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ABSTRACT

Frese, Thomas. Ph.D., Purdue University, May, 2001. Multiresolution Image Mod-
eling and Bayesian Reconstruction Algorithms With Applications to Emission To-
mography. Major Professor: Charles A. Bouman.

Presented in this thesis are multiresolution image models and Bayesian algorithms

for statistical image reconstruction. The proposed methods are generally applicable

to inverse problems in image processing, however, the focus of this work is the

application to tomographic imaging.

Chapter two presents a wavelet graph image model designed to perform space-

adaptive regularization. The model is based on a novel hierarchical dependency

structure in the wavelet tree. An efficient multiresolution Bayesian reconstruction

algorithm is proposed that allows for enforcement of space-domain constraints such as

positivity despite using a wavelet prior model. Chapter three presents a comparison

of Bayesian algorithms for tomographic reconstruction with emphasis on accurately

modeling the tomography scanner. Included in this work is a new approach to ob-

taining an empirical model of the tomography scanner’s system kernel. Chapter four

presents a Bayesian multiresolution framework for discrete-valued image reconstruc-

tion in transmission and emission tomography. The approach includes a new method

for efficient and accurate estimation of the discrete levels in the reconstruction image.

Chapter five addresses the problem of image modeling for content-based database

search and presents a subject study on human perception of the similarity of images.
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1. INTRODUCTION

My research over the last four years was largely concerned with statistical image

models and their application to Bayesian tomographic reconstruction. In general,

I have found statistical modeling and multiresolution techniques to provide an ex-

tremely flexible framework with significant potential for improving image quality.

An important lesson learned was, that the most significant gains in image quality

could be realized by working with a specific physical data acquisition system and

modeling its imperfections and hardware characteristics. However, I also found that

once an accurate model of the physical system was used, large additional perfor-

mance improvements were possible by improving the statistical assumptions such as

the prior model used for Bayesian reconstruction.

Chapter 2 of this thesis presents a nonlinear wavelet prior model designed to

perform space-adaptive regularization. The basic idea of this hierarchical model is

to exploit inter-scale dependencies of wavelet coefficients in order to locally adapt

the regularization to the image characteristics. This allows for strong regularization

of uniform image regions, while textures and sharp edges are preserved. Critical

contributions in this work are a new wavelet dependency structure, called the wavelet

graph model, and a multiresolution optimization algorithm for wavelet priors that

can enforce positivity in the space-domain. Relating to the work in this chapter,

Appendix A.6 presents a literature review on existing multiresolution image models.

Chapter 3 presents a quantitative comparison of Bayesian and non-Bayesian re-

construction algorithms for tomography. The comparison is based on data acquired

from a specific positron emission tomography system, the IndyPET scanner. In ad-

dition to comparing different reconstruction algorithms, this work emphasizes the

accurate modeling of the scanning system. In contrast to previous approaches that
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largely rely on analytical modeling of detector properties, I have developed an em-

pirical model of the scanner’s system function based on scans of line sources. Re-

construction quality is compared for the empirical system function and a simple,

analytical model.

Chapter 4 presents a Bayesian multiresolution framework for discrete-valued to-

mographic reconstruction. Importantly, the approach includes a new method for

estimating the discrete levels in the data. The multiresolution algorithm presented

in this work is shown to be faster and more robust as compared to a fixed resolution

version.

Chapter 5 presents research on a very different aspect of image modeling, human

image similarity perception. Modeling of human similarity perception is required for

developing algorithms for content-based image database search. Presented here is

a human subject study that is aimed at identifying the most salient dimensions of

human image similarity discrimination.
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2. ADAPTIVE WAVELET GRAPH MODEL FOR

BAYESIAN TOMOGRAPHIC RECONSTRUCTION

Abstract

We introduce an adaptive wavelet graph image model applicable to Bayesian

tomographic reconstruction and other problems with non-local data models. The

proposed model captures coarse-to-fine scale dependencies in the wavelet tree by

modeling the conditional distribution of wavelet coefficients given overlapping win-

dows of scaling coefficients containing coarse scale information. This results in a

graph dependency structure which is more general than a quadtree, enabling the

model to produce smooth estimates even for simple wavelet bases such as the Haar

basis. The interscale dependencies of the wavelet graph model are specified using

a spatially non-homogeneous Gaussian distribution with parameters at each scale

and location. The parameters of this distribution are selected adaptively using non-

linear classification of coarse scale data. The nonlinear adaptation mechanism is

based on a set of training images. In conjunction with the wavelet graph model, we

present a computationally efficient multiresolution image reconstruction algorithm.

This algorithm is based on iterative Bayesian space-domain optimization using scale

recursive updates of the wavelet graph prior model. In comparison to performing

the optimization over the wavelet coefficients, the space-domain formulation facili-

tates enforcement of pixel positivity constraints. Results indicate that the proposed

framework can improve reconstruction quality over fixed resolution Bayesian meth-

ods.
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2.1 Introduction

A major challenge for Bayesian image reconstruction methods is the design of

image models that accurately account for edges as well as uniform and textured

regions in images, yet result in tractable estimation algorithms. In comparison to

Markov random field (MRF) models, multiresolution methods can improve image

modeling and increase computational efficiency. However, little work has been done

on applying the multiresolution framework to Bayesian tomographic reconstruction

and other problems with non-local data models. In addition, a well known problem

with many multiresolution models is that the resulting estimates exhibit blockiness

which is usually a result of the quadtree structure of the model. In this work, we

address these issues by introducing an adaptive wavelet graph prior model. The inter-

scale dependencies of this model are not limited to a quadtree structure, resulting in

smooth estimates even for simple wavelet bases such as the Haar basis. In conjunction

with this prior model, we propose a fast, iterative multiresolution reconstruction

algorithm that can incorporate space domain constraints such as positivity, and

thus, is applicable to Bayesian tomographic reconstruction.

Markov random field prior models [1, 2, 3] have enjoyed considerable success

in Bayesian image reconstruction[4] and restoration[1]. However, MRF approaches

are typically limited to modeling very local interactions in images. Furthermore,

accounting for both edges and uniform image regions is difficult within the MRF

framework. To avoid this problem, several MRF models have been proposed that

provide good edge preservation without explicitly modeling edges[5, 6, 7, 8, 9, 10, 11].

In comparison to MRF priors, multiresolution models can improve modeling and

offer fast estimation algorithms[12, 13, 14, 15, 16, 17]. Multiresolution models better

account for long range interactions and are more practical with respect to treating

edges, smooth and textured regions differently. Furthermore, multiresolution models

are suitable for very efficient and robust estimation algorithms.

In recent years, multiresolution techniques have been developed which use linear

system models on trees[18, 12, 13, 14, 19, 20, 21, 22, 23]. Nonlinear extensions
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of these models have been applied to image restoration with both Gaussian and

Poisson noise[24, 16, 17, 25, 26]. Other methods have been developed for image

segmentation[27, 28, 29, 30].

Most of the existing work on multiresolution models has focused on applications

where the observations are spatially localized. Typically, the observations are as-

sumed to be conditionally independent given the local state of the model[18, 12, 20,

21, 16, 17]. For this class of problems, the application of multiresolution models de-

fined on quadtrees is very appealing because it leads to non-iterative, scale-recursive

estimation and realization algorithms.

Little work, however, has been done on applying multiresolution Bayesian estima-

tion to problems with non-local observations as encountered in tomographic recon-

struction. In the case of tomographic reconstruction, application of multiresolution

models is further complicated by the need to enforce pixel positivity constraints.

This poses a problem for wavelet based multiresolution approaches, since it is diffi-

cult to enforce pixel positivity when the reconstruction optimization is performed in

the wavelet domain.

