off-line stochastic integration of (2.12), evaluation

of EM updates must be computationally efficient. In Section 2.3.3, we will show how

this is possible.

If p is known, then only σ needs to be estimated. In fact, estimation of σ is

essential in many inverse problems. Too small a value of σ results in overly smooth

images and too large a value of σ results in images with excessive noise. For this case,

only (2.20) need be applied, and the expectation may be computed by averaging

values of u(X, p) for multiple samples of the image X generated from the posterior
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distribution of X given Y . We will discuss efficient algorithms for generating these

samples in the next sections.

If both p and σ must be estimated, then the update of (2.19) must be computed

first, and the result used to compute (2.20). Computation of (2.19) is somewhat more

difficult since it requires that multiple samples ofX be stored so the expectation may

be computed as a function of p. However, we will show that often a single sample of

X is sufficient to perform each EM update, so only a single image need be stored.

For non-scalable priors, the new parameters σk+1 and pk+1 are given by the solution

to the coupled equations

pk+1 = arg min
p

{
E

[
u(X/σk+1)

Np
| Y = y, φk, σk, pk

]
+ log σk+1 +

log z(p)

N

}
(2.21)

σk+1

Npk+1
E

 d

dσ
u(X/σ)

∣∣∣∣∣
σ=σk+1

| Y = y, φk, σk, pk

 = −1 . (2.22)

These equations may be solved by iteratively computing the solution to each. Since

each equation represents the minimization with respect to the corresponding variable,

iterative solution will not diverge (if the ML estimate exists). When p is assumed

known, the EM update for σ is given by (2.22) alone. However, computing the

expectation of (2.22) requires buffering of the sample images.

2.3.1 Stochastic data models for tomography

In this section, we introduce the stochastic models that we will need for emission

and transmission tomography. For a description of photon counting models in tomog-

raphy see [16] and [4], and for a development which is notationally similar to the one

presented here, see [50].

Let x denote the column vector of emission intensities in the emission case or the

attenuation densities in the transmission case. For the emission case, let Aij be the

probability that a photon emitted from cell j is registered at the ith detector. Let

A be the projection matrix with elements {Aij}, and let Ai∗ denote the ith row of

the projection matrix. Let y denote the column vector of measurements of Poisson-

distributed photon counts at the detectors for all angles and displacements. Then,
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for the emission case, the log conditional distribution of the photon counts Y given

x is

(emission) logP(Y = y|x) =
∑
i

(−Ai∗x+ yi log{Ai∗x} − log(yi!)) . (2.23)

This formulation is general enough to include a wide variety of photon-limited imaging

problems, and the entries of A may also incorporate the effects of detector response

and attenuation.

The transmission case is similar, but has Aij corresponding to the length of in-

tersection between the jth cell and the ith projection. Let the input photon counts

be Poisson-distributed with rate yT . Then the conditional log-likelihood of Y given

x for the transmission case is

(transmission) logP(Y = y|x) =
∑
i

(−yT e
−Ai∗x + yi(log yT −Ai∗x)− log(yi!)) .

(2.24)

2.3.2 ML estimate of dosage yT

The data for transmission tomography is often recorded in the form zi = ln(yT
yi

).

This preserves the ML estimates of integral densities, but results in the loss of the

parameter yT which is required for the log-likelihood of (2.24). If yT is unknown,

it can be estimated along with other parameters using the EM algorithm update

equation of (2.17).

It is shown in Appendix A that the update equation for yT is given as

yT k+1 =
M

2

{
M∑
i=1

E
[{
−e−Ai∗X − Ai∗Xe

−zi
}
| Z = z, σk, pk, yT k

]
+ e−zi + zie

−zi

}−1

(2.25)

2.3.3 Fast simulation technique

The EM parameter updates derived in Section 2.3 require the expectation of

functions of X. Direct computation of these expectations is intractable, but we can

approximate them by first generating sample images from the posterior distribution

of X given Y and then computing averages using the sample images. The well-known
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Metropolis algorithm [46] can be used to generate these samples from the posterior

distribution, but it tends to suffer from slow convergence.

In this section, we propose a faster simulation method based on the algorithms of

Hastings [47] and Peskun [48]. The experimental results indicate that the required

expectations can be accurately estimated using only a single image sample.

Let q(x′|x) be an arbitrary transition probability for generating a new state x′

from the current state x. Then in order to generate a sample with distribution π(x),

one should accept new samples with probability

α(x′, x) = min

{
1,
q(x|x′)π(x′)

q(x′|x)π(x)

}
.

The Metropolis algorithm is a special case of this general formulation when we choose

q(x′|x) = q(x|x′). Another special case is the Gibbs sampler [8] when the new state

for pixel j is generated using the conditional distribution, under π(x), of xj given the

values of all other pixels. For the Gibbs sampler, α(x, x′) = 1, and we always accept

the new state.

A good choice of transition probability q(x′|x) results in faster convergence of

the stochastic simulation; but at present, the optimal selection of q(x′|x) is an open

problem. For the tomography problem, it has been shown that greedy pixel-wise

optimization of the posterior distribution has fast convergence [6, 50]. We therefore

conjecture that the Gibbs sampler is desirable for the tomography problem because

each new pixel is generated from its marginal posterior distribution. Experimental

results presented in Section 2.4.2 will support this conjecture.

Let us first examine the form of the conditional distribution of xj required by the

Gibbs sampler. Let xn be the image at the nth iteration. Then for the emission case,

from (2.23), (2.2) and (2.3), we have

logP(xj |{Xk = xnk : k 6= j}, y) =∑
i

(−Aijxj + yi log{Aij(xj − x
n
j ) +Ai∗x

n} −
1

p

∑
k∈Nj

bj−k ρ(
xj − xnk

σ
, p) + C,

(2.26)



- 22 -

where C is constant independent of xj and xj > 0. Note that directly generat-

ing samples from (2.26) would be very computationally expensive. Green and Han

[49] suggested using a Gaussian distribution instead with parameters chosen to ap-

proximate the transition distribution of the Gibbs sampler. However, due to the

non-Gaussian nature of our prior term, this approximation is good only for the data

term [50] in (2.26). We can therefore obtain a good approximation by retaining the

prior term as it is and using a second order Taylor series expansion for the data term

of (2.26)

logP(xj|{Xk = xnk : k 6= j}, y) ≈

d1(xj − x
n
j ) +

d2

2
(xj − x

n
j )

2 −
1

p

∑
k∈Nj

bj−k ρ(
xj − xnk

σ
, p) + C ′ ,

(2.27)

where d1 and d2 are the first and second derivative of the data term with respect to

xj evaluated at xnj . In [50] it is shown that

d1 = −
∑
i

Aij

(
1−

yi

p̃ni

)

d2 = −
∑
i

yi

(
Aij
p̃ni

)2

,

where p̃n = Axn. The approximation holds for the transmission case also, with the

corresponding expressions for d1 and d2 as follows:

d1 = −
∑
i

Aij
(
yi − yTe

−p̃ni
)

d2 = −
∑
i

A2
ijyT e

−p̃ni .

For efficient computation, we keep p̃n as a state vector and update it after each pixel

update as follows

p̃n+1 = A∗j(x
n+1
j − xnj ) + p̃n .

Let the transition distribution for generating the new state for the jth pixel be

denoted as qj(x). Then we would like qj(x) to be a Gaussian distribution with mode m
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equal to the mode of the approximated conditional distribution (2.27). Unfortunately,

generating positive samples from qj(x) is computationally intensive when m � 0.

However, we can use the fact that the tail of a Gaussian distribution may be accurately

approximated as an exponential distribution. Fig. 2.1 illustrates this fact. In the light

of the above discussion, we choose qj(x) with the following form

qj(x) =


1

C(s,m)
exp

{
−(x−m)2

2s2

}
m > 0, x > 0

1
β

exp
{
−x
β

}
m < 0, x > 0

0 x < 0

,

where C(s,m) is the normalizing constant of the truncated Gaussian distribution and

m is the mode of the approximated conditional distribution (2.27)

m = arg max
x

d1(x− x
n
j ) +

d2

2
(x− xnj )

2 −
1

p

∑
k∈Nj

bj−k ρ(
x− xnk
σ

, p)

 . (2.28)

Choosing s2 is more difficult due to the prior term. Since we can at best do an

approximate fit to the original distribution (2.26), it is not clear whether a more pre-

cise choice of s2 would yield a significant improvement in performance. We therefore

choose

s2 =
1

d2

to be the variance of the data term. Note that the variance of the approximated

distribution (2.27) is over estimated by this particular choice. β is determined by

setting the derivative of the log of the exponential distribution equal to the derivative

of (2.27) at xj = 0,

β =

−d1 + d2x
n
j +

1

σp

∑
k∈Nj

bj−k ρ
′(
−xnk
σ

, p)


−1

,

where ρ′(·, ·) is the derivative of ρ(·, ·) with respect to its first argument.

Once d1 and d2 are computed, the optimization of (2.28) is computationally inex-

pensive since the sum associated with the prior typically involves few pixels. We use

the half interval method to compute m. Note that during MAP reconstruction, m is

also the updated value of pixel xj in the iterative coordinate descent (ICD) algorithm

of Bouman and Sauer [50].
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Truncated portion
appears to be an 
exponential distribution

−4 −3 −2 −1 0 1 2

m=-1

Gaussian distribution

Fig. 2.1. The above figure shows that the truncated Gaussian distribution to ensure
the positivity constraint can be approximated by an exponential distribution.

2.3.4 Extrapolation of parameter estimates

Even with exact computation of the E-step, the convergence of the EM algorithm

can sometimes be slow. One way to further reduce the computation is to improve the

current EM parameter estimates by extrapolating them. This extrapolation requires

very little computation, so it may be applied at each EM iteration. At each iteration

k, the extrapolated parameter, θ
(e)
k , is then an improvement over the EM parameter

θk.

First consider the case of the GGMRF where p is known and γ = σp must be

estimated. This is an important special case. It is well known that

d

dγ
E [logPγ(X) | Y = y, γ̂]

∣∣∣∣∣
γ=γ̂

= 0 ,

where γ̂ is the maximum likelihood estimate of γ. From this it can be shown that

γ̂ = E [u(X, p)/N |Y = y, γ̂] . (2.29)

The EM algorithm iteratively solves for the fixed point of this equation. However, a

fast method is to search directly for its root. Define the function

g(γ) = E [u(X, p)/N |Y = y, γ]− γ . (2.30)



- 25 -

Then the ML estimate of γ is the solution to g(γ̂) = 0. At iteration k of the EM

algorithm, the value of g(γk) is given by

g(γk) = E [u(X, p)/N |Y = y, γk]− γk

= γk+1 − γk . (2.31)

Therefore, we can plot the function g(γ) computed from (2.31).

Fig. 2.2 shows such a plot of g(γ) with respect to γ for an emission phantom when

we use only one sample ofX to estimate the expectation of u(X, p). At each iteration,

we use the last three values of (γk, g(γk)) to compute a least squares fit to a straight

line. The zero crossing of the least squares fit then yields the extrapolated value of

γ
(e)
k . Note that γ

(e)
k is close to the ML estimate after just 4 iterations.

LS fit
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−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

γ −−−>

g(γ)

1
2

34

56
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g(
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Fig. 2.2. The plot shows the normalized gradient g(γ) computed at the EM updates
of γk for a emission phantom using a GGMRF prior with p = 1.1. The ML estimate
of γ is given by the root of g(γ). The least squares (LS) fit obtained at the first 7
points are numbered (1-7) and shown with a dashed line. The intersection of the

dashed lines with the top of the graph are the extrapolated parameter values, γ
(e)
k .

The generalization to the case when p is not known is conceptually easy. In this

case, the ML estimates of γ and p are given as the roots of the following equations

d

dγ
E[logPγ,p̂(X)|Y = y, γ̂, p̂]

∣∣∣∣∣
γ=γ̂

= 0

d

dp
E[logPγ̂,p(X)|Y = y, γ̂, p̂]

∣∣∣∣∣
p=p̂

= 0 .
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Similar to the case where p is known, we can now define the vector valued function

g(γ, p) =

 E[u(X, p)/N |Y = y, γ, p]− γ

p
N
E
[
d
dp
u(X, p)− 1

p
u(X, p)

∣∣∣Y = y, γ, p
]
+ γ(1− log γ) + γp2 df(p)

dp

 .

Then the ML estimates of γ and p are given as the roots of g(γ̂, p̂) = 0. Note that

we can easily compute g(γk, pk) when computing the EM updates for γ and p. The

computed values of g(·, ·) at the past n EM updates are used to obtain least squares

fits to two planes. The roots of the fitted planes are then the extrapolated values,

γ
(e)
k and p

(e)
k .

The non-scalable priors are handled in a similar fashion. In this case, the function

g(·, ·) is given as

g(σ, p) =

 σ
N
E
[
d
dσ
u(X/σ) | Y = y, p, σ

]
+ p

1
N
E [u(X/σ) | Y = y, p, σ]− 1

N
E [u(X) | p, σ = 1]

 .

The two components of the vector valued function g(·, ·) can be rooted simultaneously

or individually to obtain the extrapolated values, σ
(e)
k and p

(e)
k .

2.4 Experimental Results

In the following two sections, we experimentally study the convergence speed and

accuracy of the proposed parameter estimation method. Section 2.4.1 presents results

of direct parameter estimation from observed images; while Section 2.4.2 presents

results for parameter estimation from incomplete data.

2.4.1 Direct estimation of σ and p

In order to compute the ML estimates of p, we first computed the function f ′(p)

using (2.12) and then integrated it using a second order spline to yield f(p). To

compute f ′(p), we computed batches of 10, 000 full iterations of a 64 × 64 periodic

MRF with an 8 point neighborhood using bi−j = (2
√

2 + 4)−1 for nearest neighbors

and bi−j = (4
√

2+4)−1 for diagonal neighbors. From each batch of 10, 000 iterations,

an estimate of f ′(p) was computed. This procedure was repeated for a single value of
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p until the estimate was found to stablize. Then the value of p was updated and the

complete procedure repeated. Once the function f(p) was computed, the accuracy of

the result was tested by estimating p from sample GGMRF’s with known values of p.

0.5 1 1.5 2
−6

−5

−4

−3

−2

−1

0

p −−−>

Fig. 2.3. The solid line shows f ′(p) and the dashed line shows f(p).

Figure 2.3 shows the plots of f(p) for 0.4 < p < 2.0. Since the computation of

f(p) need only be done once, the speed of convergence is not a great issue. However,

we found that more iterations were required as p decreased. Also, the function f ′(p)

was sampled more finely for p < 1.

Figure 2.4 shows a host of natural and synthetic images with their corresponding

joint ML estimates of p and σ. Figures 2.4(m) and (n) show two sample images

generated using the GGMRF model with known values of p and σ. In both cases, the

ML estimates are close to the true values.

Note that for most natural images except for a few texture images, the ML esti-

mate of p was less than 1, and for many images containing man made objects p was less

than 0.4. In fact, a similar result has been independently reported by Higdon et. al.

[35]. Very small values of p may not lead to the best quality MAP reconstructions3.

In particular, the tomographic cross-section in Fig. 2.4(o) yields value of p < 0.4

which we have found to be undesirable for MAP tomographic reconstruction. Since

the ML estimator has well known optimality properties, this behavior of the ML es-

timate may be due to the mismatch between the typical tomographic cross-sections

3For p less than one, convergence of the MAP estimate can not generally be guaranteed since the
functional being minimized is not convex.
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and the GGMRF model. In light of this result, alternative methods for estimating p,

such as those of Jeffs and Pun [39], might be advantageous depending on the intended

application.