As a result, few attempts have been made to use multiresolution models for it-

erative Bayesian tomographic reconstruction. In [31], Wu, Herman, and Browne

used a wavelet domain prior model for MAP reconstruction of tomographic data.

The prior used in this method is a space-variant simultaneous autoregressive (SAR)

model whose coefficients are extracted using anisotropic diffusion. Nowak and Ko-

laczyk [25, 26] have proposed a tomographic reconstruction technique using a wavelet

prior model. Their approach uses the expectation maximization (EM) algorithm to

decouple the estimation problem from the linear projection transformation of the

observations [6]. The quadtree structure of their prior model allows for closed-form

EM updates, however, since the overall EM technique remains iterative, the compu-

tational benefit of using a quadtree model is less clear. For the Poisson case, their

approach is limited to the Haar wavelet basis. Saquib, Bouman, and Sauer proposed

a prior model for tomography that used a multiresolution pyramid representation[32].
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However, a disadvantage of this pyramid representation is that different scales con-

tain redundant information. This makes formulation of a consistent Bayesian model

difficult.

A general problem for multiresolution models formulated on quadtrees is blocki-

ness of the resulting estimates. In quadtree models, nodes that are spatially adjacent

can be far apart in the tree so that their correlation is poorly modeled. This results

in blocky estimates as observed in [20, 33, 34, 28, 35, 36, 21]. A popular fix is to aver-

age multiple estimates obtained for different spatial alignments of the tree or wavelet

basis[37, 33, 36]. More elegant approaches have used trees with nodes corresponding

to overlapping portions of the image domain[35] or have performed state augmen-

tation to model the dependencies of general wavelet bases from within a quadtree

structure[23]. These approaches have in common that their data representation is

highly overcomplete. This overcomplete representation can make accurate modeling

of sampled data difficult.

A more direct way to avoid blockiness is to use a dependency structure that is

more general than the quadtree. For image segmentation, Bouman and Shapiro[28]

have used a pyramidal graph where each node depends on a fixed size window at the

next coarser scale. Kato, Berthod and Zerubia [27, 38] proposed a fully 3-D MRF

where each node’s neighborhood consists of adjacent nodes at the same scale and

its quadtree parent. A disadvantage of violating the tree constraint is that Bayesian

reconstruction must be performed iteratively as compared to the recursive algorithms

available for quadtree models. For applications such as tomographic reconstruction

this is not a limitation since the forward model requires iterative optimization in any

case.

In this work, we develop a stochastic multiresolution framework for Bayesian

image reconstruction involving data models with spatially non-local measurements.

We propose a wavelet graph prior model in combination with a computationally

efficient multiresolution reconstruction algorithm applicable to iterative tomographic

reconstruction.
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The basic concept of the proposed wavelet graph model is to exploit dependencies

of wavelet coefficients across scales. We capture these dependencies by modeling the

wavelet coefficients at each scale and location as a function of a window of scaling

coefficients at the same scale. This structure has several important implications:

First, by conditioning the wavelet coefficients on overlapping windows of scaling

coefficients, the model dependencies are not limited to a quadtree structure. This

reduces blockiness, enabling the model to produce smooth estimates even for simple

wavelet bases such as the Haar basis. Secondly, the structure is such that the optimal

wavelet graph model for a stationary process is homogeneous at each scale, resulting

in a substantial reduction in the number of model parameters. Finally, the model is

causal in scale, not overcomplete, and each wavelet coefficient is a function of only

a few scaling coefficients. The model is not suitable for non-iterative scale-recursive

optimization; however, due to the causality in scale and the spatially localized depen-

dencies, the model allows for very efficient iterative optimization using scale recursive

updates.

The wavelet graph model is specified through the conditional distributions of the

wavelet coefficients given the window of scaling coefficients. We model these dis-

tributions using a spatially non-homogeneous Gaussian model with image-adaptive

parameters. As compared to a fully nonlinear model, the Gaussian model is suitable

for global optimization in a Bayesian framework while the adaptation allows the

model to account for non-linear dependencies. The parameter adaptation is based

on nonlinear classification of coarse scale data. The classifiers and class parameters

used for the adaptation are obtained using training data. The training procedure

allows the overall model to incorporate characteristics of typical reconstructions as

prior information.

In conjunction with the wavelet graph model, we propose a fast multiresolution

reconstruction algorithm applicable to Bayesian tomographic reconstruction. This

reconstruction algorithm computes a sequence of Bayesian MAP estimates. Each

estimate in the sequence is computed with fixed adaptation of the wavelet graph
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Fig. 2.1. Wavelet decomposition in 1-D for L = 4 resolution levels. The wavelet
transform of the original image x(0) = x is given by z = (z(1), · · · , z(L), x(L)).

model. After computing each estimate, the parameters of the wavelet graph model

are re-adapted. The MAP estimates are computed in the space-domain using scale-

recursive updates of the multiresolution model. The space domain formulation of

the optimization is essential for application of our model to tomographic reconstruc-

tion. Since the optimization is performed over the scaling coefficients, positivity

constraints are easily enforced.

The rest of this chapter is organized as follows: Section 2.2 introduces the image

model and develops the overall structure of the multiresolution reconstruction algo-

rithm. Following in Section 2.2.3, we discuss in detail the space-domain optimization

algorithm to compute the MAP estimates. Section 2.2.4 describes our implementa-

tion of the nonlinear classifiers used for the adaptation of the multiresolution prior.

In Section 2.3, we apply the proposed model to tomographic reconstruction. Exper-

imental results for simulated tomography data are presented in Section 2.4.
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2.2 Image Model and Multiresolution Reconstruction Algorithm

2.2.1 Wavelet Graph Model

In order to define the notation for the wavelet decomposition, consider the one-

dimensional case. Let x be the N -dimensional vector of the image pixel values in

raster order and let xs denote the pixel value at location s. We now consider the

class of wavelet decompositions that can be computed using the recursions

x(n+1)
s =

∑
k

hk−2sx
(n)
k (2.1)

z(n+1)
s =

∑
k

gk−2sx
(n)
k (2.2)

where h is the analysis lowpass and g is the analysis highpass filter. We assume both

h and g to have compact support. In this notation, x(n)
s denotes the scaling coefficient

and z(n)
s the wavelet or detail coefficient at scale n and location s. We denote the

finest scale as n = 0 such that x(0) = x. An illustration of this decomposition is

shown in Fig. 2.1.

In the following, we will assume an L resolution wavelet decomposition. The

non-overcomplete wavelet transform of x is then specified by the wavelet coefficients

z(1) . . . z(L) and the coarsest scale scaling coefficients x(L). Using matrix notation,

the L resolution wavelet transform of x can be written as

z
4
=




z(1)

...

z(L)

x(L)




= Wx (2.3)

where W denotes the wavelet transform matrix, and z includes the coarsest scaling

coefficients x(L).

The basic concept of our image model is to exploit the dependencies of the

wavelet coefficients across scales. To formulate the approach, we write the dis-

tribution log pz(z) in terms of the conditional distribution at each scale given the
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information at all coarser scales.

log pz(z) = log px(L)(x(L)) +
L∑

n=1

log pz(n)|z(n+1),...,z(L),x(L)(z(n)|z(n+1), . . . , z(L), x(L))

(2.4)

Since the scaling coefficients x(n) contain exactly the same information as

z(n+1), . . . , z(L), x(L) , we may rewrite (2.4) as

log pz(z) = log px(L)(x(L)) +
L∑

n=1

log pz(n)|x(n)(z(n)|x(n)) (2.5)

where x(n) is a function of z(n+1), . . . , z(L), x(L). The distribution assumption for

x(L) is typically not important due to the high signal-to-noise ratio at the coarsest

resolution. Therefore, we assume that x(L) is uniformly distributed. Thus, we can

write

log pz(z) =
L∑

n=1

log pz(n)|x(n)(z(n)|x(n)) + const . (2.6)

To obtain a practical model, we assume the wavelet coefficients at different loca-

tions to be conditionally independent given the scaling coefficients at the same scale.

Furthermore, we assume the wavelet coefficients at each location only to depend on

a small window of scaling coefficients. Let s denote a spatial location at a given

scale n such that z(n)
s is the vector of the wavelet coefficients at location s. For the

2-D case, z(n)
s has three components corresponding to the high-low, low-high, and

high-high coefficients of a separable wavelet decomposition. We then define ∂s as a

window with compact support centered at position s with circular boundary condi-

tions. Then x
(n)
∂s is the set of scaling coefficients within the window ∂s at resolution

n. Further, let S(n) denote the set of all locations s of the wavelet decomposition

at scale n. Using this notation, our assumptions are that the z(n)
s are conditionally

independent and that z(n)
s depends only on x

(n)
∂s . Applying these assumptions to (2.6)

results in the model

log pz(z) =
L∑

n=1

∑
s∈S(n)

log p
z
(n)
s |x(n)

∂s

(z(n)
s |x(n)

∂s ) + const . (2.7)

We will call any model of the form (2.7) a wavelet graph model. Figure 2.2 illustrates
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Fig. 2.2. Spatial dependencies for the 1-D case. Using a prediction window
∂s = {s − 1, s, s + 1}, each wavelet coefficient z(n)

s depends on the three scaling

coefficients {x(n)
s−1, x

(n)
s , x

(n)
s+1}. Notice that the scaling coefficients x(n) contain all the
information at coarser scales l > n.

the spatial dependencies of the model (2.7) for the case of a one dimensional signal

and a three point window ∂s = {s − 1, s, s + 1}. In this case, the conditional distri-

bution of z(n)
s depends only on the three scaling coefficients x

(n)
∂s = {x(n)

s−1, x
(n)
s , x

(n)
s+1}.

An important advantage of the structure (2.7) is that the optimal wavelet graph

model for a stationary process is homogeneous. By homogeneous, we mean that

log p
z
(n)
s |x(n)

∂s

(z(n)
s |x(n)

∂s ) = fn(z(n)
s , x

(n)
∂s ) for some functions fn that do not depend on s.

The following theorem, proven in Appendix A.7, makes the statement above precise:

Theorem 1 Let {X(0)
s }2N−1

s=0 be a 1-D discrete-time random process that is circularly

stationary, i.e. X(0)
s and Vs = X

(0)
(s−k)mod2N have the same distribution. Let X(n)

s and

Z(n)
s for 1 ≤ n ≤ L be the wavelet decomposition of X(0)

s as specified by (2.1) and

(2.2) using circular boundary conditions and let log pz(z) be a wavelet graph model

of the form (2.7) with

log p
z
(n)
s |x(n)

∂s

(z(n)
s |x(n)

∂s ) = fn(z(n)
s , x

(n)
∂s , ν(n)

s )

where the ν(n)
s are parameters of the model. Assume there exists a unique minimizer
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of the Kullback-Leibler distance

ν∗ = arg max
ν

E[log pz(Z)] . (2.8)

Then, (ν(n)
s )∗ is not a function of s, implying a homogeneous wavelet graph model

log pz(z).

The property stated in this theorem greatly simplifies parameter estimation since we

only need to estimate a single set of parameters at each scale. In general, this would

not be the case if we conditioned the inter-scale dependencies on wavelet coefficients

instead of the window of scaling coefficients. This homogeneity property is very

important since it dramatically reduces the number of free parameters in the model,

thereby allowing practical model estimation from sampled data. In section 2.2.4, we

will use this property to justify the design of a single nonlinear classifier for each

scale.

We first consider the case of a spatially non-homogeneous Gaussian model. In

this case, the conditional distributions log p
z
(n)
s |x(n)

∂s

(z(n)
s |x(n)

∂s ) must be of the form

log p
z
(n)
s |x(n)

∂s

(z(n)
s |x(n)

∂s ) = −1

2
‖z(n)

s − A(n)
s x

(n)
∂s − σnb

(n)
s ‖2

σ−2
n B

(n)
s

+ const (2.9)

where A(n)
s is a matrix, b(n)

s is a column vector, B(n)
s is a positive definite matrix, σn

is a scaling constant, and ‖ · ‖B denotes the norm such that ‖ε‖2
B = εtBε. We note

that for this model, the conditional mean of z(n)
s is an affine function of x

(n)
∂s given

by

µ(n)
s

4
= A(n)

s x
(n)
∂s + σnb

(n)
s , (2.10)

and when σ2
n = 1, the conditional covariance of z(n)

s is given by R(n)
s

4
= (B(n)

s )−1.

Consequently, the model is parameterized by A(n)
s , b(n)

s , B(n)
s and a global scaling

constant σn for each scale n. The scaling constants σn will play an important role

later by allowing us to use the same adaptation mechanism for different amplitude

scalings of the image x. Assuming the wavelet transform W is orthonormal, then

det W = 1, and we may express log px(x) as

log px(x) = log pz(Wx) (2.11)
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= −1

2

L∑
n=1

∑
s∈S(n)

‖z(n)
s − A(n)

s x
(n)
∂s − σnb

(n)
s ‖2

σ−2
n B

(n)
s

+ const (2.12)

where z(n)
s = (Wx)(n)

s . The model (2.12) is used as the prior distribution for the

Bayesian reconstruction of x = x(0).

In order to formulate a multiresolution reconstruction algorithm, we also want to

directly calculate coarse scale reconstructions using the prior model only for coeffi-

cients at scales coarser than the reconstruction scale. Thus, we define a coarse scale

prior model for the direct reconstruction of the scaling coefficients x(l) at scale l as

log px(l)(x(l)) = log pz(l+1),...,z(L),x(L)(z(l+1), . . . , z(L), x(L)) (2.13)

= −1

2

L∑
n=l+1

∑
s∈S(n)

‖z(n)
s − A(n)

s x
(n)
∂s − σnb(n)

s ‖2

σ−2
n B

(n)
s

+ const .(2.14)

Given noisy measurements y and a physical data model log py|x(y|x), we obtain

the data model log py|x(l)(y|x(l)) at scale l as

log py|x(l)(y|x(l)) = log py|x(y|I0
l x

(l)) (2.15)

where In
l denotes the interpolation from scale l to scale n. The interpolation I0

l x
(l)

is obtained as the wavelet reconstruction of x(l) assuming that z(n) = 0 for 1 ≤ n ≤ l.

Based on (2.14) and (2.15), the Bayesian MAP estimate x̂(l) of the scaling coef-

ficients x(l) at scale l is the solution to the optimization problem

x̂(l) = arg max
x(l)≥0

{log py|x(l)(y|x(l)) + log px(l)(x(l))} . (2.16)

We have included the positivity constraint x(l) ≥ 0 since it is important for tomo-

graphic reconstruction. Note that for the special case l = 0, expression (2.16) is the

standard MAP equation for the image x.

2.2.2 Spatially Adaptive Multiscale Reconstruction

We use a multiresolution algorithm to perform the image reconstruction and to

adaptively select the parameters of the linear model. As illustrated in Fig. 2.3, the

basic concept of the multiresolution algorithm is to compute a sequence of Bayesian
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MAP estimates from coarse to fine scale. The algorithm starts with the reconstruc-

tion of the scaling coefficients x(L) at the coarsest scale L and then successively

performs the reconstructions at the finer scales l = L − 1, . . . , 0. At each step in

this sequence, the current reconstruction is used to initialize the model parameters

at the next finer scale and to re-adapt the parameters at the coarser scales. Let θ(l)
s

denote the vector of model parameters at location s and scale l

θ(l)
s = [A(l)

s , b(l)
s , B(l)

s ] . (2.17)

After computing the MAP reconstruction x̂(l) at scale l, we update all the parameters

θ(n)
s for n ≥ l. These new parameters are then used to reconstruct x(l−1) at the next

finer scale.