2.4.2 Estimation of σ and p from incomplete data

In this section, we study the performance of our proposed algorithms for estimating

σ and p from incomplete observations. We present examples using both real and

synthetic data for both tomographic reconstruction and image restoration. For the

tomographic reconstruction examples, we fix p = 1.1 and estimate σ because the

results of Section 2.4.1 indicate that ML estimates of p from tomographic cross-

sections are excessively small. However, we emphasize that estimation of σ is a

problem of primary importance in tomographic reconstruction since σ determines

the overall smoothness of the reconstruction. MAP image reconstructions are then

presented which indicate that the ML estimate of σ yields a good tradeoff between

detail and noise reduction.

To illustrate the utility of our method for optimal joint estimation of p and σ, we

apply our method to an image restoration problem, and show that for this case we

can accurately estimate p and σ simultaneously from the noisy observations.

For tomographic reconstruction, we found that it was important to restrict the

parameter estimates to the support of the object. If the flat background was included,

then the estimation of σ tended to be too small and the reconstructions too smooth.

For synthetic images, the support was known, but for real images it was extracted by

first computing the convolution back projection (CBP) reconstruction, thresholding

with a zero threshold, eroding 3 times, dilating 6 times and then eroding 3 times.

Figure 2.5 shows a synthetic emission phantom and the corresponding convolution

back projection (CBP) reconstruction. The emission rates are on an array of 128 by

128 pixels of size 1.56mm2, and 128 Poisson distributed projections are generated at

each of 128 uniformly spaced angles. The total photon count was approximately 3

million.
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Figure 2.6 shows the convergence of the ML estimate for σ using the GGMRF

prior. We will refer to the three simulation methods as the conventional Metropolis

(CM) method, the accelerated Metropolis (AM) method of Section 2.3.3, and the

extrapolated-accelerated Metropolis (EAM) method of Section 2.3.4. For each case,

each EM update is done after a single full sample of X is computed. The stochastic

simulation is initialized with the CBP reconstruction and the EM algorithm is ini-

tialized with the ML estimate of σ obtained from the CBP reconstruction. Each plot

also contains a line labeled as the true ML estimate. This value is computed by using

50 samples of X for each EM update and running the EM updates until convergence.

Figure 2.6(a) shows the results using the CM method with a transition distribution

chosen to be Gaussian with the variance as the free parameter. Notice that the

convergence rate varies substantially with the choice of variance. In practice, it is

unclear how to choose the best variance before performing the simulations.

Figure 2.6(b) compares the EAM, AM and CM methods where the CM method

uses the variance that produced the most rapid convergence. Notice that the EAM

method has the most rapid convergence and all three methods converge to the desired

ML value.

Figure 2.7 compares the quality of MAP reconstructions using σ̂, σ̂/2, 2σ̂, and

σ̂CBP , the estimate obtained directly from the CBP. Of the four results, the ML

estimate of σ seems to produce the most desirable tradeoff between detail and noise

reduction. Figure 2.8 shows the corresponding reconstructions for the logcosh(·) prior

with p = 1, 10, and 100 and the ML estimates of σ. The value p = 10 for the logcosh(·)

prior yields reconstructions similar to that of a GGMRF prior with p = 1.1. The value

of p = 100 for the logcosh(·) prior tends to the GGMRF with p = 1 and the MAP

reconstruction is difficult to compute due to the extremely slow convergence.

Figure 2.9 shows the images corresponding to real transmission data for a flash-

light. The original data consisted of 1024 projections taken at 792 equally spaced

angles. From this original data, we generated a low resolution data set by retaining

every 4th projection at every 4th angle. We used the full resolution data to form a



- 30 -

“ground truth” image using CBP reconstruction which is shown in Fig. 2.9(a). All

other reconstructions were then done with the lower resolution data. This approach

allows us to determine if the reconstructions using the GGMRF prior actually produce

more accurate detail.

Figure 2.9(b) shows the CBP reconstruction and Fig. 2.9(c) shows the GGMRF

reconstruction using the ML estimate of the scale parameter. Figure 2.10 shows

blowups of the same three images. Notice that the GGMRF reconstruction is sharper

than the CBP reconstruction, and in some regions, it contains more detail than the

ground truth image reconstructed with 16 times more data.

Figure 2.11(a) compares the EM updates of σ for the flashlight data using the

CM, AM and EAM methods. It seems from this plot that the estimate obtained from

the CM method has a bias. But Fig. 2.11(b) shows that the after a large number of

iterations, the CM method tends toward the ML estimate. Figure 2.12(a) shows the

support of the flashlight that was used to compute the ML estimate.

Figure 2.13 shows the reconstructions corresponding to a 3D SPECT data set

obtained from cardiac perfusion imaging using Tc-99m sestamibi. For each slice, 128

projections were taken at 120 uniformly spaced angles between 0 and 2π. Figure

2.13(a) shows the CBP reconstruction of one slice. The reconstruction was done at

128 by 128 0.356cm pixel resolution. The total photon count for this slice was 148761.

Figures 2.13(b-d) compare the MAP reconstructions corresponding to different val-

ues of the scale parameter σ. Again we see that the ML estimate of σ produces a

reasonable tradeoff between detail and noise reduction.

Figure 2.14 shows the parameter estimation plots using the CM, AM and EAM

method for the SPECT data. In this case it takes just 1 iteration for the AM or EAM

method to converge to the ML estimate whereas the CM method takes about 15

iterations. Figure 2.12(b) shows the support of the object that was used to compute

the ML estimate.

Figure 2.15(a) shows the original texture image that we use for a restoration

example. Figure 2.15(b) shows the noisy image obtained by adding uncorrelated
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Gaussian noise. The SNR of the observations is 37dB. Fig. 2.16 shows the joint

estimation of p and σ for this case using the CM, AM and EAM methods. Note that

the ML estimates obtained are very close to the estimates obtained from the original

image. It takes about 10 iterations for the AM and EAM methods to converge to the

ML estimate as compared to 20 iterations for the CM method. Figure 2.15(c) shows

the MAP restoration for this example using the ML estimates of p and σ.

2.5 Conclusion

We have shown in this Chapter that maximum-likelihood estimation of free pa-

rameters for Bayesian image reconstruction is feasible for a broad selection of image

models and problem settings. Our method is based on parameterization of continuous

MRF’s by a scale parameter, σ, and a shape parameter, p. For the class of scalable

MRF’s, the ML estimate of σ may be easily computed in closed form. For other con-

tinuous MRF’s, the ML estimate of σ may be easily computed as the solution to an

equation. Using this result, we also derive a method for computing the ML estimate

of the shape parameter, p.

In most practical problems, σ and p must be estimated indirectly from measured

data. For this case, we employ the EM algorithm, and develop a fast simulation

algorithm together with a method for extrapolating the estimates when the EM al-

gorithm is prematurely terminated. Together these methods allowed good parameter

estimates to be computed in less than 10 iterations for the real and synthetic data

sets that were used.
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(a) p̂ = 0.594 σ̂ = 4.84 (b) p̂ = 0.445 σ̂ = 2.90 (c) p̂ = 0.495 σ̂ = 4.23

(d) p̂ = 0.422 σ̂ = 1.74 (e) p̂ = 0.694 σ̂ = 7.08 (f) p̂ = 0.418 σ̂ = 1.89

(g) p̂ = 0.830 σ̂ = 6.64 (h) p̂ < 0.4 (i) p̂ = 1.193 σ̂ = 5.78

(j) p̂ = 0.674 σ̂ = 4.57 (k) p̂ = 0.574 σ̂ = 5.16 (l) p̂ = 0.524 σ̂ = 5.78

(m) p̂ = 0.646 σ̂ = 2.72 (n) p̂ = 1.860 σ̂ = 0.74 (o) p̂ < 0.4

Fig. 2.4. The above figure shows joint ML estimation of p and σ for a variety of
different natural images. In particular, (a-h) are images of natural scenes, (i-l) are
images of different textures, (m) and (n) are synthetic images generated from the
GGMRF distribution with parameters p = 0.6, σ = 2.34 and p = 1.8, σ = 0.72
respectively, and (o) is the CBP image obtained from transmission data for a

flashlight.
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(a) (b)

Fig. 2.5. (a) Original emission phantom and (b) convolution back projection (CBP)
reconstruction.

s=0.01

s=0.05

s=0.1 

s=0.5 

s=10  

0 20 40 60 80 100
0.1

0.15

0.2

0.25

0.3

No of iterations −−−>

S
ig

m
a 

−−
−>

True ML estimate

CM 

AM 

EAM

0 5 10 15 20 25 30
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

No. of iterations −−−>

S
ig

m
a 

−
−

−
>

(a) (b)

Fig. 2.6. Convergence plots of σ for the emission phantom modeled by a GGMRF
prior (p = 1.1). (a) CM method where s denotes the standard deviation of the
symmetric transition distribution. (b) EAM method, AM method, and the CM
method. All the updates are done using a single sample of X to compute the

expectation. However, the true ML estimate is the converged value of σ when 50
samples are used to compute the expectation.
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(a) (b)

(c) (d)

Fig. 2.7. Reconstructed emission phantom using GGMRF prior with p = 1.1. The
scale parameter σ is (a) σ̂, (b) σ̂CBP , (c) 1

2
σ̂, and (d) 2σ̂.

(a) (b) (c)

Fig. 2.8. Reconstructed emission phantom using logcosh(·) prior with the scale
parameter σ optimally estimated for different values of p. The value of p is (a) 1,

(b) 10, and (c) 100.
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(a) (b) (c)

Fig. 2.9. (a) Ground truth obtained from high resolution transmission data, (b)
CBP image, and (c) Reconstructed image using GGMRF prior with p = 1.1 and

σ = σ̂. (Data courtesy of Trent Neel, Wright-Patterson Air Force Base, and Nicolas
Dussausoy, Aracor.)

(a) (b) (c)

Fig. 2.10. Blowup of images corresponding to Fig. 2.9. (a) Ground truth, (b) CBP
image, and (c) Reconstructed image using GGMRF prior with p = 1.1 and σ = σ̂.
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Fig. 2.11. Comparison of σ’s convergence for CM, AM, EAM algorithms for the
flashlight data modeled by a GGMRF prior (p = 1.1). The true ML estimate is the

converged value of σ when 50 samples are used to compute the expectation.

(a) (b)

Fig. 2.12. These binary images show the support used for parameter estimation for
the a) flashlight data and b) 3-D SPECT data set.
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(a) (b)

(c) (d)

Fig. 2.13. (a) CBP reconstruction; Reconstructions using GGMRF prior with
p = 1.1 and (b) σ = σ̂, (c) σ = σ̂/2, (c) σ = 2σ̂. (Data courtesy of Tin-Su Pan &

Michael A. King, Univ. of Massachusetts.)
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Fig. 2.14. Comparison of σ’s convergence for CM, AM, EAM algorithms for the
SPECT data modeled by a GGMRF prior (p = 1.1). The true ML estimate is the

converged value of σ when 50 samples are used to compute the expectation.
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(a) (b) (c)

Fig. 2.15. (a) Original image, (b) image corrupted with Gaussian noise (37dB), and
(c) restored image using GGMRF prior and ML estimates of σ and p.
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Fig. 2.16. These plots show the EM updates for (a) σ, and (b) p for the restoration
example using a GGMRF prior. The plots also show the ML estimate obtained for
σ and p using the original image. All the updates are done using a single sample of

X to compute the expectation.
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3. PROVABLY CONVERGENT COORDINATE
DESCENT IN STATISTICAL TOMOGRAPHIC

RECONSTRUCTION

3.1 Introduction

Statistical tomographic reconstruction methods such as maximum-likelihood (ML)

and maximum a posteriori probability (MAP) estimation seek the solution that best

matches the probabilistic behavior of the data. But these estimates may require

excessive computation for the resulting large-scale, iterative optimizations. The

expectation-maximization (EM) algorithm has been widely applied for computing

the ML estimates in the emission tomography problem [16]. Several other algorithms

take an indirect approach based on EM to solve the MAP optimization problem[2, 56].

But these algorithms retain one main problem of EM, i.e. its slow convergence speed

for tomographic reconstructions.

Recently, Bouman and Sauer have proposed an iterative coordinate descent (ICD)

algorithm [50] for statistical image reconstruction based on the direct optimization

of the MAP criterion. This algorithm is based on the sequential greedy optimization

of pixel values in the reconstruction. It applies a truncated Taylor series expansion

to derive a local quadratic approximation to the exact log-likelihood function. We

use the term iterative coordinate descent/Newton Raphson (ICD/NR) for this com-

putationally advantageous version of the coordinate descent algorithm. It has been

experimentally demonstrated to converge very rapidly compared to EM algorithms,

but is thus far not guaranteed theoretically to converge to the unique global MAP

solution.

In this Chapter, we present a modified ICD algorithm which we call ICD func-

tional substitution (ICD/FS). The ICD/FS algorithm locally approximates the exact
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log-likelihood function with an alternative quadratic function. We prove that the

ICD/FS algorithm is globally convergent for both the emission and transmission re-

construction problem when the log-prior distribution is convex. As with ICD/NR,

the new method easily incorporates non-negativity constraints and non-Gaussian prior

distributions. We also note that as a functional substitution approach, the new al-

gorithm is mathematically similar to optimization methods allowing parallel updates

of arbitrary sets of pixels within the sequential framework [57, 58].

We include experimental results on synthetic phantoms, using both ICD/NR and

ICD/FS algorithms for the comparison under the emission and transmission recon-

struction cases. These results indicate that ICD/FS retains the rapid convergence

properties of ICD/NR, but with the desirable global convergence properties.

3.2 Modeling Assumptions

The MAP tomographic reconstruction problem results in the numerical optimiza-

tion problem of

xMAP = arg max
x
{logP (Y = y|X = x) + logP (X = dx)} ,

where x is the unknown image and y is the projection data. We refer to logP (Y =

y|X = x) as the data term, and the density function logP (X = dx) as the prior term.

The approach we propose is based on the ICD algorithm. In this Chapter, we will

assume that the function logP (X = x) is strictly concave with continuous derivatives

on the set IRN+ = {x ∈ IRN : xj ≥ 0}. For the emission case, we have

logP (Y = y|X = x) =
M∑
i=1

(−Ai∗x− ri + yi log{Ai∗x+ ri} − log(yi!)) , (3.1)

where M is the number of projections, Ai∗ is the ith row of the projection matrix A, yi

are the observed photon counts for projection i, and ri are additive terms usually due

to background noise or random coincidences in the case of PET. For the transmission



- 41 -

case, we have

logP (Y = y|X = x) =
M∑
i=1

(
−yT exp−Ai∗x +yi(log yT −Ai∗x)− log(yi!)

)
, (3.2)

where yT is the photon dosage per ray [50].

We will prove global convergence by verifying that ICD/FS meets the conditions of

the theorem presented by Fessler and Hero in [59] for convergence of space-alternating

generalized EM. Since this proof requires continuity of the log-likelihood on IRN+, we

must assume that the background noise is greater than zero, i.e. ri > 0. We discuss

alternative methods for the case ri = 0 later in the Chapter.

3.3 The Functional Substitution Approach to ICD

In this section, we will develop the ICD/FS algorithm.