We update the parameters θ(n)
s using a nonlinear classification method derived

from recent work in image interpolation[39]. More specifically, we update θ(n)
s by

applying the nonlinear operator T (n)[·] to the window of scaling coefficients x̂
(n)
∂s .

θ(n)
s ← T (n)


 x̂

(n)
∂s

σn


 (2.18)

Note that based on Theorem 1, we can use a single T (n)[·] for all locations s at scale

n. The normalization by σn in (2.18) is included to account for possible scaling of

the image x(n). To obtain a robust estimate, we compute the 10% trimmed mean[40]

of x̂(n) over the approximate support of the active image region.

σn ← AV Gtrim10%[x̂(n)] (2.19)

The nonlinear operators T (n)[·] are obtained during a training phase. The structure

of the T (n)[·] and the training procedure are explained in section 2.2.4.

The coarse-to-fine scale multiresolution reconstruction algorithm is summarized

in Fig. 2.4. Note that the final fine scale reconstruction produced by this algorithm

is not a conventional MAP estimate. Rather, it is a MAP estimate with respect to a

data dependent prior. This prior is the spatially non-homogeneous linear model at

all scales with the parameters obtained in the last adaptation step.
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Fig. 2.3. Illustration of the multiresolution reconstruction algorithm. Starting at
the coarsest scale l = L, we calculate a coarse-to-fine scale sequence of MAP
estimates x(l). Each estimate x(l) takes into account the contributions of the

adapted prior model at all coarser scales n > l. After computing x(l), we initialize
the parameters θ(l)

s and re-adapt θ(n)
s for n > l.

1. Initialize x̂(n) = 0 and ẑ(n) = 0 for all scales n.
2. Compute maximum likelihood (ML) reconstruction x̂(L).
3. For l = L − 1 downto 0 {

(a) Adapt Gaussian model: For l < n ≤ L, ∀s, assign θ
(n)
s and σn using (2.18),

(2.19).
(b) Initialize x(l) ← I l

l+1x̂
(l+1).

(c) Calculate MAP reconstruction x̂(l) for Gaussian wavelet graph prior model,
using (2.16).

(d) Recompute x̂(n), ẑ(n) for l ≤ n ≤ L as wavelet decomposition of x̂(l).

}

Fig. 2.4. Summary of multiresolution reconstruction algorithm.
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Fig. 2.5. The image is modeled in the wavelet domain but the MAP optimization is
performed in the space domain. This allows the positivity constraint to be easily

enforced.

2.2.3 MAP Optimization for Gaussian Wavelet Graph Model

In this section, we describe a computationally efficient implementation of the

MAP optimization in step 3.c of Fig. 2.4. The MAP optimization is performed for the

Gaussian wavelet graph prior model with fixed model parameters θ(l)
s = [A(l)

s , b(l)
s , B(l)

s ]

and σn. As discussed in the previous section, these parameters are obtained using

nonlinear classification of coarse scale data. The parameter selection mechanism is

described section 2.2.4.

The positivity constraint, x(l) ≥ 0, is an essential component of the MAP opti-

mization equation (2.16). However, enforcement of positivity can be very difficult

in the wavelet domain, particularly for general wavelet transforms. Figure 2.5 illus-

trates our approach for solving this problem. The optimization is performed in the

space domain, while the prior model is formulated in the wavelet domain and the

system model is formulated in the projection domain. This makes enforcement of

positivity simple. Another advantage of space domain optimization is that it simpli-

fies the forward model in tomography. This is because the transformation from z to

y is generally less sparse than the transformation from x to y.

Below, we derive a general MAP optimization algorithm in the space domain.

We then show how the algorithm can be implemented in a computationally efficient

manner by incorporating our model assumptions of conditional independence and
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limited spatial support. Since (2.16) has the same structure for any l, we will simplify

the presentation by assuming reconstruction at the finest scale l = 0. Thus, we will

omit the superscript (l) and write x = x(0). The coarse scale reconstructions x̂(l) for

l > 0 can be obtained by using the same optimization algorithm and treating scale

l as the finest scale n = 0 as discussed at the end of this section.

To derive the optimization algorithm, define matrices U (n) as the subsets of the

inverse wavelet transform W−1 such that

x(n) = U (n)z = U (n)




z(1)

...

z(L)

x(L)




. (2.20)

Further, let U
(n)
∂s denote the rows of U (n) such that x

(n)
∂s = U

(n)
∂s z. Using this notation,

we can rewrite (2.10) as

µ(n)
s = A(n)

s U
(n)
∂s z + σnb

(n)
s . (2.21)

To simplify the notation, let us define Ã(n)
s = A(n)

s U
(n)
∂s , b̃(n)

s = σnb
(n)
s , and B̃(n)

s =

σ−2
n B(n)

s . Furthermore, let Ã, b̃ and B̃ denote the parameters for all locations s and

all scales n. We can then re-write the model (2.12) as

log px(x) = −1

2
‖z − Ãz − b̃‖2

B̃
+ const (2.22)

= −1

2
‖(I − Ã)Wx − b̃‖2

B̃
+ const (2.23)

where x = W−1z.

To optimize log px(x) with respect to a single pixel value xi, we need the first and

second derivatives with respect to xi. Let us define ε as the prediction error z − µ

of the linear model in the wavelet domain

ε = (I − Ã)Wx − b̃ . (2.24)

Based on (2.23), we can then write the gradient ∇x log px(x) as

∇x log px(x) = xtW t(I − Ã)tB̃(I − Ã)W − b̃tB̃(I − Ã)W (2.25)

= εtB̃(I − Ã)W . (2.26)
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If we now let ei denote the unitary vector in direction xi, we can write the first

derivative α1 as

α1 =
∂

∂xi

log px(x) (2.27)

= (∇x log px(x)) ei (2.28)

= εtB̃(I − Ã)W∗i (2.29)

where W∗i denotes the ith column of W . Similarly, for the second derivative α2 we

obtain

α2 =
∂2

∂x2
i

log px(x) (2.30)

= W t
∗i(I − Ã)tB̃(I − Ã)W∗i . (2.31)

Notice that (I−Ã)W∗i is the derivative of the prediction errors in the wavelet domain

with respect to xi. Let us define dε = (I − Ã)W∗i, then

α1 = εtB̃dε (2.32)

α2 = (dε)tB̃dε . (2.33)

The prior log px can now be written as a function of the perturbation γ of pixel xi

log px(x + γei) = α1γ +
1

2
α2γ

2 + const . (2.34)

This expression can easily be optimized with respect to γ as part of a standard

iterative coordinate descent (ICD) [41, 42] algorithm in x. Figure 2.6 summarizes

the basic steps of the ICD optimization algorithm for MAP reconstruction using the

Gaussian wavelet graph prior model. The prediction errors ε are kept as a state

vector. The set S = S(0) denotes the set of image pixels at scale n = 0.

In the following, we show how the algorithm can be implemented in a computa-

tionally efficient manner by incorporating our model assumptions of conditional inde-

pendence and limited spatial support. To illustrate the implementation, we augment

the tree structure of the linear model as shown in Fig. 2.7 for the 1-D case. In this

representation, each tree node N (n)
s contains the wavelet coefficients z(n)

s , the scaling
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1. initialize ε = (I − Ã)Wx − b̃

2. until convergence do

for i ∈ S {

(a) dε = (I − Ã)W∗i

(b) α1 = εtB̃dε, α2 = (dε)tB̃dε

(c) ∆ = arg maxγ{log py|x(y|x + γei) + α1γ +

0.5α2γ
2}

(d) xi ← xi + ∆

(e) ε ← ε + dε∆

}

Fig. 2.6. General formulation of the iterative coordinate descent (ICD)
optimization algorithm for space-domain MAP reconstruction using the Gaussian
wavelet graph prior model. The prediction errors ε are kept as a state vector. The

set S = S(0) denotes the set of image pixels at scale n = 0.

coefficient x(n)
s as well as the current prediction error ε(n)

s = z(n)
s −A(n)

s x
(n)
∂s − b̃(n)

s . In

addition, N (n)
s contains the temporary variables dz(n)

s and dx(n)
s . These variables are

the derivatives of z(n)
s and x(n)

s with respect to the pixel value xi that is currently

being updated in the space domain. To compute dz(n)
s and dx(n)

s , let W (n) denote

the subset of the wavelet transform such that z(n) = W (n)x. Further, let D(n) denote

the decimation operation used to obtain the scaling coefficients x(n) from the original

image x as

x(n) = D(n)x(0) = U (n)Wx(0) . (2.35)

For the update of pixel value xi, we compute dz(n)
s and dx(n)

s as

dz(n)
s = W

(n)
si (2.36)

dx(n)
s = D

(n)
si . (2.37)

The notation in (2.36) is for the 1-D case, where both dz(n)
s and dx(n)

s are scalars.
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For the 2-D case, dz(n)
s is the three-component vector containing the derivatives

corresponding to the high-low, low-high and high-high components of z(n)
s . Define

dx
(n)
∂s as the vector with components dx

(n)
k for k ∈ ∂s. Using this notation, we can

write dε(n)
s as

dε(n)
s = dz(n)

s − A(n)
s dx

(n)
∂s . (2.38)

In order to compute dε efficiently, we want to consider only the locations (s, n) for

which dε(n)
s is nonzero. Let us define the sets S

(n)
i as

S
(n)
i = {s : dz(n)

s 6= 0 or dx(n)
s 6= 0} . (2.39)

Notice, that the sets S
(n)
i , 1 ≤ n ≤ L, are only a function of the wavelet transform

W∗i. The change dx
(n)
∂s is nonzero only at locations whose prediction window includes

nodes in S
(n)
i . We define the set of these locations as S̃

(n)
i

S̃
(n)
i = {k : s ∈ ∂k for some s ∈ S

(n)
i } (2.40)

=
⋃

s∈S
(n)
i

∂s . (2.41)

The last equation is a result of the symmetry of the prediction window. Notice,

that since the prediction window ∂s includes s, we have S
(n)
i ⊂ S̃

(n)
i such that both

dz(n)
s = 0 and dx

(n)
∂s = 0 for s /∈ S̃

(n)
i and consequently dε(n)

s = 0 for s /∈ S̃
(n)
i . Figure

2.7 illustrates the definitions of S
(n)
i and S̃

(n)
i for the specific example of a 1-D Haar

wavelet decomposition. We can now compute the nonzero components of dε as

dε(n)
s = dz(n)

s − A(n)
s dx

(n)
∂s s ∈ S̃

(n)
i . (2.42)

The first and second derivatives α1 and α2 are then given by

α1 =
L∑

n=1

∑
s∈S̃

(n)
i

ε(n)
s B̃(n)

s dε(n)
s (2.43)

α2 =
L∑

n=1

∑
s∈S̃

(n)
i

dε(n)
s B̃(n)

s dε(n)
s . (2.44)

The derivatives α1 and α2 are used to perform the MAP optimization with respect

to xi in steps 2.c and 2.d of Fig. 2.6. After updating xi, the state variables ε(n)
s are
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Fig. 2.7. Illustration of ICD update computation for pixel x
(0)
4 using a Haar wavelet

basis and a 3-point window ∂s. To update x
(0)
4 , only the nodes in the set S̃

(n)
4 ,

shown in circles, must be considered. Each node N (n)
s for n > 0 contains the

variables z(n)
s , x(n)

s , ε(n)
s as well as the temporary variables dz(n)

s and dx(n)
s required

for the computation of the ICD update.

updated as

ε(n)
s ← ε(n)

s + dε(n)
s ∆ s ∈ S̃

(n)
i (2.45)

for 1 ≤ n < L. This completes the efficient implementation of the iterative coor-

dinate descent optimization. Note that dx(n)
s , dz(n)

s , S
(n)
i , S̃

(n)
i , dε(n)

s and α2 are not

data dependent but are only a function of i. If desired, these variables can be pre-

computed and stored for all i. Figure 2.8 summarizes the optimization algorithm.

While the development above assumes optimization at the finest scale l = 0,

the same algorithm can be used for the coarse scale reconstructions x̂(l) for l > 0.

To optimize (2.16) for l > 0, we treat scale l as if it were the finest scale n = 0.

Thus, instead of iterating over the pixel locations i at fine scale, we now index over

i ∈ S(l). The state variables z(n)
s , x(n)

s , ε(n)
s as well as the directions dz(n)

s , dx(n)
s , dε(n)

s

are computed using the wavelet transform of x(l) and are computed for n > l only.

The computational complexity associated with the optimization of the linear

image model is on the order of N (l)(log N (l))2 multiplications for one full update of

x̂(l), where N (l) is the number of image pixels at the reconstruction scale l. For the

special case of a Haar wavelet basis, this complexity reduces to N (l) log N (l). The
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1. initialize ε = (I − Ã)Wx − b̃

2. until convergence do

for i ∈ S {

(a) (*) compute dz
(n)
s = W

(n)
si , dx

(n)
s = D

(n)
si , ∀s, n > 0

(b) (*) assign S
(n)
i = {s : dz

(n)
s 6= 0 ∨ dx

(n)
s 6= 0}

(c) (*) assign S̃
(n)
i = ∪

s∈S
(n)
i

∂s

(d) (*) dε
(n)
s = dz

(n)
s − A

(n)
s dx

(n)
∂s for s ∈ S̃

(n)
i

(e) α1 =
∑L

n=1

∑
s∈S̃

(n)
i

ε
(n)
s (σ−2

n B
(n)
s )dε

(n)
s

(f) (*) α2 =
∑L

n=1

∑
s∈S̃

(n)
i

dε
(n)
s (σ−2

n B
(n)
s )dε

(n)
s

(g) ∆ = arg maxγ

{
log py|x(y|x + γei) + α1γ + 0.5α2γ

2
}

(h) xi ← xi + ∆

(i) ε
(n)
s ← ε

(n)
s + dε

(n)
s ∆ for s ∈ S̃

(n)
i

}

3. recompute x̂(n), ẑ(n) for 1 ≤ n ≤ L as wavelet decomposition of x̂

Fig. 2.8. Detailed algorithm for efficient ICD updates using wavelet graph model.
The operations marked with (*) can be pre-computed. Excluding the forward

model term of step 2.f, the computational complexity is order N(log N)2 for one
full update of x̂(0).

details can be found in Appendix A.8.

2.2.4 Nonlinear Classifiers for Parameter Selection

The nonlinear operators T (n)[·] used for the parameter selection (2.18) are ob-

tained using a method derived from recent work in image interpolation[39]. The

selection of θ(n)
s is performed by first classifying the input vector x

(n)
∂s /σn into a class

kn,s and then selecting θ(n)
s as a parameter vector associated with this class. To

simplify the notation, we denote the parameter vector associated with class kn,s as

θ
(n)
kn,s

= [A
(n)
kn,s

, b
(n)
kn,s

, B
(n)
kn,s

]. Let K(n)[·] denote the classifier at scale n. The classifica-
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tion and parameter assignment can then be written as

kn,s ← K(n)


 x̂

(n)
∂s

σn


 (2.46)

θ(n)
s ← θ

(n)
kn,s

. (2.47)

The classifiers K(n)[·] and parameters θ
(n)
kn,s

are obtained during a training phase.