3.3.1 ICD/FS algorithm

The ICD method sequentially optimizes with respect to each pixel (i.e. coordinate

of x). Let xn be the image at the nth iteration. Then the ICD update of the pixel xj

is computed by solving the equation

xn+1
j = arg min

xj≥0
{Fj(xj) + Pj(xj)} , (3.3)

where Fj(xj) and Pj(xj) represent the contribution of the data and prior terms,

respectively, to the objective function expressed in terms of xj . The particular form

of Fj(xj) varies for the emission and transmission tomography cases of equations (3.1)

and (3.2). But in both cases Fj(xj) is a convex function on IRN+ and its derivative

fj(xj) = dFj(xj)

dxj
is strictly concave.

Unfortunately, direct optimization of (3.3) is not desirable because evaluation of

the data term, Fj(xj), is computationally expensive. ICD/NR solves this problem by

approximating the function with its second order Taylor series, replacing Fj(xj) with

F
(nr)
j (xj) = θ

(nr)
1 (xj − x

n
j ) +

1

2
θ

(nr)
2 (xj − x

n
j )

2 ,



- 42 -

where θ
(nr)
1 = fj(x

n
j ), θ

(nr)
2 =

dfj(x
n
j )

dxj
. Although this approximation has been shown

experimentally to be quite good, a theoretical proof of convergence for the resulting

iterations has not been found.

The new algorithm ICD/FS results from using a slightly different value for θ2.

This new choice of θ2 is slightly more conservative and will allow us to prove the

desired global convergence property. The update equations for ICD/FS are given as

follows:

θ
(fs)
1 = fj(x

n
j ) (3.4)

θ
(fs)
2 =


fj(xnj )−fj(0)

xnj
if xnj > 0

dfj(0)

dxj
if xnj = 0

(3.5)

F
(fs)
j (xj) = θ

(fs)
1 (xj − x

n
j ) +

1

2
θ

(fs)
2 (xj − x

n
j )

2 (3.6)

xn+1
j = arg min

xj≥0

{
F

(fs)
j (xj) + Pj(xj)

}
(3.7)

The ICD/FS algorithm can be applied in both emission and transmission tomogra-

phy problems. The only difference between these two cases is the specific computation

of the values for fj(x
n
j ), fj(0), and dfj(0)

dxj
in (3.4) and (3.5). For the emission case,

these values are given by

fj(x
n
j ) =

M∑
i=1

Aij

(
1−

yi
pni

)
(3.8)

fj(0) =
M∑
i=1

Aij

(
1−

yi
pni − Aijx

n
j

)
(3.9)

dfj(0)

dxnj
=

M∑
i=1

yi

(
Aij

pni −Aijx
n
j

)2

, (3.10)

where Aij is the contribution of the jth pixel to the ith projection, and pni = Ai∗x
n+ri is

the ith projection of the reconstruction at iteration n. Note that pni may be efficiently

updated by pn+1
i = pni + Aij(x

n+1
j − xnj ), with computation reduced by the sparse

structure of A.

For the transmission case, the update values are given by

fj(x
n
j ) =

M∑
i=1

Aij
(
yi − yT e

−pni
)

(3.11)
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fj(0) =
M∑
i=1

Aij
(
yi − yT e

−pni eAijx
n
j

)
(3.12)

dfj(0)

dxnj
=

M∑
i=1

A2
ijyTe

−pni eAijx
n
j , (3.13)

where pni = Ai∗x
n.

ICD/FS has essentially the same computational requirements as ICD/NR since

it generally requires the computation of two first derivatives in place of the first and

second derivatives required for ICD/NR.

3.3.2 Global convergence of ICD/FS

In order to prove the global convergence of this new algorithm, we simply verify

that it meets the two assumptions and six conditions of the global convergence proof

presented in [59].

Most of these conditions are either the same as for [59], or are may be simply

verified 1. However, we will demonstrate the critical Condition 1, which states that

the change in the substitute function is an upper bound on the change in the true

functional to be minimized.

By the construction of function f
(fs)
j (x), we know that f

(fs)
j (0) = fj(0), and

f
(fs)
j (xnj ) = fj(x

n
j ). Since for both the emission and transmission case, fj(x) is a

concave function and f
(fs)
j (x) is a linear function, it follows that

fj(x)

 ≥ f
(fs)
j (x) 0 ≤ x < xnj

≤ f
(fs)
j (x) x > xnj

.

Integration of fj(x) and f
(fs)
j (x) result in the inequality

Fj(x)− Fj(x
n
j ) ≤ F

(fs)
j (x)− F (fs)

j (xnj ) .

Defining the functions Φj(x) = Fj(x) + Pj(x) and Φ
(fs)
j (x) = F

(fs)
j (x) + Pj(x) then

results in the following lemma.

1Continuity of f
(fs)
j (t) as a function of (t, x) on IR(N+1)+ also appears to be necessary in Condi-

tion 2.
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Lemma: Let Fj(x)+Pj(x) be convex, and Fj(x) be continuously differentiable on

IRN+. Furthermore, let fj(x) = dFj(x)

dx
be concave and continuous on IRN+, and let

xn+1
j = arg min

x≥0
{F (fs)

j (x) + P (x)}.

Then for all x ∈ IRN+

Φj(x)− Φj(x
n
j ) ≤ Φ(fs)

j (x)− Φ(fs)
j (xnj ) .

Based on this lemma and the conditions proved in [59], the global convergence of the

ICD/FS algorithm follows.

3.3.3 ICD/FS with zero background emission noise

As mentioned previously, the emission case when ri = 0 is special since in this

case the log-likelihood term may tend to −∞ on IRN+. This occurs in the unusual

case in which xj is the only nonzero pixel on a projection which has a nonzero photon

count. In this case, Ai∗x = Aijxj and the log-likelihood functions have terms of the

form log xj which tend to −∞ as xj → 0. There are a number of possible strategies

for handling this case numerically.

Strategy 1: A very simple method for handling this case is to set ri to a very small

number such as ri = 1
100M

. This guarantees that the expected number of additional

photons due to this adjustment summed over all projections is much less than 1. In

practice, such a small perturbation to the model should not have a significant effect

on the resulting reconstruction. This strategy also has the added benefit of making

the algorithm more robust to floating point round-off error.

Strategy 2: Modify the algorithm so that in the case when fj(0) = −∞, the

function is recomputed at fj(ε) where ε is chosen to assure that fj(ε) < 0. One such

choice is ε = minj{
1
Kj
}, where Kj =

∑M
i=1Aij . In this case, θ2 is given by

θ
(fs)
2 =

fj(x
n
j )− fj(ε)

xnj − ε

=
M∑
i=1

A2
ijyi

pni
2 − pni Aij(x

n
j − ε)
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and the update equation is still given by

xn+1
j = arg min

xj≥0
{F (fs)

j (xj) + P (xj)} .

We conjecture that this update strategy is globally convergent since it appears that

the proof of [59] could be simply extended to handle this more general case.

3.4 Numerical Results

Our experimental results consist of trials using synthetic phantoms with functional

values similar to human tissue in low dosage emission and transmission tomography

simulations. The data are 128× 128 projections, and the reconstruction is computed

at a resolution of 128× 128 pixels. We solve the MAP reconstructions consisting of

two choices of p for the generalized Gaussian Markov random field (GGMRF) prior

model with the prior log-density function of P (x) =
∑
i,j

bij
p

(
xi−xj
σ

)p
.

The experimental results of Figs. 3.1 and 3.2 show the convergence of the ICD/NR

and ICD/FS for the emission case with a non-Gaussian prior, the emission case with

a Gaussian prior, and the transmission case with a non-Gaussian prior. All trials

employ sequential pixel updates in raster ordering. We note that with this particular

non-Gaussian prior, the second derivative of the log-likelihood is not bounded, so the

technical conditions of the proof are not met. However, we conjecture that the proof

of [59] may also be generalized for this case.

The plots of Figures 3.1 and 3.2 experimentally show that the convergence prop-

erties of ICD/NR and ICD/FS are virtually identical. This is not surprising, since

the log-likelihood function is generally close to quadratic and the values of θ
(nr)
2 and

θ
(fs)
2 are therefore generally very close. While a proof for the global convergence of

ICD/NR does not yet exist, its convergence appears consistently rapid.
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Fig. 3.1. Convergence of likelihood vs. iterations for the emission case with p = 1.1
and p = 2.0 GGMRF prior models, employing ICD/FS and ICD/NR algorithms.
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Fig. 3.2. Convergence of likelihood vs. iterations for the transmission case with
p = 1.1 GGMRF prior model, employing ICD/FS and ICD/NR algorithms.
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4. MULTIRESOLUTION NON-HOMOGENEOUS MRF
MODEL

4.1 Introduction

The popularity of Bayesian methods in image processing applications such as im-

age reconstruction [60] and restoration [8] is due to the ability of these methods to

incorporate a model for the image in addition to the model for the data collection

process. However, the performance of Bayesian methods is dependent on how accu-

rately the model describes the underlying unknown image. Consequently, the field of

image modeling has received considerable attention in the past decade.

Natural images often have edges and regions with different local characteristics. In

some 3D problems, the material under study may also have structure known a priori

to have behavior along one axis which differs from that along the other two [61]. It

is therefore imperative for a good image model to adapt to such non-homogeneous

and/or non-isotropic local behavior. One of the earliest attempts in this direction

was by Geman and Geman when they proposed a doubly stochastic Markov random

field (MRF) model with interacting discrete line processes to characterize the edges

in the image [8].

However, there are several disadvantages associated with the above approach.

First, it is difficult to model the discrete line processes. Second, the above formulation

results in a difficult non-convex optimization problem, which requires computationally

intensive stochastic relaxation techniques [46, 8] to achieve the approximate global

minimum. While deterministic relaxation techniques [9, 52, 62] can be employed to

reduce the computational cost, they often get trapped in a local minima. Finally,

and perhaps most importantly, non-convexity is undesirable because the maximum a



- 48 -

posteriori (MAP) reconstruction depends discontinuously on the data [12] resulting

in unstable estimators [63, 64].

Alternatively, a host of continuously valued MRF models have been proposed

[9, 2, 3, 10, 11, 12, 13] that provide good edge-preservation without explicitly model-

ing the discontinuities in an image. Most of these are distinguished by the choice of

potential or regularization function that assigns cost to differences between neighbor-

ing pixels. This potential function can either be convex [3, 10, 12, 13] or non-convex

[9, 2, 11]. However, convex potential functions have the advantage that they result

in a tractable optimization problem. It is interesting to note that the use of an edge-

preserving potential function in MRF models is equivalent to using non-interacting

continuous valued line processes. This was first shown by Geman and Reynolds [11]

by using a technique known as half-quadratic regularization [65, 66]. More recently,

line processes obeying more complex smoothness constraints have also been proposed

[67, 68].

The methods of anisotropic diffusion [69] have developed in parallel with Bayesian

techniques, but have resulted in surprisingly analogous properties. As with contin-

uously valued MRF’s, anisotropic diffusion models employ a potential function that

determines the space-varying diffusion coefficient. Edge-preservation then results by

selectively diffusing along the edge rather than across it [70]. While anisotropic dif-

fusion methods have been shown equivalent to optimization problems [70], they fun-

damentally differ from the Bayesian framework because the measured data enters the

problem only as an initial condition.

Although MRF based models have been successfully used to improve the quality

of the reconstructed image, present models have two important shortcomings: First,

they only use very local information to model the behavior of the unknown image.

Second, they are generally homogeneous with smooth regions, textures, and edges

treated similarly. To overcome these shortcomings, a logical solution is to formulate

a non-homogeneous MRF model with space-varying model parameters that adapts to

the local characteristics of the image. The model could utilize large scale information
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to better model the local behavior in the vicinity of a pixel. However, such a formu-

lation poses two difficulties: First, the number of model parameters to estimate is on

the order of the number of pixels in the image. Second, the model parameters de-

pend on the structure of the underlying image which is unknown. In some particular

applications, a priori anatomical information may be used to guide the selection of

these space-varying model parameters [71, 72]. However, in general there has been no

effective method of estimating the very large number of parameters. Consequently,

general non-homogeneous models have been largely ignored in the past.

In this Chapter, we formulate a novel non-homogeneous MRF model using a

multiresolution framework [73, 74] that adapts to the local behavior of the underly-

ing image. The basis of our development is the homogeneous generalized Gaussian

MRF (GGMRF) model of Bouman and Sauer [12] that uses a single scale param-

eter to characterize the entire image. The reason for choosing the GGMRF rests

on two important properties: First, the GGMRF has been shown to provide good

edge-preservation [12]. Second, the scalable nature of GGMRF [13] yields a simple

closed form ML estimate of the scale parameter [41]. The latter property motivates

an intuitive local estimate of the space-varying scale parameter for the proposed

non-homogeneous GGMRF. These space-varying scale parameters are analogous to

continuous line processes. However, they differ from continuous line processes since

they can take any value from zero to infinity. The purpose of the multiresolution

framework is to enable the estimation of these space-varying local scale parameters

at any resolution by using the image at the previous coarser resolution.

Using this non-homogeneous GGMRF image model and the sequential MAP

(SMAP) estimator [75], we estimate the unknown image by starting at the coars-

est resolution and proceeding recursively down to the finest resolution. An important

advantage of such a formulation is that it results in a convex optimization problem

at any resolution. Consequently, the reconstructed image at the finest resolution

depends continuously on the measured data.
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Since the local scale parameters estimated from the coarse resolution image may

systematically over or under estimate the variation in the image, we introduce a

global scaling parameter for the non-homogeneous GGMRF at each resolution. A

useful property of this particular formulation is that the non-homogeneous GGMRF

is still scalable with respect to this global scaling parameter. This property allows us

to compute a closed form expression for the ML estimate of the global scale parameter.

Since this estimate depends on the unknown image at each resolution, we use the EM

algorithm [14, 15] to compute the ML estimate directly from the observed data during

the reconstruction.

A desirable property of the proposed non-homogeneous GGMRF image model

is that it automatically gives rise to multiresolution algorithms that estimate the

image at progressively finer resolutions. Multiresolution algorithms have generated

a lot of interest in image processing applications due to their faster convergence and

better image modeling [76, 77, 78]. In particular, wavelet based methods have been

proposed for tomographic applications and region-of-interest reconstruction [79, 80,

81]. Multiresolution methods are also particularly well suited to non-convex problems

since they can more effectively avoid being trapped in some local minima than their

single resolution counterparts [78].

Experimental results are presented for real transmission and emission data sets.

These results indicate that our multiresolution algorithm substantially reduces com-

putational cost while yielding better quality reconstructions as compared to the fixed

resolution image models and reconstruction algorithms.

4.2 Multiresolution Non-Homogeneous MRF Model

In this section, after introducing the notation, we develop the multiresolution

non-homogeneous MRF model starting from the homogeneous fixed resolution MRF

model.

We use upper case letters to denote random quantities, while lower case letters

denote the corresponding deterministic realizations of these random quantities. Let x
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denote the unknown image that we are trying to model. The superscript k is used to

denote the scale; x(k) therefore denotes the image at scale k. We use k = 0 to denote

the finest resolution and k = L to denote the coarsest resolution. At scale k, the set

of lattice points is denoted by S(k), and the number of lattice points is denoted by Nk.

We use a factor of 2 decimation in each dimension between two consecutive scales.

Therefore the number of pixels reduce by a factor of 4 between two consecutive scales.

Typical past approaches have concentrated on the use of a homogeneous MRF’s

to model the image in the Bayesian framework. The log-likelihood of the image model

that is generally used is of the form

logP (x|σ) = −
∑

{i,j}∈N

bi−jρ(
xi − xj
σ

) + C , (4.1)

where N denotes the set of all neighboring pixel pairs, C is used to denote the

normalization constant of the distribution that is independent of x, and ρ(·) is the

potential function that assigns a cost to differences between neighboring pixels. The

potential function is said to be scalable if

ρ(
x

σ
) =

1

σp
ρ(x) ,

where σ > 0 and p is a constant.

The ease of optimal scale parameter estimation for the homogeneous MRF model

(4.1) depends on the choice of the potential function ρ(·). It was shown in Chapter 2

that the ML estimate of the scale parameter can be computed in a computationally

efficient manner for a host of potential functions. If the potential function is also

scalable [12, 13], then the ML estimate of σ, given the unknown image, has a simple

closed form expression. This is a useful property which we will exploit later on to

obtain an intuitive estimate of the local scale parameter in the non-homogeneous

model.

We use the generalized Gaussian MRF (GGMRF) of Bouman and Sauer [12] as the

basis of our development for the non-homogeneous model because its scalable nature

permits a simple expression for the ML estimate of σ. Furthermore, the GGMRF has
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been shown to provide good edge-preservation. The log-likelihood of the GGMRF is

given as

logP (x|σ) = −
1

pσp

∑
{i,j}∈N

bi−j |xi − xj|
p + C . (4.2)

The ML estimate of σ for the GGMRF is easy to compute (refer to Section 2.2.2)

and is given as

σ̂p =
1

N

∑
{i,j}∈N

bi−j |xi − xj|
p , (4.3)

where N is the total number of pixels in the image x.

4.2.1 Non-homogeneous MRF model

Homogeneous MRF models (4.1) are in general unrealistic for natural images that

have space-varying characteristics since a single scale parameter σ is used for the

entire image. From this perspective, the logical solution is to replace the global

scale parameter σ with a local scale parameter σij that is different for each pair of

neighboring pixels. Modifying the homogeneous GGMRF model (4.2) to have space-

varying σ, we obtain

logP (x|{σij|∀(i, j) ∈ N}) = −
1

p

∑
{i,j}∈N

bi−j

∣∣∣∣∣xi − xjσij

∣∣∣∣∣
p

+ C . (4.4)

The advantage is that the above non-homogeneous GGMRF model can adapt to the

local characteristics of the underlying image. However, the problem with the above

formulation is that the number of scale parameters, {σij|∀{i, j} ∈ N}, that have to

be estimated is on the order of the number of pixels in the image.

To address this difficulty, we examine the form of the ML estimate of σ for the

homogeneous case. Note that the global estimate of σ in (4.3) is obtained by averaging

the local pixel differences over the entire image. Then intuitively the estimate of a

local scale parameter at any pixel should only average the pixel differences in the

neighborhood of the pixel. In the light of this observation, we define

σ̂pi =
1

2

∑
j∈Ni

bi−j |xi − xj|
p
, (4.5)
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Fig. 4.1. The above figure shows the pixel differences that are averaged to obtain
the estimate of σ10,11 when a 4-point neighborhood is used.

where σi is now the local scale parameter at pixel i and Ni denotes the neighborhood

of the pixel i. Note that the factor of 2 in (4.5) is to ensure that the average of local

scale parameters is equal to the global scaling parameter when x is homogeneous, i.e

σ̂p = 1
N

∑
i σ̂

p
i . The scale parameter for the link between pixels i and j, σij , is then

estimated as the local average of σi and σj .

σ̂pij =
1

2

{
σ̂pi + σ̂pj

}
=

1

4

∑
q∈Ni

bi−q |xi − xq|
p +

∑
q∈Nj

bj−q |xj − xq|
p

 . (4.6)

Figure 4.1 illustrates the pixel differences that are averaged to obtain a particular

estimate of the scale parameter between pixels 10 and 11 for a four-point neighbor-

hood.

4.2.2 Multiresolution framework

The problem with the formulation of the non-homogeneous GGMRF model (4.4)

is that the estimate of the local scale parameter σij depends on the unknown image

x. The limitation of this approach is that random samples of x are not available

to estimate σij . Moreover, ML estimation of σij from the data y is not desirable

because the number of unknown parameters is approximately equal to the number
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of observations in y. Consequently, the ML estimates of σij are likely to be poorly

behaved and pose numerical difficulties.

To address this problem, we use a multiresolution framework as shown in Fig. 4.2.

The unknown image is represented at multiple scales, x = {x(0), . . . , x(L)}, and the

local scale parameters at any resolution k are estimated from the image at the previous

resolution k + 1.

Let Ikk+1 denote the linear interpolation operator from scale k + 1 to scale k. Let

z(k) = Ikk+1x
(k+1) (4.7)

denote the interpolated image at scale k. Then the local scale parameter estimate

between pixels i and j given by (4.6) is modified to depend on the interpolated image

z(k) instead of the image x as follows

σ̂pij(x
(k+1)) =

1

4

∑
q∈Ni

bi−q
∣∣∣z(k)
i − z

(k)
q

∣∣∣p +
∑
q∈Nj

bj−q
∣∣∣z(k)
j − z

(k)
q

∣∣∣p
 . (4.8)

Figure 4.2 shows the dependence of the local scale parameters on the interpolated

image from the previous resolution.

Using the multiresolution framework and the modified expression for σ̂ij given by

(4.8), the non-homogeneous GGMRF model (4.4) is written as

logP (x(k)|x(k+1)) = −
1

p

∑
{i,j}∈N

bi−j

∣∣∣∣∣∣x
(k)
i − x

(k)
j

σ̂ij(x(k+1))

∣∣∣∣∣∣
p

+ C k 6= L . (4.9)

Note that the dependence of image x(k) on image x(k+1) is only through σ̂ij(x
(k+1)).

The above model is only valid for scales k 6= L since at the coarsest resolution L

we do not have an interpolated image from which the local scale parameters may be

estimated. Instead we let X(L) be a homogeneous GGMRF with the log-likelihood

given in (4.2). This is justified because in the Bayesian framework the amount of

data increases significantly at coarser resolutions thereby decreasing the importance

of the image model at these resolutions.
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Fig. 4.2. The above figure shows the multiresolution framework for the
non-homogeneous GGMRF image model. The local scale parameters at any

resolution are estimated using the interpolated image from the previous resolution.

4.2.3 Global scaling parameter

One problem that may arise by estimating σij using (4.8) from the interpolated

image is that it may over or under estimate the image variation by a fixed constant.

To address this, we introduce another parameter λk that acts as a global scaling

parameter for the entire image at resolution k. The modified conditional log-likelihood

is then given as

logP (x(k)|x(k+1), λk) =
−1

pλpk

∑
{i,j}∈N

bi−j

∣∣∣∣∣∣x
(k)
i − x

(k)
j

σ̂ij(x(k+1))

∣∣∣∣∣∣
p

+ C k 6= L (4.10)

logP (x(L)|λL) =
−1

pλpL

∑
{i,j}∈N

bi−j
∣∣∣x(L)
i − x

(L)
j

∣∣∣p + C . (4.11)

SinceX(k) only depends onX(k+1), the collection of random fieldsX = {X(0), . . . , X(L)}

form a first order Markov chain in scale. The log-likelihood of the complete image
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model is then easily obtained as

logP (x|λ) =
L−1∑
k=0

logP (x(k)|x(k+1), λk) + logP (x(L)|λL) . (4.12)

We will use x to denote the collection of images, {x(0), . . . , x(L)}, for the rest of this

chapter.

4.3 Multiresolution Reconstruction Algorithm

In this section we present the multiresolution reconstruction algorithm by speci-

fying the estimation criterion for the unknown image. We also develop the multireso-

lution data model for the tomography problem. Figure 4.3 summarizes the complete

tomographic image reconstruction algorithm developed in this section.

Let y denote the measurements and let P (y|x) denote the probability of observing

y given the image x. A popular criterion for estimation of the unknown image is the

maximum a posteriori (MAP) estimate given as

x̂ = arg max
x
{logP (y|x) + logP (x|λ)}

= arg max
x

{
logP (y|x(0)) +

L−1∑
k=0

logP (x(k)|x(k+1), λk) + logP (x(L)|λL)

}
.

The MAP estimate in this case is not desirable since it poses a formidable optimization

problem. More importantly, the MAP estimate is not suitable in the multiresolution

framework since it assigns equal weights to errors at all the different resolutions.

On the other hand, the sequential MAP (SMAP) estimator of Bouman and

Shapiro [75] is perhaps more suitable in the multiresolution framework since the

cost criterion that it approximately minimizes assigns higher weights to errors at the

coarser resolution. Moreover, the SMAP estimator is desirable because it results in a

tractable optimization problem.

The SMAP estimation procedure starts at the coarsest scale L and proceeds down

to the finer scales as follows

x̂(L) = arg max
x(L)

{
logP (y|x(L)) + logP (x(L)|λL)

}
(4.13)

x̂(k) = arg max
x(k)

{
logP (y|x(k)) + logP (x(k)|x̂(k+1), λk)

}
k = L− 1, . . . , 0.(4.14)
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Note that the procedure is recursive since the reconstructed image x̂(k+1) at scale k+1

is used to compute the reconstruction x̂(k) at scale k.

4.3.1 Data models for tomography

We specify the multiresolution data model log P (y|x(k)) for tomographic problems

in this section. The models for emission and transmission tomography are the same

as described in Section 2.3.1. However, we reintroduce the notation in this Section

explicitly accounting for the scale at which the unknown image x is represented.

Let x(k) denote the column vector of emission intensities in the emission case or

the attenuation densities in the transmission case at scale k. Let y denote the column

vector of measurements of Poisson-distributed photon counts at the detectors for all

angles and displacements. Note that the data is collected at a fixed resolution.

For the emission case, let Aij be the probability that a photon emitted from cell

j ∈ S(0) is registered at the ith detector. Let A be the projection matrix with elements

{Aij}, and let Ai∗ denote the ith row of the projection matrix. Then, for the emission

case, the log-likelihood of the data given the image at scale 0 is

(emission) logP (y|x(0)) =
M∑
i=1

(−Ai∗x
(0) + yi log{Ai∗x

(0)} − log(yi!)) , (4.15)

where M is the total number of projections.

The transmission case is similar, but has Aij corresponding to the length of inter-

section between the jth (j ∈ S(0)) cell and the ith projection. Let the dosage photon

counts be Poisson-distributed with rate yT . Then, for the transmission case, the

log-likelihood of the data given the image at scale 0 is

(transmission) logP (y|x(0)) =
M∑
i=1

(−yT e
−Ai∗x(0)

+ yi(log yT − Ai∗x
(0))− log(yi!)) .

(4.16)

Note that (4.15) and (4.16) are similar in form and can be compactly written as

logP (y|x(0)) = −
M∑
i=1

f(yi, Ai∗x
(0)) , (4.17)
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where

f(yi, Ai∗x
(0)) = Ai∗x

(0) − yi log{Ai∗x
(0)}+ log(yi!) (emission) (4.18)

= yTe
−Ai∗x(0)

− yi(log yT −Ai∗x
(0)) + log(yi!) (trans.). (4.19)

Notice that for both the emission and transmission cases f(yi, ·) is a convex function.

Henceforth, in the interest of notational simplicity, we will use (4.17) as the log-

likelihood for emission as well as transmission tomography.

For scales k > 0, the likelihood of the data can be computed using Bayes rule as

follows

P (y|x(k)) =
∫
P (y|x(k−1))P (x(k−1)|x(k))dx(k−1) . (4.20)

However, the above integral is intractable to compute analytically for the proposed

image model. Therefore, exclusively for the purpose of computing the likelihood of

the data at scale k, we approximate the image model at scales n < k as follows

P(X(n) = x(n)|x(n+1)) =

 1 if x(n) = Ĩnn+1x
(n+1)

0 otherwise
, (4.21)

while retaining the original model given by (4.10) and (4.11) for scales n ≥ k. Note

that Ĩnn+1 denotes an interpolation scheme different from the one in (4.7). The mod-

ification of the image model for scales n < k is an approximation since we cannot

legitimately change our image model during the estimation process. However the

approximation is justified since the data likelihood function has only a secondary de-

pendence on the image model and it primarily depends on the observations. This is

reminiscent of the hybrid graph structure used in [75].

Substituting the modified image model given by (4.21) into (4.20) and using (4.17),

we obtain the log-likehood of the data at scale k as

logP (y|x(k)) = −
M∑
i=1

f(yi, Ai∗
k−1∏
i=0

Ĩ ii+1x
(k))

= −
M∑
i=1

f(yi, A
(k)
i∗ x

(k)) ,
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where we define

A(k) = A
k−1∏
i=0

Ĩ ii+1 = AĨ0
k . (4.22)

Note that A(k) now takes on the role of the projection matrix at scale k.

4.3.2 Decimation of data

Note that in the previous development, the full resolution data is retained as we

move to coarser resolutions of the image. This results in a large amount of data to

estimate relatively few pixel values at the coarser resolutions. Therefore considerable

computational savings can be realized by decimating the data also without seriously

affecting the performance of the reconstruction algorithm at coarser resolutions. Note

that we use decimation here to denote the combined filtering and down-sampling

operation. However, if a Poisson data model is used, the computational savings by

decimating the data can only be realised for the emission case. This is because the

rate of the Poisson data counts is linearly related to the projections of the image in the

emission case while they have a non-linear relationship in the transmission case. On

the other hand, if a quadratic approximation [50] is used for the Poisson data model

or no filtering of the data is done prior to down-sampling, then computational savings

can also be realised in the transmission case. However, simply down-sampling the data

without filtering is not desirable since it could significantly affect the performance of

the algorithm at coarser resolutions. With this in view and the fact that we use only

the Poisson data model in this Chapter, we will restrict ourselves to decimating the

data in the emission case only and retain the full resolution data for the transmission

case.

Let y(l) denote the decimated data at scale l obtained from the data at the finest

resolution y as follows

y(l) = Ĩ l0y ,
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where Ĩ l0 is the decimation operator that decimates the sinogram image y from scale

0 to scale l. In particular, we use

Ĩ l0 =
(
Ĩ0
l

)T
, (4.23)

where T denotes the transpose operation. Note that since a factor of 4 is omitted in

(4.23), Ĩ l0 results in summation rather than an average over blocks of the sinogram

image y. For the emission case, since the elements of Y are Poisson with rates Ax(0),

it follows that the elements of Y (l) are Poisson with rates Ĩ l0Ax
(0). Let Ml be the

number of projections in y(l). Then using (4.21), (4.20), and (4.15), the log-likelihood

of y(l) given x(k) can be written as

logP (y(l)|x(k)) =
Ml∑
i=1

(−A(lk)
i∗ x

(k) + y
(l)
i log{A(lk)

i∗ x
(k)} − log(y

(l)
i !)) , (4.24)

where now the projections matrix is given as

A(lk) = Ĩ l0AĨ
0
k . (4.25)

We now use P (y(l)|x(k)) instead of P (y|x(k)) in (4.13) and (4.14) to compute the

SMAP estimate. These final set of equations are shown in Fig. 4.3. We use the

iterative coordinate descent (ICD) algorithm [50] with Newton-Raphson updates to

compute the minimization required for the SMAP estimate. The ICD method works

for both the emission and the transmission case. However, we are not restricted to

using ICD and other optimization methods for tomographic problems in the Bayesian

framework can also be employed [4, 2, 3, 82].

As we move to coarser resolutions, the data can be decimated along with the

image, i.e l = k. However, since the decimation of data results in some loss of

information, it might be desirable to stagger the decimation of the data with respect

to that of the image. In practice we found that staggering the decimation of the data

by one level, i.e using l = [k − 1]+ ([x]+
∆
= max{x, 0}), yields results that are almost

indistinguishable from those obtained by no decimation of the data, but provides

computational savings.
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For k = L, . . . , 0 {

1. set l = [k − 1]+ for emission case, set l = 0 for transmission case.