For our implementation, we use a tree-based agglomerative clustering method which

is described in detail in Appendix A.9. To summarize the approach, we initially

partition the space of training samples {x(n)
∂s /σn, z(n)

s /σn} by performing a vector

quantization (VQ) on {x(n)
∂s /σn}. For each cluster k, we then calculate the filters

[A
(n)
k , b

(n)
k ] as the minimum mean square error linear predictors for z(n)

s . Starting

with this initial partitioning, we then form a cluster tree by merging pairs of clusters

in a greedy fashion. At any given stage, we combine the two clusters whose merging

results in the smallest increase in prediction error on the training set. Thus we form

a binary tree where each node is associated with its optimal linear prediction filter

for the conditional mean. In order to not overfit the classification model, we perform

optimal tree pruning[43, 44] using a second data set for cross-validation. The pruning

is performed based on the prediction error for the conditional mean only.

The matrices B
(n)
k are computed as

B
(n)
k =

1

w2
R−1

k (2.48)

where Rk is the conditional sample covariance for class k (see Appendix), and w is

a regularization parameter.

We have found it to be advantageous to constrain the classifiers K(n)[·] and the

linear model predictors A(n)
s x

(n)
∂s to only depend on x

(n)
∂s − x(n)

s , that is the difference

between x
(n)
∂s and its center scaling coefficient. This constraint makes the model

invariant to additive shifts in the gray value of the image and therefore improves

robustness of training on smaller training sets. The details are listed in Appendix

A.9.
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2.3 Tomographic Reconstruction

In this section, we discuss the application of the proposed model to Bayesian

tomographic reconstruction. In the following, we present the statistical data model

log py|x(y|x) for both emission and transmission tomography[42]. In both cases, we

use the exact Poisson counting statistics. Let y denote the vector of photon counts

for all M projections at different angles and displacements. Furthermore, let us

define P as the tomographic projection matrix so that Pi∗ denotes the vector formed

by its ith row. For transmission tomography, the log-likelihood log py|x(y|x) may then

be written as

log py|x(y|x) =
M∑
i=1

(
−yT e−Pi∗x + yi(log yT − Pi∗x) − log(yi!)

)
(transmission)

(2.49)

where yT denotes the dosage. For emission tomography, the log-likelihood is given

by

log py|x(y|x) =
M∑
i=1

( − Pi∗x + yi log(Pi∗x) − log(yi!)) (emission) . (2.50)

Both (2.49) and (2.50) have the common form

log py|x(y|x) = −
M∑
i=1

fi(Pi∗x) (2.51)

where the fi(·) are convex and differentiable.

Based on the fine scale model above, we can compute the coarse scale data models

log py|x(l)(y|x(l)) for l > 0. Combining (2.15) and (2.51), we obtain

log py|x(l)(y|x(l)) = −
M∑
i=1

fi(Pi∗I0
l x

(l)) (2.52)

= −
M∑
i=1

fi(P
(l)
i∗ x(l)) (2.53)

where P
(l)
i∗ = Pi∗I0

l . Thus, the coarse scale data models are equivalent to a standard

model of the form (2.51) with projection matrix P (l). The columns of P (l) can be

computed as linear combinations of the columns of P .
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In the following, we discuss the MAP optimization for the tomographic data

model. We write the equations for the emission case only, however, all methods

analogously apply to the transmission case. Since the form of log py|x(l)(y|x(l)) is

the same for any l, we simplify the notation by omitting the superscripts (l) and

assuming reconstruction at the finest scale l = 0. The solutions for l > 0 are

obtained by replacing x with x(l) and P with P (l). To implement the optimization

of section 2.2.3 we need to solve

∆ = arg max
γ

{
log py|x(y|x + γei) + α1γ +

1

2
α2γ

2
}

. (2.54)

The basic concept of the ICD algorithm[41, 42] is to solve (2.54) using a Newton-

Raphson strategy. Importantly, the algorithm exploits the sparse nature of the

projection matrix P by maintaining a state vector p̃ = Px of the current forward

projection of x. Given p̃, we can write the first and second derivatives ψ1 and ψ2 of

log py|x(y|x) with respect to the pixel value xi as

ψ1 =
∂

∂xi

log py|x(y|x) = − ∑
{k:Pki>0}

Pki

(
1 − yk

p̃k

)
(2.55)

ψ2 =
∂2

∂x2
i

log py|x(y|x) = − ∑
{k:Pki>0}

yk

(
Pki

p̃k

)2

. (2.56)

Based on the notation above, the second order approximation to log py|x(y|x + γei)

with respect to γ is

log py|x(y|x + γei) ≈ log py|x(y|x) + ψ1γ +
1

2
ψ2γ

2 . (2.57)

Thus, the Newton-Raphson update of (2.54) is given by

∆ = −ψ1 + α1

ψ2 + α2

. (2.58)

The state vector p̃ can be updated efficiently using p̃k
′ = Pki∆+p̃k for {k : Pki 6= 0}.

2.4 Experimental Results

In this section, we compare the tomographic reconstruction performance of the

proposed framework to that of two fixed-resolution Bayesian methods using Markov
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random field prior models and to convolution backprojection (CBP). Our results

are based on two sets of simulated emission tomography data. The first data set

is based on a discrete-valued bar phantom and is used to compare the algorithms

quantitatively in terms of reconstruction bias and noise variance. The second data

set is a more realistic case and is used to compare the reconstruction methods in

terms of visual characteristics, mean square error and speed of computation.

We implemented the wavelet graph model (WGM) and multiresolution recon-

struction algorithm using an orthonormal 2-D Haar wavelet decomposition. The

number of resolution levels was set to L = 5. For a reconstruction resolution of 256

by 256 pixels, this resulted in an array of 16 by 16 scaling coefficients at the coarsest

scale. We compared reconstruction results for two different sets of training images

used to obtain the nonlinear classifiers and class parameters as described in section

2.2.4. For each case, the training and pruning samples were obtained by computing

the wavelet transform of the training images. The number of reconstruction itera-

tions was a function of the scale n such that K0 ∗ (
√

2)n iterations were performed

at scale n.

In order to demonstrate how the wavelet graph structure by itself can reduce the

blockiness commonly encountered with Haar wavelet models, we also implemented a

spatially homogeneous linear version of the wavelet graph model. The linear model

uses no adaptation and only a single parameter vector θ(n)
s 6= f(s) for all locations s

at scale n. This can be implemented simply by setting the number of classes for the

nonlinear classifiers in (2.46) to one.

The two fixed resolution MAP reconstruction algorithms were based on a Gaus-

sian Markov random field (GMRF) and a generalized Gaussian Markov random field

(GGMRF) prior model respectively. The GGMRF[10] is an edge-preserving, spatially

homogeneous MRF that uses a non-quadratic penalty term. For the results shown

here, the generalized Gaussian parameter was set to p = 1.2. The fixed resolution

MAP reconstructions were computed using iterative coordinate descent optimiza-

tion. The convolution backprojection (CBP) algorithm was implemented for both a
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ramp filter and a generalized Hamming reconstruction filter with frequency response

H(ω) = Hid(ω) (0.5 + 0.5 cos(πω/ωc)) for |ω| ≤ ωc where Hid(ω) denotes the ideal

reconstruction ramp filter.

2.4.1 Bar Phantom Results

The first data set was generated using the bar phantom image shown in Fig.

2.9(a). The binary image of size 115 by 115 pixels has pixel values of 1 for the

bars and 0.02 for the background. The projection data was generated by forward

projecting a 256 by 256 pixel image with the bar image in the center and a zero

background. The projection data was calculated at 128 evenly spaced angles each

with 256 displacements. The projection beam was assumed to be an ideal line. The

data samples were formed by Poisson random variables with the appropriate mean.

The average number of counts per projection was 83.

For this data set, we used two different sets of training images for the nonlinear

prediction model for the prior parameters. To approximate the characteristics of

typical medical images, the first training set consisted of 40 MRI images, each of

size 256 by 256 pixels. In order to show how the proposed method can be adapted

in cases where a priori knowledge about special characteristics of the phantoms is

available, the second training set contained 3000 amplitude and rotational variations

of a bar phantom in addition to the 40 MRI images. The phantom shown in Fig.

2.9(a) was not included in the training. Because of the discrete nature of the second

training set, we increased the value of δ in (A.16) of the Appendix to δ = 0.3 to

obtain reliable covariance parameters Rk. The size of the window ∂s was set to 3 by

3 coefficients.

In order to quantitatively compare the different algorithms, we calculated recon-

struction bias and variance statistics for the reconstructed image x̂ij. The bias and

variance measures use the fact that the original phantom is constant along columns.

We first calculated µ̂j and σ̂2
j as the mean and variance of the jth column in the
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(a) Bar phantom

Fix-res. MAP, GMRF prior

Fix-res. MAP, GGMRF p = 1.2

Adaptive wavelet graph model,
trained on MRI & bar images

(b) Magnified reconstruction of high frequency region (rotated)

Fig. 2.9. Bar phantom and magnified high frequency region of sample
reconstructions.

reconstruction x̂ij. Bias and variance were then computed as

bias =
1

N

N∑
j=1

(µ̂j − µj)
2 (2.59)

var =
1

N

N∑
j=1

σ̂2
j (2.60)

where µj is the value of the jth column in the original phantom and N = 115 is the

number of columns.

The bias and variance statistics were computed for each reconstruction technique

as a function of the regularization parameter. For the wavelet graph model, we varied

the parameter w in (2.48) in the range [0.1, 10]. For the MRF priors, we varied the

scale parameter σ in the range [0.1, 1.4] and for the CBP reconstruction we used a

ramp filter as well as a Hamming filter with cutoff frequency ωc = 1. The proposed

algorithm was initialized with a constant image and performed a fixed number of

25 ∗ (
√

2)n reconstruction iterations at each scale n. The fixed resolution ICD MAP

algorithms were initialized with a CBP result and then performed 40 reconstruction

iterations.

Figure 2.10(a) shows a comparison of the results for the adaptive wavelet graph

model and the two fixed resolution Bayesian methods. Each plot corresponds to the

bias/variance curve of a single reconstruction method as a function of the regulariza-



- 29 -

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.005

0.01

0.015

0.02

0.025

B
ia

s

Variance

Fix resolution MAP, GMRF prior                          
Fix resolution MAP, GGMRF prior, p=1.2                  
Adaptive Wavelet Graph Model, trained on MRI images     
Adaptive Wavelet Graph Model, trained on MRI & bar imgs.

(a) Adaptive wavelet graph model
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Fig. 2.10. Bias-variance reconstruction performance of each algorithm as a function
of regularization parameter. The triangles in (a) correspond to the bias-variance

values for the sample reconstructions in Fig. 2.9(b).

tion parameter. The upper left hand corner of the graphs corresponds to strong reg-

ularization (high bias, low variance) whereas the lower right hand corner corresponds

to weak regularization (low bias, high variance). The results indicate that the adap-

tive wavelet graph model trained on the set of MRI images performed significantly

better than the GMRF method and performed comparably to the GGMRF based

method. While the GGMRF performed best in the low variance region, its residual

bias in the high variance region was slightly higher. Specifically, the GGMRF prior

model has a tendency to introduce bias resulting in a loss of detail even when very

little regularization is applied. When trained on the combination of bar phantoms

and MRI images, the adaptive wavelet graph model outperformed both fixed resolu-

tion Bayesian methods. Figure 2.9(b) shows the magnified high frequency region of

sample reconstructions corresponding to the bias/variance points marked by trian-

gles in Fig. 2.10(a). The adaptive wavelet graph model reconstruction better resolves

the high frequency bars than the two fixed resolution Bayesian reconstructions.

Figure 2.10(b) shows the bias/variance curves for the linear, non-adaptive, wave-

let graph model in comparison to those for the fixed resolution GMRF technique
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and for CBP. Trained on the set of MRI images, the linear wavelet graph model

performed comparably to the GMRF method. When trained on the combination of

bar phantoms and MRI images, the linear wavelet graph model achieved lower bias

at equal variance as compared to the GMRF result.

2.4.2 Medical Image Phantom Results

For our second data set, we used used a magnetic resonance imaging (MRI) recon-

struction image as our phantom data. The original phantom is shown in Fig. 2.11(a).

The resolution of the original image was 256 by 256 pixels with a mean pixel value

of 0.32. The projection data was calculated at 128 evenly spaced angles each with

256 parallel projections assuming a field of view of 20cm square. To better illustrate

the deblurring potential of the algorithm, we assumed a projection beam of width

2.34mm, corresponding to three times the projection spacing. The beam profile was

assumed to be triangular. The data samples were formed by Poisson random vari-

ables with the appropriate means. The average number of counts per projection was

235.

For this data set, the adaptive and linear wavelet graph models were trained using

the same set of 40 MRI images as for the first data set. The phantom in Fig. 2.11(a)

was not included in the training set. The size of the window ∂s was set to 5 by 5

coefficients.

To compare the results from different reconstruction algorithms, the regulariza-

tion parameter for each algorithm was adjusted to minimize the mean square error

of the reconstruction. This resulted in a cutoff frequency of ωc = 0.63 for the CBP

using a generalized Hamming filter, σ = 0.2 for the GMRF prior, σ = 0.24 for the

GGMRF prior, w = 1.075 for the linear wavelet graph model and w = 1.0 for the

adaptive wavelet graph model. All iterative algorithms were run for a large number

of iterations to insure sufficient convergence. The proposed multiresolution algo-

rithm was initialized with a constant image and performed 148 ∗ (
√

2)n iterations at

each scale n. The fixed resolution Bayesian methods were initialized with the CBP

reconstruction and performed 500 iterations.
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(a) Original Phantom (b) CBP, RMSE=24.64 (c) GMRF, RMSE=23.0

(d) Lin. WGM, RMSE=23.59 (e) GGMRF, RMSE=22.21 (f) Ad. WGM, RMSE=22.60

Fig. 2.11. Original phantom (a) and reconstructions: (b) convolution
backprojection, (c) fixed resolution MAP with GMRF prior, (d) proposed
algorithm using linear wavelet graph model, (e) fixed resolution MAP with
GGMRF prior, (f) proposed method using adaptive wavelet graph model.
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The CBP reconstruction in Fig. 2.11(b) is noisy in the uniform image regions

and contains blurry edges. The GMRF MAP reconstruction in Fig. 2.11(c) is less

noisy than the CBP; however, the quadratic regularization function of the Gaussian

MRF results in blurred edges. The reconstruction (d) obtained using the linear

wavelet graph model is visually roughly comparable to the GMRF result (c) but

contains slight blocking artifacts and has higher RMSE. However, considering that

this is a spatially homogeneous linear model using a Haar wavelet prior without

shift-averaging, the reconstruction is surprisingly smooth. This is a result of the

overlapping dependency structure of the wavelet graph structure. Fig. 2.11(e) shows

the fixed resolution GGMRF MAP reconstruction. The result has sharper edges as

compared to the GMRF case (c) and achieves the lowest mean square error of all four

methods. Visually, however, the reconstruction (e) is of poor quality since it suffers

from considerable loss of detail. The reconstruction using the adaptive wavelet graph

model in Fig. 2.11(f) is superior to that of the other four methods. In comparison

to the GMRF case (c), the reconstruction (f) contains sharper edges while the noise

in the uniform regions is better suppressed. The mean square error is lower than for

the GMRF case (c) but higher than for the GGMRF result (e). In comparison to

(e), however, the proposed method preserves more detail.