2. Generate if necessary y(l) = Ĩ l0y and A(lk) = Ĩ l0AĨ
0
k .

3. Compute λ̂k using (4.29) or (4.30).

4. If k = L then use ICD to compute the SMAP estimate

x̂(L) = arg min
x(L)


Ml∑
i=1

f(y
(l)
i , A

(lL)
i∗ x(L)) +

1

pλ̂pL

∑
{i,j}∈N

bi−j
∣∣∣x(L)
i − x

(L)
j

∣∣∣p


else

x̂(k) = arg min
x(k)


Ml∑
i=1

f(y
(l)
i , A

(lk)
i∗ x

(k)) +
1

pλ̂pk

∑
{i,j}∈N

bi−j

σ̂pij(x̂
(k+1))

∣∣∣x(k)
i − x

(k)
j

∣∣∣p


where f(·, ·) is defined in (4.18) and (4.19) for emission and transmission

tomography.

}

Fig. 4.3. Complete image reconstruction algorithm for emission and transmission
tomography.

In order to quantify the computational gains obtained by decimating the data, we

define the weights

wk =
Tk
T0

, (4.26)

where Tk is the CPU time taken to compute one full iteration of the ICD algorithm at

scale k. Table 4.1 shows the weights computed for an emission phantom. The listed

weights show the computational benefits obtained by decimating the data at coarser

resolutions as compared to using the full resolution data. Table 4.2 shows the weights

for the transmission case. Note that in this case no data decimation is used.
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Table 4.1 The computed weights wk = Tk/T0 are shown for the emission case when
ICD with Newton-Raphson updates is used to perform the optimization. The 3

cases shown are: 1) data is not decimated with image, 2) data is decimated along
with image, 3) data decimation is staggered by one level with respect to the image.

data decimation w0 w1 w2 w3 w4
∑4
i wi

No (l = 0) 1.000 0.310 0.107 0.042 0.0176 1.477

Yes (l = k) 1.000 0.186 0.038 0.009 0.0019 1.235

Staggered (l = [k − 1]+) 1.000 0.310 0.054 0.012 0.0021 1.378

Table 4.2 The computed weights wk = Tk/T0 are shown for the transmission case
when the full resolution data is retained at the coarser resolutions. ICD with

Newton-Raphson updates is used to perform the optimization.

data decimation w0 w1 w2 w3 w4
∑4
i wi

No (l = 0) 1.000 0.351 0.139 0.061 0.029 1.580

4.3.3 Choice of the interpolation scheme

In this section, we discuss the choice of linear interpolation schemes for operators

Ĩkk+1 and Ikk+1.

The interpolation scheme used in the modified image model (4.21) is used to

compute the projection matrix at scale k using A(k) = AĨ0
k or A(lk) = Ĩ l0AĨ

0
k depending

on whether the data is decimated or not. Therefore a complex interpolation scheme

with a large support would tend to make A(k) or A(lk) less sparse rendering the

optimization at image scale k to be computationally expensive. With this in view, we

choose Ĩkk+1 to be simple pixel replication. Another advantage of this choice is that

now the elements of A(k) can be computed by using the same algorithm that was used

to compute the elements ofA. The only difference is thatA(k) is computed using pixels

that are 2k times larger in each dimension than the pixels at scale 0. This method is

computationally cheaper than computing the equivalent matrix multiplication AĨ0
k .
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Bi-cubic Interp. to
 compute prior

Pixel replication
to compute data

k=2

k=L

Fig. 4.4. The above figure shows the different interpolation schemes used to
compute the data model and the prior model when computing the reconstruction at
scale k = 2. Pixel replication is used for scales k < 2 and bi-cubic interpolation is

used for scales k ≥ 2.

On the other hand, a complex interpolation scheme to compute z(k) = Ikk+1x
(k+1)

does not affect the computational complexity of the optimization at image scale k.

Moreover, a superior interpolation scheme is required to obtain a good estimate of

the local scale parameters σij for scale k. We therefore choose bi-cubic interpolation

for this purpose [83]. Figure 4.4 shows the hybrid graph structure used for the image

model when computing the reconstruction at scale k = 2.

4.3.4 ML estimation of the global scaling parameter

For the proposed scheme to be unsupervised, we need to estimate the global scaling

parameters λk directly from the data y before computing the SMAP estimate of the

image at each scale k. We use the conditional ML estimate for λk defined as

λ̂L = arg max
λL

P (y(l)|λL) (4.27)

λ̂k = arg max
λk

P (y(l)|x̂(k+1), λk) k 6= L , (4.28)

where the scale l for the data depends on the particular decimation scheme used for

the data. Note that for scales k < L, the ML estimate is conditioned on the SMAP

estimate x̂(k+1) at the previous scale, which is available when ML estimation of λk is

performed at scale k. Since the conditional ML estimate of λk depends on the data

y(l) only through the unknown image x(k), this is a classic example of the incomplete

data problem. We use the EM algorithm [14, 15] that was specifically designed to
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solve problems of this nature to obtain the estimates. Using the result of Appendix

B, the iterative update equation for the conditional ML estimate of λL is obtained as

λ̂pL(t+ 1) =
1

NL

∑
{i,j}∈N

bi−jE
[∣∣∣X(L)

i −X(L)
j

∣∣∣p |y(l), λ̂L(t)
]

(4.29)

and the set of update equations for the conditional ML estimate of λk, k 6= L, is

obtained as

λ̂pk(t+ 1) =
1

Nk

∑
{i,j}∈N

bi−j
σ̂pij(x̂

(k+1))
E
[∣∣∣X(k)

i −X
(k)
j

∣∣∣p |y(l), x̂(k+1), λ̂k(t)
]
, (4.30)

where t denotes the discrete iteration index. The expectation involved in the updates

is intractable to compute analytically. Instead we numerically compute the expecta-

tion by using samples generated from the posterior distribution P (x(L)|y(l), λ̂L(t)) or

P (x(k)|y(l), x̂(k+1), λ̂k(t)). The fast simulation technique described in Section 2.3.3 is

used for this purpose. It was shown in Section 2.4.2 that using a single sample to

compute the expectation yields approximately the same parameter at convergence as

using multiple samples to compute the expectation. We therefore use only one sample

to compute the expectation in the update equations. Also, rather than summing the

local pixel differences in (4.29) and (4.30) over the entire image, we restrict it to the

support of the object to be reconstructed. This is to ensure that the reconstructions

are not overly smooth due to the inclusion of the constant zero background. Details

of the computation of the support of the object are given in Section 2.4.2.

4.4 Applications to Optical Flow

Optical flow is the distribution of apparent velocities of movement of brightness

patterns in an image. The problem of determining the optical flow from a sequence

of intensity images is truly an ill-posed one. This is because the velocity field at each

image point has two components while the change in image brightness at a point in the

image plane due to motion yields only one constraint. In fact, as it turns out, we can

only recover the component of the velocity field along the gradient of the brightness

at any image point [84]. To address this difficulty, traditional methods incorporate an
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additional constraint of smoothness of the velocity field while computing the optical

flow. This is equivalent to employing an image model for the velocity field. In

particular, MRF based models for the motion vector field in the Bayesian framework

have been proposed [85, 86, 87]. The smoothness constraint works well for motion

vectors within a single object but obviously fails at object boundaries where there is

a sharp discontinuity in the motion field. Consequently edge-preserving velocity field

models find useful application for motion estimation.

4.4.1 Data model and optimization strategy for optical flow

In this section, we develop a 3 frame multiresolution data model for computing

the optical flow. Let y(t) be the intensity image at time instance t. We assume that

y(t) is corrupted by i. i. d. Gaussian noise with variance σ2
n. Let the data y denote

the set of intensity images, {y(0), y(1), y(2)}, at 3 time instances namely t = 0, 1, 2.

Let x(k) denote the field of vector displacements that represents the optical flow at

scale k for time t = 1. Let

Ef (s, x
(0))

∆
= y

s+x
(0)
s

(2)− ys(1) (4.31)

be the forward prediction error and let

Eb(s, x
(0))

∆
= y

s−x(0)
s

(0)− ys(1) (4.32)

be the backward prediction error. Since the data y is available only at discrete

spatial positions s ∈ S, we require an interpolation scheme to compute y
s+x

(0)
s

(2) and

y
s−x(0)

s
(0) in (4.31) and (4.32) respectively. We will use bi-cubic interpolation for this

purpose [83].

For image points that are neither revealed at t = 1 nor become occluded at t = 2,

the backward prediction error or the forward prediction error can be minimized to

compute the optical flow. However, for image points that are revealed at time t = 1,

the backward prediction error is inappropriate to minimize since the revealed points

are missing in y(0). Similarly, for points that become occluded at time t = 2, the

forward prediction error is inappropriate to minimize since the occluded points are



- 66 -

missing in y(2). Therefore to account for the occluded and revealed points in the

image, the data model should switch between the forward and backward prediction

errors in a space-varying fashion. The difficulty is that we do not know a priori

which points in the image are going to be revealed or occluded. However, note that

the absolute backward prediction error would in general be lower than the absolute

forward prediction error for an occluded point and vice versa for a revealed point.

With this observation and the fact that the noise is Gaussian distributed with variance

σ2
n, we formulate the log-likelihood of the data given x(0) as

logP (y|x(0)) = −
1

2σ2
n

∑
s∈S(0)

min(E2
f (s, x

(0)), E2
b (s, x

(0))) .

The likelihood P (y|x(k)) given by (4.20) is again difficult to compute exactly. As

discussed in Sect. 4.3.1, logP (y|x(k)) can be approximated by

logP (y|x(k)) = −
1

2σ2
n

∑
s∈S(0)

min(E2
f (s, Ĩ

0
kx

(k)), E2
b (s, Ĩ

0
kx

(k))) .

The image model that we use for the optical flow field is the same as the non-

homogeneous model described in Sect. 4.2. The only difference is that x(k)
s is now a

vector with two components x(k)
s (1) and x(k)

s (2) corresponding to the displacement of

the pixel at spatial position s in two orthogonal directions. The | · |p function in all

the equations in Sect. 4.2 is now interpreted as

|v|p ∆
= |v(1)|p + |v(2)|p

= ||v||pp ,

where v is any vector with two components v(1) and v(2).

We use the SMAP estimation procedure described in Sect. 4.3 to compute the

optical flow. ICD is again used to perform the optimization required in (4.13) and

(4.14). However, we restrict x(k)
s to take discrete values in the set

R = {−5,−4.75,−4.5, . . . , 4.5, 4.75, 5} × {−5,−4.75,−4.5, . . . , 4.5, 4.75, 5}.

The maximum is then obtained by brute force evaluation of the SMAP cost criterion

for all x(k)
s ∈ R.
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4.5 Experimental Results

4.5.1 Tomography

In this section, we experimentally study the convergence speed and reconstruction

quality of the proposed multiresolution non-homogeneous GGMRF model and the

multiresolution reconstruction algorithm. We use synthetic as well as real data sets

for both emission and transmission tomography.

The transmission data that we use was acquired by measuring projections of a

real flashlight. The original data consisted of 1024 projections taken at 792 equally

spaced angles. From this original data, we generated a low resolution data set by

retaining every 4th projection at every 4th angle. We used the full resolution data to

form a “ground truth” image using convolution back projection (CBP) reconstruction

shown in Fig. 4.7(a). All other reconstructions with this data set were then done using

the lower resolution data. This approach allows us to obtain a pseudo ground truth

image, which is normally not available for real data sets.

The 3D SPECT data that we use was acquired from cardiac perfusion imaging

using Tc-99m sestamibi for a male patient. For each slice, 128 projections were

taken at 120 uniformly spaced angles between 0 and 2π. Figure 4.9(a) shows the

CBP reconstruction of one of the slices. The reconstruction was done at 128 by 128

0.356cm pixel resolution. The total photon count for this slice was 148761.

Figure 4.10(a) shows the synthetic head phantom that we use for emission tomog-

raphy. Figure 4.10(b) shows the corresponding CBP reconstruction. The emission

rates are on an array of 128 by 128 pixels of size 1.56mm2. The data was generated

by taking 128 Poisson distributed projections at each of 128 uniformly spaced angles

between 0 and π. The total photon count was approximately 3 million.

Since the proposed multiresolution non-homogeneous model is derived from the

fixed resolution GGMRF model, the performance of the new model is compared to

that of the fixed resolution GGMRF model. We refer to the proposed multiresolu-

tion method using the non-homogeneous GGMRF as the MR method and the fixed
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resolution method using the homogeneous GGMRF as the FR method. We use the

iterative coordinate descent (ICD) algorithm with Newton-Raphson updates in both

the cases to perform the optimization. Eight different update ordering schemes are

used to facilitate the convergence of the algorithm [6]. A fixed value of 1.1 is used for

p in all the reconstructions. For the emission case, we stagger the decimation of the

data by one level with respect to the image in the MR method. For the transmission

case, the data is not decimated in the MR method.

The coarsest resolution L for the MR method is determined by decimating the

full resolution image at scale 0 till we obtain a grid of 8x8 pixels. Therefore, L is set

to 5 for the flashlight data and set to 4 for the 3D SPECT data and the synthetic

emission data. For the MR method, ICD is initialized at the coarsest resolution k = L

with a constant image set to the mean obtained from all the projections. For the FR

method, ICD is initialized using the CBP image at the finest resolution k = 0.

Let N [k] be the total number of full iterations at scale k performed by ICD in the

MR method. Then the equivalent number of iterations at base resolution for the MR

method is defined as

Neq =
L∑
k=0

wkN [k] , (4.33)

where wk is the relative cost of computation between scale k and scale 0 defined

in Sec. 4.3.2. For the FR method, Neq = N [0]. We use Neq when comparing the

computation of the FR and the MR method since it represents equivalent amount of

computational effort in both the cases.

For the purpose of estimating the global scale parameters in both the FR and the

MR method, we restricted the computation of the estimates to the support of the

object. For the MR method, a decimated version of the support of the object is used

at the coarser resolution. We use the ML estimate of the global scaling parameters

in all our reconstructions for both the MR as well as the FR method.

In order to experimentally study the speed of convergence, we require a meaning-

ful measure of convergence. The posterior log-likelihoods are not directly comparable
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since they pertain to two different models. A more meaningful measure is the nor-

malized root mean square error (NRMSE). NRMSE for the FR method is defined

as

NRMSE(n) =

(
(xn − xc)T (xn − xc)

xTc xc

)1/2

,

where xn is the image at iteration n of ICD and xc is obtained by performing 500

iterations of ICD. We set the global scaling parameter λ to the ML estimate for

generating both xc and xn. NRMSE for the MR method is defined as

NRMSE(n) =

(x(0)
n − x

(0)
c )T (x(0)

n − x
(0)
c )

x
(0)
c

T
x

(0)
c

1/2

.

In this case 500 iterations of ICD is performed at all the resolutions starting from

k = L and proceeding down to k = 0 to obtain x(0)
c for fixed values of λk. x

(0)
n denotes

the image at scale 0 for n equivalent iterations at scale 0, i.e Neq = n. We set the

global scaling parameters λk to the ML estimates for generating both x(0)
c and x(0)

n .

We have to specify the number of iterations performed at each resolution with

respect to the iterations at the base resolution in the MR method. Since the compu-

tational cost of a single iteration decreases at coarser resolutions, it makes sense to

perform more iterations at these resolutions. This also yields faster convergence since

effects produced by local updates are propagated globally in a more efficient manner

at coarser resolutions. The particular rule that we use to determine the number of

iterations at scale k is given as

N [k] =
⌈
2k/aN [0]

⌉
,

where dbe denotes the smallest integer greater than or equal to b and a > 0 controls

the growth of the number of iterations at coarser resolutions. We found experimen-

tally that when a is small, N [k] grows rapidly yielding better convergence for small

N [0]. However, when N [0] is large, a small a increases the computation and does not

improve the convergence significantly. Alternatively, a large a results in poor conver-

gence when N [0] is small. Generally, we found that a = 3 performed well over a large
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range of N [0]. Therefore, we will use N [k] =
⌈
2k/3N [0]

⌉
to compute the number of

iterations at scale k for the MR method.

Figure 4.5 shows the NRMSE of the MR and the FR method for the flashlight data

with respect to Neq. In this case we notice that the FR method has lower NRMSE

for Neq < 13 iterations. However, the MR method has a faster rate of convergence

as seen from the slope of the plots and becomes better than the FR method after

13 iterations. Figures 4.6(a) and 4.6(b) show the NRMSE of the MR and the FR

method for the 3D SPECT data and the synthetic emission data respectively. For

the 3D SPECT data, the MR method is slightly better than the FR method in terms

of NRMSE for the same amount of computation. For the synthetic emission data,

the MR method is better than the FR method for Neq > 3.

Figure 4.7 shows the reconstructions corresponding to the flashlight data. Figure

4.7(c) and Figure 4.7(d) show the reconstruction obtained by the FR method and the

MR method respectively. Both the FR and the MR method use ML estimates for

the global scaling parameter λ. Notice that the MR method suppresses noise while

retaining the details and edges more effectively that the FR method. This is more

obvious in Figure 4.8 that shows blown up versions of the images in Figure 4.7. Figure

4.7(e) shows the local scale parameters estimated at the finest resolution in the MR

method.

Figure 4.9 shows the reconstructions corresponding to a single slice of a male

patient for the 3D SPECT data set. Note in this case we do not have any “ground

truth” to verify the accuracy of the reconstructions. The MR methods again yields

a cleaner and sharper reconstruction than the FR method. Figure 4.10 shows the

reconstructions for the synthetic emission data. In this case the original image in

Fig. 4.10(a) can be used to qualitatively assess the performance of the FR and the

MR method. From Figs. 4.10(c) and 4.10(d) it is clear that the MR method is

suppressing the noise in the smooth regions while retaining the sharp edges in a much

better fashion than the FR method. It is possible to reduce the noise in the smooth

regions in Fig. 4.10(c) for the FR method by using a larger scaling parameter λ.
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However, in doing so we also blur the edges and the detail in the image. The MR

method does not suffer from this because the local scale parameters vary according

to the image characteristic selectively smoothing in the smooth regions and retaining

detail where there are sharp edges.

Figure 4.11 shows the ML estimates obtained for the global scale parameters

λk at resolutions k = 0, . . . , L − 1, using the EM algorithm. In order to speed up

the convergence, the EM algorithm at each resolution was initialized with the ML

estimate obtained at the previous resolution. Figure 4.12(a) and Figure 4.12(b) show

the corresponding plots for the 3D SPECT data and the synthetic emission data. Note

that the general trend is that the global scaling parameters decrease with increasing

resolution making the reconstructions smoother and more regularized.

4.5.2 Optical flow

In this section, we present experimental results on optical flow using synthetic

as well as real data to compare the performance between the homogeneous GGMRF

model and the multiresolution non-homogeneous GGMRF model. Since the data

model for optical flow is highly non-convex, fixed resolution methods usually tend

to get stuck in a local minimum. However, the non-homogeneous GGMRF model is

less prone to this problem since it is implemented in a multiresolution framework.

Therefore to make a fair comparison between the two models, we compute the re-

construction corresponding to the homogeneous GGMRF model in a multiresolution

framework as well. The only difference is that a single scale parameter is used in the

homogeneous case while the scale parameter is space-varying in the non-homogeneous

case. The interpolated image from the previous coarser resolution is used in both cases

to initialize the optimization at the next finer resolution.

Figure 4.13(a) shows the first and the third frame of a synthetic image sequence

used to compute the optical flow. Two dimensional separable sine waves with additive

white Gaussian noise are used to generate the images. The object is moving one pixel

per frame diagonally upwards to the left and the background is moving 1.5 pixels per
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frame diagonally downwards to the right. Figure 4.13(b) shows the true optical flow

for this sequence.

Figure 4.13(c) shows the motion vectors estimated using the homogeneous GGMRF

with p = 1.0 at the finest resolution. Figure 4.13(d) shows the corresponding esti-

mates using the non-homogeneous GGMRF with p = 1.0. The variance of the additive

Gaussian noise (σ2
n) is assumed to be unknown in both cases and is directly estimated

from the data along with the scale parameters for the image model. The reconstruc-

tions show clearly that the non-homogeneous field model preserves the discontinuity

in the flow field in a much better fashion than the homogeneous field model.

Figures 4.14(a-c) show frames 13, 14, and 15 from the salesman sequence used to

compute the optical flow. Figure 4.14(d) shows the average frame difference between

frames 13 and 14, and frames 14 and 15. The difference image highlights the areas

where motion is taking place. Figures 4.15(a-b) show the motion vector estimates

obtained at scale k = 2 for the salesman sequence for the non-homogeneous GGMRF

model (p = 1.0) and the homogeneous GGMRF model (p = 1.0) respectively. The

motion vectors are not scaled and represent the actual displacement. Again, the

variance of the noise, σ2
n, was assumed unknown and was estimated directly from the

images. Notice that the motion vectors for the left thumb of the salesman is more

accurately estimated in the non-homogeneous case than the homogeneous case as seen

from Fig. 4.15(a) and Fig. 4.15(b). The non-homogeneous model also yields a cleaner

estimate in the background where the motion vectors are zero than the homogeneous

model. Similar observations can be made from Fig. 4.16 and Fig. 4.17 which show the

motion vectors estimates for both the non-homogeneous case and the homogeneous

case at scale k = 1 and k = 0 respectively. Note that the motion vectors in Fig. 4.16

and Fig. 4.17 are scaled to fit the grid and do not represent the actual displacements.

4.6 Conclusion

We have formulated a novel non-homogeneous MRF image model using a mul-

tiresolution framework. The model is capable of adapting to the local behavior of
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the underlying image by employing space-varying scale parameters that are estimated

from the coarser resolution image. This variation in parameters allows edges, textures

and smooth regions of the image to be modeled differently. Moreover, the proposed

non-homogeneous MRF model and the multiresolution reconstruction algorithm for

emission and transmission tomography results in tractable convex optimization prob-

lems at all the resolutions. Consequently, the reconstructed image at the finest reso-

lution depends continuously on the data. We have demonstrated experimentally that

the multiresolution non-homogeneous GGMRF model is superior to the fixed resolu-

tion homogeneous GGMRF model in terms of quality of reconstruction and slightly

better in terms of computational efficiency.

The multiresolution framework, in addition to facilitating the estimation of the

local scale parameters, also yields a computationally efficient and robust algorithm

that estimates the unknown image at progressively finer resolutions in a recursive

manner. Consequently, other complex problems with highly non-linear data models

such as geophysical structure estimation from seismic data, inverse optical tomogra-

phy, and optical flow computation from a sequence of image could conceivably benefit

from the proposed algorithm since it is less likely to be trapped in a local minima.

Furthermore, the proposed non-homogeneous/multiresolution reconstruction strat-

egy is quite general since other more complex parameters can be estimated similarly.

For example, parameters can be estimated that represent directional properties of

local edges and textures. Perhaps spatially non-homogeneous values of the shape

parameter p can be estimated using the method suggested by Jeff and Pun [39].
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Fig. 4.5. Comparison of convergence rates for the FR and the MR method for the
flashlight data. The FR method is initialized using the CBP image while the MR
method is initialized at the coarsest resolution (k = 5) using the mean obtained

from the projections. The NRMSE is plotted with respect to the equivalent
iterations at scale 0 (Neq) so that the computational cost is comparable between

the FR and the MR method.
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Fig. 4.6. Comparison of convergence rates for the FR and the MR method for the
(a) 3D SPECT data and (b) synthetic emission data. The FR method is initialized
using the CBP image while the MR method is initialized at the coarsest resolution
(k = 4) using the mean obtained from the projections. The NRMSE is plotted with
respect to the equivalent iterations at scale 0 (Neq) so that the computational cost

is comparable between the FR and the MR method.
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(a) (b)

(c) (d)

(e)

Fig. 4.7. Images corresponding to real transmission data of a flashlight. (a)
“Ground truth”, (b) CBP image, reconstructions using (c) FR method with ML

estimate for global scaling parameter, (d) MR method with ML estimates of global
scaling parameters at all the resolutions, and (e) Local scale parameters estimated

at the finest resolution for the MR method. (Data courtesy of Trent Neel,
Wright-Patterson Air Force Base & Nicolas Dussausoy, Aracor.)
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(a) (b)

(c) (d)

Fig. 4.8. Blow-up of images corresponding to Fig. 4.7. (a) “Ground truth”, (b)
CBP image, reconstructions using (c) FR method, and (d) MR method.
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(a) (b)

(c) (d)

Fig. 4.9. Images corresponding to a single slice of the real 3D SPECT data for
cardiac perfusion imaging for a male patient. (a) CBP, (b) Local scale parameters
estimated at the finest resolution for the MR method, reconstructions using (c) FR
method with ML estimate for scale parameter, (d) MR method with ML estimates
of global scaling parameters at all the resolutions. (Data courtesy of Tin-Su Pan &

Michael A. King of the University of Massachusetts.)
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(a) (b)

(c) (d)

(e)

Fig. 4.10. Images corresponding to synthetic emission data of a head phantom. (a)
Original, (b) CBP image, reconstructions using (c) FR method with ML estimate
for global scaling parameter, (d) MR method with ML estimates of global scaling

parameters at all the resolutions, (e) Local scale parameters estimated at the finest
resolution for the MR method.
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Fig. 4.11. Global scaling parameter estimates at resolutions k = 0, . . . , L− 1,
obtained using the EM algorithm for the flashlight data. At any resolution, the EM
algorithm was initialized using the ML estimate of the global scaling parameter at

the previous resolution.
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Fig. 4.12. Global scaling parameter estimates at resolutions k = 0, . . . , L− 1,
obtained using the EM algorithm for (a) 3D SPECT data and (b) synthetic

emission data. At any resolution, the EM algorithm was initialized by using the ML
estimate of the global scaling parameter at the previous resolution.



- 80 -

(a) (b)

(c) (d)

Fig. 4.13. (a) Two consecutive frames from the synthetic data sequence corrupted
by Gaussian noise. (b) True motion vectors. The object has moved 1 pixel

diagonally upwards and the background has moved 1.5 pixels diagonally downwards.
Estimated motion vectors at scale k = 0 using the (c) homogeneous GGMRF model
and the (d) non-homogeneous GGMRF model with p = 1.0. Note both estimates
are obtained in a multiresolution framework where the coarse resolution image is
used as the initial condition for the next finer resolution. The noise variance σ2

n is
estimated directly from the data in both cases.
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(a) (b)

(c) (d)

Fig. 4.14. Frames (a) 13, (b) 14, and (c) 15 of the salesman sequence. (d) Shows
the average absolute difference between frames 13 and 14 and frames 14 and 15.
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(a)

(b)

Fig. 4.15. Comparison of estimated motion vectors at scale k = 2 using the (a)
non-homogeneous GGMRF model and the (b) homogeneous GGMRF model with
p = 1.0. Note both estimates are obtained in a multiresolution framework where the
coarse resolution image is used as the initial condition for the next finer resolution.

The noise variance σ2
n is estimated directly from the data in both cases.
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(a)

(b)

Fig. 4.16. Comparison of estimated motion vectors at scale k = 1 using the (a)
non-homogeneous GGMRF model and the (b) homogeneous GGMRF model with
p = 1.0. Note both estimates are obtained in a multiresolution framework where the
coarse resolution image is used as the initial condition for the next finer resolution.

The noise variance σ2
n is estimated directly from the data in both cases.
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(a)

(b)

Fig. 4.17. Comparison of estimated motion vectors at scale k = 0 using the (a)
non-homogeneous GGMRF model and the (b) homogeneous GGMRF model with
p = 1.0. Note both estimates are obtained in a multiresolution framework where the
coarse resolution image is used as the initial condition for the next finer resolution.

The noise variance σ2
n is estimated directly from the data in both cases.



- 85 -

5. IMAGE RECONSTRUCTION FROM
TIME-RESOLVED DIFFUSION DATA

5.1 Introduction

Medical optical tomography has generated considerable interest in recent times

[88]. The advantage of using infrared light as an imaging modality stems from the

fact that it is non-ionizing and hence can be used for continuous monitoring. More

importantly, it is capable of revealing the functioning of the tissues as opposed to

other standard imaging modalities that reflect only the static physical structure. A

final advantage is that optical imaging systems can be made portable, making them

useful in clinical situations such as surgery, trauma, and intensive care.

An accurate model for the propagation of photons through tissue can be obtained

from transport theory. There are two basic approaches using this theory: an essen-

tially discrete model of individual photon interactions, such as Monte-Carlo [89], or

a continuous model based on a differential equation approximation, such as the dif-

fusion equation. While the Monte-Carlo method is more generally applicable, it is

computationally expensive to implement. On the other hand, the diffusion approx-

imation is accurate for highly scattering media (which is the case for tissues) while

being computationally tractable. Therefore we will use the diffusion equation as our

data model.

The inverse problem of reconstructing the absorption and scattering coefficients

from diffuse measurements of light is highly nonlinear. To facilitate the computation

of the unknown coefficients, several approaches attempt to locally linearize the orig-

inal inverse problem. The linear perturbation model [90, 91, 92] is one such method

that employs a Taylor series approximation about a reference distribution for the
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unknown coefficients to obtain a set of linear equations. The associated weight ma-

trix is computed using Monte-Carlo simulations [93]. However, the utility of this

method is limited if we do not have a reference distribution that is close to the actual

distribution of the unknown coefficients. Alternatively, the Newton-Raphson (NR)

method employs a Taylor series expansion about the current estimate of the unknown

coefficients to obtain a more refined estimate. This procedure is then iterated until

convergence. The NR method has also been used with the Levenberg-Marquardt

procedure to control the nonlinearity of the underlying problem [94]. Other numer-

ical optimization methods that have been used include projection onto convex sets

(POCS) [90], simultaneous algebraic reconstruction technique (SART) [92], SART-

type algorithm, [95] and conjugate gradient descent (CGD) [93]. We will be using

a modified version of CGD for our optimization because of its superior convergence

properties. The modification involves replacing simple line searching with bent-line

searching to enforce the positivity constraint on the unknown coefficients.

The inverse problem is known to be ill-posed and some form of regularization is

necessary to make the solution well behaved. Toward this end, we formulate the in-

verse problem in the Bayesian framework and use the maximum a posteriori (MAP)

estimation criterion to compute the reconstruction. This approach enables us to

incorporate a priori knowledge of the unknown field through an image model to reg-

ularize the solution. The regularization methods that have previously been employed

include truncated singular-value decomposition, Tikhonov and constraint-based reg-

ularization that impose a penalty on the norm of the solution vector [94]. However,

none of these methods properly model edges that are normally present in the unknown

field for real objects, resulting in smooth reconstructions with blurred edges. An im-

portant contribution of the present work is the use of an edge-preserving generalized

Gaussian Markov random field (GGMRF) model [12] for the unknown field.

To compute the likelihood of the data, we need to solve the diffusion equation for-

ward in time. The finite element method (FEM) has been widely used for this purpose

[94, 96, 97]. However, we propose to do this by discretizing the diffusion equation
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using a finite-difference approach [98]. The discretization can be accomplished in a

number of ways since the spatial derivatives can be evaluated at the present (implicit)

or the past (explicit) time instance. In particular, we use an alternating-directions

method [99] that computes the spatial derivative implicitly for one spatial direction

and explicitly for the other spatial direction in the first half of the time step. In the

next half time step, the implicit and explicit directions are switched. This method

is known to be stable even for large time steps. Also, by virtue of the alternating-

directions, the resulting matrix that needs to be inverted in the forward computation

is tridiagonal. The inversion can therefore easily be done in O(N) time, where N is

the number of pixels in the unknown image.

Since we will use CGD to compute the MAP estimate, we require the gradient of

data likelihood with respect to the unknown field. The novelty of our approach lies

in the proposed method of this computation. We show that by working backward in

time, and using the discretized equations that are employed to compute the forward

solution, the gradient computation parallels the forward computation in complexity

and can be accomplished in O(N) time. This is in contrast to the computationally

intensive perturbation approach, which is widely used to compute the gradient, but

requires N forward computations and is therefore O(N2). The method we propose

is known as adjoint differentiation [100], which has been used to solve oceanographic

and other computationally intensive inverse problems.

We present experimental results using simulated data to show that the proposed

method results in superior quality reconstructions with substantial savings in com-

putation.

5.2 Diffusion Data Model

The propagation of light through a medium can be described using Maxwell’s

equations. However, for the optical tomography problem, the electromagnetic for-

mulation is not very useful due to the the intense scattering of photons in tissues.

An alternative formulation, also capable of accounting for the effects of scattering,
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is transport theory. Transport theory treats propagating photons as particles, which

is a valid simplification if the phases of the various contributions to the net scat-

tered field are uncorrelated. This condition is satisfied in almost all cases of thick

tissues illuminated by near infrared light. The governing equation describing the

migration of photons that experience elastic scattering is the one-speed radiation

transport equation [101, 102]. Under certain assumptions, the diffusion equation is a

good approximation to the transport equation [103]. The approximation holds when

the source is assumed to be isotropic and the medium has weak absorption. In this

work, we assume that the measured data can be accurately modeled by the diffusion

equation.

Let U(x, y, t) be the intensity of light and R(x, y, t) be the source strength at po-

sition (x, y) and time t. Let µa(x, y) and µs(x, y) denote the space-varying absorption

and scattering coefficients. Let D(x, y) denote the diffusion coefficient, given as

D(x, y) =
c

3[µa(x, y) + (1− g)µs(x, y)]
, (5.1)

where c is the speed of the light in the medium and g is the scattering anisotropy

parameter, equal to the average cosine of the scattering angle distribution1. Then the

diffusion equation is given as

∂U

∂t
=

∂

∂x
D
∂U

∂x
+

∂

∂y
D
∂U

∂y
− cµaU +R , (5.2)

where the spatial and temporal dependence of the parameters has been suppressed.

In this chapter, we parametrize the inverse problem in terms of D and µa. This is

equivalent to recovering µa and µs due to Eq. (5.1).

5.2.1 Notation

Let S denote the set of discrete lattice points and let s ∈ S denote the spatial po-

sition of a particular lattice point. In some instances we need to distinguish between

the two spatial directions. In this case we use the subscript (i, j) to denote the spatial

1µ′s = µs(1− g) is known as the effective scattering coefficient
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position. When the spatial position subscript is present, the resulting quantity is a

scalar with corresponding value at that spatial position (e.g. Us or Ui,j). When the

spatial position subscript is dropped, the resulting quantity is a column vector ob-

tained by either row-ordering or column-ordering the corresponding two-dimensional

field (e.g. U). We will use the superscript n to denote the discretized time index.

5.2.2 Measurement model

Let M denote the set of detector positions and T denote the set of time indices

when the measurements are recorded. Let Y denote the measurements of the diffuse

intensity U for all s ∈M and n ∈ T . In the interest of simplicity, we assume that the

measurements are corrupted by uncorrelated Gaussian noise. However, the method

we propose is not restricted to this choice. The log-likelihood of the observations Y

given D and µa is

logP (Y |D,µa) = −
∑
s∈M

1

2σ2
s

∑
n∈T

(Y n
s − U

n
s )2 , (5.3)

where σ2
s is the noise variance at spatial position s.

5.2.3 Computation of logP (Y |D,µa)

To compute the log-likelihood of the measurements Y given D and µa, we need

to solve the diffusion equation (5.2) forward in time to obtain the diffuse intensity

Un
s for all time n ∈ T and spatial positions s ∈ M. We propose to do this using a

finite-difference approach where the spatial and temporal derivatives in Eq. (5.2) are

replaced by their finite-difference approximations as follows

∂

∂x
D
∂U

∂x
≈

Di+1/2,j(Ui+1,j − Ui,j)−Di−1/2,j(Ui,j − Ui−1,j)

∆2

∆
= δx(Ui,j) (5.4)

∂

∂y
D
∂U

∂y
≈

Di,j+1/2(Ui,j+1 − Ui,j)−Di,j−1/2(Ui,j − Ui,j−1)

∆2

∆
= δy(Ui,j) (5.5)

∂U

∂t
≈

Un+1 − Un

∆t
, (5.6)



- 90 -

where ∆ = ∆x = ∆y is assumed for simplicity. The approximations are obtained by

simply differencing the second partial derivatives and centering each term appropri-

ately. In doing so, we require the interpolated value of D halfway between the grid

points. Linear interpolation is used to achieve this, i.e. Di+1/2,j = (Di,j +Di+1,j)/2.

By substituting the finite-difference approximations (5.4-5.6) in the diffusion equa-

tion (5.2), we obtain a difference equation that needs to be solved forward in time.

When solving the difference equation for Un+1, the finite-difference approximations

to the spatial derivatives (5.4,5.5) can be evaluated at time index n + 1 or n. The

three methods we discuss in the following sections differ in this choice of the time

index.

5.2.3.1 Explicit method

In this method, the spatial derivatives (5.4,5.5) are evaluated at the past time

instance n when computing the diffuse intensity Un+1. This is illustrated in Figure

5.1(a). Substituting Eqs. (5.4-5.6) in Eq. (5.2) and using time index n for the spatial

derivatives, we obtain

Un+1
i,j = (1− cµa∆t)U

n
i,j + δx(U

n
i,j)∆t+ δy(U

n
i,j)∆t+ (Rn+1

i,j +Rn
i,j)

∆t

2
. (5.7)

Rewriting the above equation in vector-matrix notation, we obtain the following for-

ward recursion

Un+1 = B Un + R̄n+1/2 , for n = 0, 1, . . . , T − 1, (5.8)

where Un+1 and Un are row-ordered column vectors, B is a sparse matrix with four off-

diagonal elements (corresponding to the vertical and horizontal neighbors of a pixel),

T denotes the total time for which measurements are recorded, and R̄n+1/2 denotes

the integrated source strength between time instances n and n+ 1. Using Eq. (5.8),

we can compute Un for any n by starting at n = 0 and moving forward in time.

Furthermore, since B is a sparse matrix, the forward computation is O(N), where N

is the total number of discretized spatial positions. However, the disadvantage of this
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simple method is that it becomes unstable when [99]

∆t >
∆2

4(maxs∈SDs)
.

This method is not very useful because it can dictate very small time steps in the

forward simulation.

5.2.3.2 Implicit method

In this method, the spatial derivatives (5.4,5.5) are evaluated at the present time

instance (n + 1) when computing the diffuse intensity Un+1. This is illustrated in

Figure 5.1(b). Substituting Eqs. (5.4-5.6) in Eq. (5.2) and using time index n+ 1 for

the spatial derivatives, we obtain

(1 + cµa∆t)U
n+1
i,j − δx(U

n+1
i,j )∆t− δy(U

n+1
i,j )∆t = Un

i,j + (Rn+1
i,j +Rn

i,j)
∆t

2
. (5.9)

Rewriting the above equation in vector-matrix notation, we obtain the following for-

ward recursion

AUn+1 = Un + R̄n+1/2 , for n = 0, 1, . . . , T − 1, (5.10)

where A is a sparse matrix having exactly the same structure as the B matrix in

Sect. 5.2.3.1. The advantage of this method is that it is unconditionally stable for any

value of ∆t. However, the computation of Un+1 from Un now requires the inversion of

matrix A, which is not trivial anymore in terms of computation. Multigrid relaxation

methods [104] can be employed to efficiently solve Eq. (5.10) but we prefer to use the

method described in the next section.

5.2.3.3 Alternating-directions implicit method (ADI)

In this method, the computation of Un+1 from Un is broken up in two time steps

[99]. In the first half time step, only the spatial derivative in one direction is evaluated

at the present time instance (implicit) and the other spatial derivative is evaluated

at the previous time instance (explicit). In the next half time step, the implicit and

explicit directions are switched. Figure 5.2 illustrates the switching of the implicit
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Fig. 5.1. Figure shows the time instance used to compute the finite-difference
approximation of the spatial derivatives for the (a) explicit method and the (b)

implicit method.

and explicit directions. The difference equations for the two half time steps are given

as

(1 + cµa
∆t

2
)U

n+1/2
i,j − δy(U

n+1/2
i,j )

∆t

2
= Un

i,j + δx(U
n
i,j)

∆t

2
+ (Rn+1

i,j +Rn
i,j)

∆t

4
(5.11)

(1+cµa
∆t

2
)Un+1

i,j −δx(U
n+1
i,j )

∆t

2
= U

n+1/2
i,j +δy(U

n+1/2
i,j )

∆t

2
+(Rn+1

i,j +Rn
i,j)

∆t

4
. (5.12)

Let R̄n+1/4 denote the integrated source strength between time instances n and n+1/2.

Then the difference Eqs. (5.11,5.12) for both halves of the time step can be compactly

represented in vector-matrix notation by the single forward recursion

AUn+1/2 = B Un + R̄n+1/4 , for n = 0, 1/2, . . . , T − 1/2, (5.13)

if we use row-ordering for U in Eq. (5.11), and column-ordering for U in Eq. (5.12).

By switching the ordering as shown in Fig. 5.2, we force the structure of matrices A

and B to remain the same while the absolute values differ for both halves of the time

step. However, for the sake of notational simplicity, we will not distinguish between

the two halves of each time step and use Eq. (5.13) to represent both of them.

To compute Un+1/2 from Un, we need to invert A. However, in this case A is

always tridiagonal due the spatial derivative being implicit only in one direction. The
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Fig. 5.2. Figure shows hows the implicit and explicit directions and the orderings
are switched between the two halves of a single time step.

inversion can therefore be done in O(N) computation. Furthermore, the method has

been found to be stable in practice [98]. For the rest of the chapter, we assume that

the ADI method will be used to do the forward computation.

5.2.4 Sensitivity computation

Let θ = [D µa]
T be the column vector of the unknown parameters D and µa.

Define

φ(θ)
∆
= logP (Y |θ) .

To facilitate the solution of the inverse problem, we require the derivative or sensitivity

of φ(θ) with respect to θ. The technique that we propose for this computation is

known as adjoint differentiation [100]. The method requires us to work backwards

in time using the same discretized equations that were used to compute the forward

solution in Sect. 5.2.3.3.

5.2.4.1 Sensitivity computation with respect to θ

The parameter θ is not a function of time n. However, to simplify the computation

of the sensitivity of φ with respect to θ, we assume that θ varies with n. Let θn denote

the parameter vector at time n. Then the sensitivity of φ with respect to θnr is obtained
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by applying the chain rule

dφ

dθnr
=
∑
s∈S

dφ

dU
n+1/2
s

dUn+1/2
s

dθnr
r = 1, . . . , 2N.

Rewriting the above equation in vector-matrix notation, we obtain

dφ

dθn
=

[
dUn+1/2

dθn

]T
dφ

dUn+1/2
, (5.14)

where
dUn+1/2

dθn
=

[
dUn+1/2

dθn1

dUn+1/2

dθn2
. . .

dUn+1/2

dθn2N

]
. (5.15)

Taking the derivative of Eq. (5.13) with respect to θnr , we obtain

dA

dθnr
Un+1/2 +A

dUn+1/2

dθnr
=
dB

dθnr
Un

dUn+1/2

dθnr
= A−1

Xr︷ ︸︸ ︷(
dB

dθnr
Un −

dA

dθnr
Un+1/2

)
. (5.16)

Using Eqs. (5.15) and (5.16), we obtain

dUn+1/2

dθ
= A−1[X1 X2 . . . X2N ] = A−1X . (5.17)

Substituting Eq. (5.17) in Eq. (5.14), we obtain

dφ

dθn
= XT (A−1)T

dφ

dUn+1/2
.

Finally, the total sensitivity of φ with respect to θ is obtained by setting θn = θ for

all n. Application of the chain rule then yields

dφ

dθ
=

∑
n

dφ

dθn
dθn

dθ

=
∑
n

XT (A−1)T
dφ

dUn+1/2
. (5.18)

This computation can be done in O(N) time since A is tridiagonal and X is a sparse

matrix. The next section deals with the computation of dφ
dUn

for all n required in

Eq. 5.18.
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5.2.4.2 Sensitivity computation with respect to U

The sensitivity of φ with respect to Un is obtained recursively by using the sensi-

tivity of φ with respect to Un+1/2. Application of the chain rule yields

dφ

dUn
s

=
∑
r∈S

dφ

dU
n+1/2
r

dUn+1/2
r

dUn
s

+
∂φ

∂Un
s

=

[
dUn+1/2

dUn
s

]T
dφ

dUn+1/2
+

∂φ

∂Un
s

for all s ∈ S, (5.19)

where ∂φ
∂Uns

denotes the change in φ when only Un
s is varied keeping all other variables

constant. Differentiating Eq. (5.3) with respect to Un
s , we obtain

∂φ

∂Un
s

=


1
σ2
s
(Y n

s − U
n
s ) s ∈M, n ∈ T

0 otherwise
.

Rewriting Eq. (5.19) in vector-matrix notation, we obtain

dφ

dUn
=

[
dUn+1/2

dUn

]T
dφ

dUn+1/2
+

∂φ

∂Un
, (5.20)

where the matrix dUn+1/2

dUn
is given as

dUn+1/2

dUn
=

[
dUn+1/2

dUn
s1

dUn+1/2

dUn
s2

. . .
dUn+1/2

dUn
sN

]
{s1, . . . , sN} ∈ S. (5.21)

Differentiating Eq. (5.13) with respect to Un
s , we obtain

dUn+1/2

dUn
s

= A−1B Is for all s ∈ S , (5.22)

where Is is column vector that is zero everywhere except at spatial point s, where

it is unity. Using Eqs. (5.22), (5.21) and (5.20), we obtain the sensitivity of φ with

respect to Un as
dφ

dUn
= BT (A−1)T

dφ

dUn+1/2
+

∂φ

∂Un
. (5.23)

Since A is tridiagonal and B is a sparse matrix with only two off-diagonal elements,

the above computation can be done in O(N) time.

By starting at the last time instance and using the recursion in Eq. (5.23), the

contribution at each time step can be accumulated using Eq. (5.18) to obtain the

complete sensitivity with respect to θ in O(N) time.
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5.3 Image Model

The problem of reconstructing the unknown parameters D and µa from the mea-

surements Y is an ill-posed inverse problem and some form of regularization is nec-

essary to make the solution well behaved. This is accomplished by incorporating an

image model in the reconstruction process, which models our a priori knowledge re-

garding the unknown fields D and µa. The following development is for D; however,

the development for µa follows the same pattern.

Markov random fields (MRF) have been extensively used in image processing

applications since they yield a rich class of models with relatively simple parameteri-

zation. With this in view, we model D as a MRF or, equivalently, a Gibbs distribution

with the following form

P (D) =


1

z(σD)
exp {−u(D/σD)} if D ≥ 0

0 otherwise
, (5.24)

where σD is the scale parameter of the model and z(·) is the normalizing constant

of the distribution known as the partition function. We impose a nonnegativity

constraint on D because negative values of D are physically meaningless. We restrict

the energy function u(·) to be of the form

u(
D

σD
) =

∑
{s,r}∈N

bs−rρ(
Ds −Dr

σD
) , (5.25)

where N is the set of all neighboring pixel pairs, and ρ(·) is the potential function

that assigns a cost to differences between neighboring pixel values.

A popular choice for ρ(·) in the signal-processing literature has been the quadratic

function

ρ(
∆

σ
) =

1

2

∣∣∣∣∆σ
∣∣∣∣2 .

This choice is similar to regularization methods that have been used earlier in optical

tomography that impose constraints on the derivatives of the solution to enforce

smoothness [94]. However, the quadratic cost function tends to excessively penalize
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large pixel differences resulting in blurred edges. This will be demonstrated in the

results section.

Alternatively, a host of edge-preserving potential functions have been suggested in

the literature [3, 10, 105, 12]. In particular, the generalized Gaussian MRF (GGMRF)

[12] uses the following potential function

ρ(∆, σ) =
1

p

∣∣∣∣∆σ
∣∣∣∣p . (5.26)

Note that when p = 2, the potential function is quadratic and the model reduces

to a Gaussian MRF (GMRF). The advantage of using the GGMRF as the image

model is two fold: first, it has been shown to provide good edge-preservation in

the reconstructed image[12] for p ≈ 1; second, the form of the model facilitates the

estimation of the scale parameter directly from the data as shown in Chapter 2.

Using Eqs. (5.24), (5.25), and (5.26), the log-likelihood of the image D is given as

logP (D) = −
1

pσpD

∑
{s,r}∈N

bs−r |Ds −Dr|
p . (5.27)

The derivative of the log-likelihood with respect to D is given as

d logP (D)

dDs

=
1

σp

∑
r∈Ns

sign(Dr −Ds)bs−r |Ds −Dr|
p−1 for all s ∈ S, (5.28)

where Ns is the neighborhood of pixel s. The model for the absorption coefficient can

be obtained by substituting σµa for σD and µa for D in Eqs. (5.27) and (5.28).

5.4 Reconstruction Criterion

We use the maximum a posteriori (MAP) estimation criterion to compute the

reconstructions of D and µa. The MAP estimate is defined as

[D̂, µ̂a] = arg max
[D,µa]≥0

logP (D,µa|Y ) .

Using Bayes rule in the above equation, we have

[D̂, µ̂a] = arg max
[D,µa]≥0

{logP (Y |D,µa) + logP (D) + logP (µa)} .
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Since we can compute the derivative of each of the terms in the cost function (as

shown in Sects. 5.2.4 and 5.3), we can use gradient-based methods to do the above

optimization. In particular, we use the conjugate gradient algorithm because of its

superior convergence properties. However, conventional CGD cannot be used directly

since it requires line searching that can violate the positivity constraint. We modify

the search procedure so that the estimate is projected back on the convex set [D µa] ≥

0 when searching for a minimum in a particular direction. This procedure is referred

to as bent-line searching.

5.5 Results

In this section, we study the performance of the proposed algorithm using simu-

lated data. Although the method developed in this chapter can be used to estimate D

and µa simultaneously, we will restrict ourselves to the simple case of just estimating

D and assume µa is known.

We will use a GGMRF with p = 1.1 as the image model since it results in good

edge-preservation. We will also show the reconstruction corresponding to p = 2.0

(GMRF) to compare the quality of our reconstruction to previously used constraint-

based regularization methods that use a quadratic penalty[94]. We use an 8 point

neighborhood for the MRF with bs−r = (2
√

2+4)−1 for nearest neighbors and bs−r =

(4
√

2 + 4)−1 for diagonal neighbors. Ideally, the scale parameter σD needs to be

estimated directly from the measurements Y before computing the unknown field D.

This unsupervised estimation of σD is a challenging problem in itself and is not within

the scope of this research. Therefore, for the purpose of this research, we will fix the

value of σD to the ML estimate (refer to Chapter 2) obtained from the original D,

which is known in our simulation examples.

The values of the absorption and scattering coefficients used in our examples have

been chosen to reflect those of real tissues. The physical dimensions have also been

chosen to reflect a real medical imaging set-up. Figure 5.3(a) shows the scattering

coefficients chosen for the simulation example on a 64x64 grid with 0.1 cm spatial
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separation between grid points. The absorption coefficients were set to 0.1 cm−1 over

the entire field. Figure 5.3(b) shows the diffusion coefficients computed from the

absorption and scattering coefficients using c = 22 cm/ns as the speed of light in

the medium. Figures 5.4(a-c) show the different source detector configurations that

we use for this example. The white dots mark the source positions and the black

dots mark the detector locations. The data are collected by turning on one source

at a time and making measurements at all the detector locations for all n ∈ T . The

data collected for each active source constitutes a single view of the object. Let the

data collected in view v be denoted as Y (v). Let φ(v) ∆
= logP (Y (v)|θ). Then the

total log-likelihood of the data for multiple views is given as φ
∆
=
∑
v φ

(v), where

each φ(v) is computed using the procedure described in Sect. 5.2.3.3. Similarly, the

total sensitivity of φ with respect to θ is given as dφ
dθ

=
∑
v
dφ(v)

dθ
, where each dφ(v)

dθ
is

computed using the procedure in Sect. 5.2.4.

Scattering Coefficients (cm−1) Diffusion Coefficients (cm2ns−1)

0
20

40
60 0

50

6

8

10

(a) (b)

Fig. 5.3. Figure shows the (a) scattering coefficients (µs) and (b) diffusion
coefficients (D) chosen for the simulation example. The absorption coefficients (µa)

was set to 0.1 cm−1 over the entire field.
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4 Sources 16 Sources 32 Sources

(a) (b) (c)

Fig. 5.4. Configurations used for the sources and detectors. 52 detectors are placed
on the periphery of the object with (a) 4 sources, (b) 16 sources, and (c) 32 sources.

Note that the sources in (a) are contained in (b), and the sources in (b) are
contained in (c).

Figure 5.5(a) shows the source distribution that we use for all the sources, which

is a single pulse. Figure 5.5(b) shows all the detector responses for a single view when

the SNR of the detectors is set at 30 dB. The simulation is done using ∆t = 0.005 ns

for a total time of T = 1 ns while the detector resolution is kept at 0.02 ns.

Figure 5.6 shows the MAP reconstructions of the diffusion coefficients using the

conjugate gradient algorithm when 16 sources are used. The algorithm was initialized

with a constant diffusion coefficient field with value 1.0 cm2ns−1. Figures 5.6(b) and

5.6(c) show the reconstructions corresponding to a GGMRF (p = 1.1) and a GMRF

(p = 2.0) respectively. Notice that the GGMRF reconstruction has sharp edges and is

a good reproduction of the original image considering the limited number of views. On

the other hand, the GMRF reconstruction has blurred edges and excessive residual

noise. Figure 5.7 shows the effect of using additional sources (views) in the MAP

reconstructions. A GGMRF prior with p = 1.1 is used and the detector SNR is set

at 30 dB. We see from Figs. 5.7(b) and 5.7(c) that there is considerable improvement

going from 4 sources to 16 sources. However, increasing the number of sources to 32
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Fig. 5.5. (a) Source distribution used is a single pulse. (b) Normalized
measurements obtained at all the detector positions with 30 dB SNR when one of

the sources is active. The normalizations was done by the standard deviation of the
noise present in each measurement.

does not yield any additional improvement as seen in Fig. 5.7(d). Figure 5.8 shows

the effect of noise in the detector responses in the MAP reconstructions. A GGMRF

prior with p = 1.1 is used and 4 sources are used. We see from Fig. 5.8(d) that when

the detector responses have 10 dB SNR, the two scatterers in the original image can

no longer be resolved.

5.6 Conclusion

The contribution of the research in this chapter has been threefold. First, the use

of a new alternating-directions implicit method to solve the forward diffusion problem

in O(N) time. Second, the use of adjoint differentiation to compute the sensitivity of

the measurements with respect to the unknown parameters. By working backwards in

time, and using the discretized equations that are employed to compute the forward

solution, we have shown that this can be done in O(N) time as opposed to O(N2) time

required by the perturbation approach. Third, an edge-preserving GGMRF model
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(a)

(b) (c)

Fig. 5.6. (a) Original diffusion coefficients. Reconstructed diffusion coefficients
when 16 sources are used for the GGMRF image model with (b) p = 1.1, and (c)
p = 2.0. Note that white in the images corresponds to 1.52 cm2ns−1 and black

corresponds to 0.55 cm2ns−1.

has been employed and shown to be superior to the standard quadratic regularization

method, which results in blurred edges and excess residual noise.

Moreover, the proposed method of solving the inverse problem is very general and

can be applied to complex problems such as geophysical structure estimation from

seismic data and ocean surface reconstruction using sonar. The only requirement for

the applicability of the proposed method is that the measurements for the process

in question be adequately described by a predictive forward computational model.
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(a) (b)

(c) (d)

Fig. 5.7. (a) Original diffusion coefficients. Reconstructed diffusion coefficients
when the prior model is a GGMRF p = 1.1 and the number of sources are (b) 4, (c)

16, and (d) 32. Note that white in the images corresponds to 1.52 cm2ns−1 and
black corresponds to 0.55 cm2ns−1.

It can also be used to optimize engineering designs in complex situations such as

streamlining of airplane foils and automobile bodies to reduce drag.

Future research should focus on multiresolution strategies for computing the MAP

estimate, employing multiscale image models proposed in Chapter 4 as opposed to

fixed-resolution image models to describe the unknown image, and unsupervised

methods for optimal estimation of image and data model parameters.
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(a) (b)

(c) (d)

Fig. 5.8. (a) Original diffusion coefficients. Reconstructed diffusion coefficients
when the prior model is a GGMRF p = 1.1, the number of sources are 4, and the
detector SNR is (b) 30dB, (c) 20dB, and (d) 10dB. Note that white in the images

corresponds to 1.52 cm2ns−1 and black corresponds to 0.55 cm2ns−1.
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APPENDIX A: ML ESTIMATE OF DOSAGE

In this appendix, we derive the ML estimate of the dosage parameter yT . For the

following development, we assume our observations are the random integral projection

measurements {Zi = ln(yT
Yi

)}. Consider the log-likelihood function of z in terms

of the unknown dosage parameter yT . Let the i-th actual discretized projection

measurement across X be z̃i = Ai∗x. Note that Yi are Poisson distributed with mean

and variance yTe
−z̃i . Then from transformation of the Poisson distribution in (2.24),

we have

P(z|x) =
M∏
i=1

exp
{
−yT e−z̃i

} (
yT e

−z̃i
)(yT e−zi)

(yTe−zi)!
(A.1)

for values of zi corresponding to positive integer values of yi and M denotes the

number of projections. Stirling’s formula provides a simplifying approximation for the

factorial, which is relatively accurate for numbers in the typical range of transmission

photon counts [106]:

(
yT e

−zi
)
! ≈

(
2πyT e

−zi
) 1

2
(
yT e

−zi
)yT e−zi

exp
{
−yT e

−zi
}
. (A.2)

Substituting (A.2) into (A.1) and taking the logarithm we obtain

logP(z|x) =
M∑
i=1

{
yT
(
e−zi − e−Ai∗x

)
+ yTe

−zi (zi −Ai∗x)−
1

2
log

(
2πyTe

−zi
)}

.

(A.3)

When x is known, the ML estimate of yT can be obtained by differentiating (A.3)

with respect to yT and setting the result to zero.

ŷT =
M

2
∑M
i=1 [e−zi − e−Ai∗x + e−zi(zi −Ai∗x)]

(A.4)
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When x is unknown, the EM algorithm is used to compute the estimate. The update

equation is obtained from (2.17) as

yT k+1 = arg max
yT

E[logPyT (z|X)|Z = z, yT k, σk, pk] . (A.5)

By substituting (A.3) into (A.5) and then maximizing with respect to yT , we can

obtain the update equation for yT as

yT k+1 =
M

2
∑M
i=1

[
e−zi − E [e−Ai∗X | Z = z, σk, pk, yT k] + e−zi(zi −Ai∗X̄)

] , (A.6)

where

X̄ = E [X | Z = z, σk, pk, yT k]

is the expected value of X given the projections and the model parameters at iteration

k. The update equation (A.6) is exactly the same as (A.4) with the functions of

unknown x replaced by their posterior expectations.
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APPENDIX B: ML ESTIMATE OF THE SCALING
PARAMETER λK

In this appendix, we outline the derivation of the update equations to compute the

conditional ML estimate of λk defined in (4.27) and (4.28) using the EM algorithm.

The EM algorithm [14, 15] hypothesizes the existence of a set of complete data from

which ML estimation would be feasible, then attempts to iteratively maximize over

the expectation of the complete data. In this case, the complete data at any scale k

consists of the observations y(l), the SMAP estimate x̂(k+1), and the unknown image

x(k). The iterative set of update equations that results from the EM algorithm is

given as

λ̂L(t+ 1) = arg max
λL

E
[
logP (X(L)|λL)|y

(l), λ̂L(t)
]

(B.1)

λ̂k(t+ 1) = arg max
λk

E
[
logP (X(k)|x̂(k+1), λk)|y

(l), x̂(k+1), λ̂k(t)
]
k 6= L, (B.2)

where t denotes the discrete iteration index.

The log-likelihood of the image model at scale k = L, with explicit dependence of

the partition function on the scale parameter (refer to Section 2.2.1), is given as

logP (x(L)|λL) =
−1

pλpL

∑
{i,j}∈N

bi−j
∣∣∣x(L)
i − x

(L)
j

∣∣∣p −NL log λL + C , (B.3)

where NL is the number of pixels at scale k = L and C is used to denote a constant

independent of x(L) and λL. For scales k 6= L, the log-likelihood of the image model

is given as

logP (x(k)|x(k+1), λk) =
−1

pλpk

∑
{i,j}∈N

bi−j
σ̂pij(x

(k+1))

∣∣∣x(k)
i − x

(k)
j

∣∣∣p −Nk log λk + C , (B.4)

where Nk is the number of pixels at scale k and C is used to denote a constant

independent of x(k+1) and λk. Substituting (B.3) and (B.4) into (B.1) and (B.2), we
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obtain for k = L

λ̂L(t+ 1) = arg max
λL

 −1

pλpL

∑
{i,j}∈N

bi−j E
[∣∣∣X(L)

i −X(L)
j

∣∣∣p |y(l), λ̂L(t)
]
−NL log λL

 ,
and for k 6= L

λ̂k(t+ 1) =

arg max
λk

−1

pλpk

∑
{i,j}∈N

bi−j
σ̂pij(x̂

(k+1))
E
[∣∣∣X(k)

i −X
(k)
j

∣∣∣p |y(l), x̂(k+1), λ̂k(t)
]
−Nk logλk

 .
Maximizing the above set of equations with respect to λk yields (4.29) and (4.30).