2.4.3 Computational Efficiency Comparison

We compared the reconstruction error convergence of the proposed algorithm to

iterative coordinate descent (ICD) and preconditioned gradient descent (PCG) fixed

resolution Bayesian reconstruction techniques. The PCG algorithm used a simple

bent line search and was implemented as described in [45] except that it did not use a

factored system matrix. The convergence measurements for all algorithms were taken

for reconstructions of our second data set as in Fig. 2.11. The ICD algorithm was

used with the GMRF and GGMRF prior models. The PCG algorithm was used only

with the GMRF prior since the Newton-Raphson line search of our implementation

was not applicable to the GGMRF prior.

Figure 2.12(a) and (b) show the reconstruction error convergence as a function
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(b) Constant initialization

Fig. 2.12. Error convergence of the proposed algorithm compared to fixed
resolution MAP reconstructions with GMRF and GGMRF prior models.

of CPU-time for the different algorithms. The reconstruction error was calculated

as the root mean square error between the reconstruction and the ground truth. For

the ICD and PCG algorithms, the graphs were obtained by measuring the CPU-time

after each iteration. For the proposed algorithm, the graphs were obtained by mea-

suring the CPU-times for full reconstructions using K0(
√

2)n iterations at scale n and

varying K0. The CPU-times were measured on a 700 MHz Pentium III CPU. They

do not include the time needed for pre-processing such as the computation of the

tomographic system matrices that can be performed off-line. Figure 2.12(a) shows

the error convergence for the case where all algorithms were initialized with the CBP

reconstruction of Fig. 2.11(b). For this initialization, ICD and PCG converge very

quickly, particularly for the GMRF prior. The proposed algorithm has slighly slower

convergence. Figure 2.12(b) shows the convergence results when all reconstruction

algorithms were initialized to a constant image whose forward projection matched

the total number of counts of the projection data. For this initialization, the fixed

resolution ICD algorithm has slow convergence due to the slow low-frequency conver-

gence of the ICD algorithm [41]. The proposed algorithm converges fastest of all the

methods in this comparison. Thus, the multiresolution technique can provide a com-
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putational advantage in cases where an initialization with the correct low-frequency

behavior is not available. Specifically, the multiresolution approach allows us to

use an ICD optimization technique without requiring a CBP initialization. This is

an advantage for systems with non-circular geometry[46] or limited angle problems

where CBP initializations are not easily obtained.

2.5 Conclusions

We propose a wavelet graph prior model in conjunction with a multiresolution

Bayesian reconstruction algorithm applicable to tomographic reconstruction. The

wavelet graph prior model has a dependency structure that is more general than

a quadtree. This enables the model to produce smooth estimates even for a Haar

wavelet basis. Furthermore, the wavelet graph structure is such that the optimal

model for a stationary process is homogeneous, resulting in a substantial reduction

in the number of model parameters. The multiresolution reconstruction algorithm

uses the wavelet graph prior model but performs a sequence of MAP optimizations

in the space-domain. The space domain formulation allows us to efficiently enforce

the pixel positivity constraint and to preserve the sparseness of the tomographic

projection operator. Our experimental results indicate that the proposed framework

can improve reconstruction quality over commonly used fixed resolution Bayesian

methods.
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3. QUANTITATIVE COMPARISON OF FBP, EM, AND

BAYESIAN RECONSTRUCTION ALGORITHMS,

INCLUDING THE IMPACT OF ACCURATE SYSTEM

MODELING, FOR THE INDYPET SCANNER

Abstract

We quantitatively compare filtered backprojection (FBP), expectation maximiza-

tion (EM) and Bayesian reconstruction algorithms for the IndyPET animal tomog-

raphy scanner. The IndyPET scanner is a small to intermediate field of view scanner

with non-circular detector geometry. In contrast to previous approaches that largely

rely on Monte Carlo simulations, we obtained an empirical system kernel for the

IndyPET scanner directly based on scans of line source phantoms. The empiri-

cal system kernel is incorporated into the forward model of EM and the Bayesian

reconstruction algorithms to achieve resolution recovery.

Reconstruction quality is compared for FBP, EM and Bayesian techniques with

three different prior models. In addition, we compare reconstruction quality for the

empirical system kernel and an analytically calculated, triangular kernel. Recon-

struction quality is evaluated for data acquired on the IndyPET scanner using a

Hoffman 3-D brain phantom and a bar phantom. Furthermore, we present an MSE

analysis for a simulated phantom containing a lesion on an approximately uniform

background. The results indicate, that using an accurate system kernel significantly

improves the bias-variance envelope of the iterative techniques over FBP. We found

that when an inaccurate kernel was used, EM and Bayesian MAP performed sim-

ilarly. However, when an accurate system kernel was used for both algorithms,

Bayesian techniques achieved significantly higher reconstruction quality than EM.
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3.1 Introduction

Iterative methods for positron emission tomography (PET) reconstruction can

theoretically improve reconstruction quality by accurately modeling the data ac-

quisition process and by regularizing the ill-posed inverse problem. While iterative

methods have been studied extensively in the literature, clinical PET remains largely

dominated by filtered backprojection (FBP) with some growing interest in the or-

dered subsets expectation maximization (OSEM) algorithm[47].

An important advantage of iterative algorithms that is often not exploited in

practical implementations is the ability to incorporate an accurate model of the

tomography scanner into the reconstruction algorithm. Specifically, iterative al-

gorithms can achieve resolution recovery by accounting for sinogram blurring due

to detector crystal penetration, inter-crystal scatter, depth of interaction and other

effects[48, 49, 50]. Early investigations for the expectation maximization (EM) recon-

struction algorithm[51] have found that a more accurate system kernel can reduce

bias in region-of-interest (ROI) quantitation[52, 48]. However, the more accurate

kernel increased the variance of the ROI estimates obtained from EM reconstruc-

tions, even for simulated projection data that had been generated with the same

system kernel. This effect is likely due to the fact that a more accurate system ker-

nel results in a more ill-posed reconstruction problem[52], which is consistent with

the observation of ringing artifacts[53]. The increased ill-posedness adversely affects

the quality of EM reconstructions, particularly, since EM does not use any explicit

regularization.

Bayesian reconstruction techniques[6, 7, 41, 54, 55, 56, 57, 42] on the other hand,

explicitly address the ill-posedness by regularizing the reconstruction through use of

a prior model such as a Markov random field (MRF)[5, 6, 7, 8, 9, 10, 11]. Conse-

quently, we would expect Bayesian methods to provide better reconstruction quality

as compared to EM, especially when a more accurate system kernel is used. Qi, et al.,

[53, 45] have successfully applied 3D Bayesian MAP reconstruction combined with an

advanced response model[50] to data from the microPET[58] and the Siemens/CTI
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HR+[59] scanners. The results demonstrate that this approach can increase ROI

quantitation accuracy and FWHM resolution at lower variance as compared to FBP

and OSEM[45, 60].

Our objective for this study is to provide a quantitative comparison of FBP, EM,

and Bayesian reconstruction algorithms and to investigate the impact of accurately

modeling the scanner for iterative reconstruction. We quantitatively evaluate recon-

struction quality for simulated data and for phantom data acquired on the IndyPET

tomography scanner[46]. The IndyPET scanner has been developed as a high reso-

lution dedicated research scanner for use in small animal, intermediate sized animal

and small field of view human (brain, breast) imaging applications. As shown in

Fig. 3.1, the distinguishing feature of this scanner is a non-circular detector geome-

try consisting of two, approximately planar detector banks mounted on a rotatable

gantry.

To evaluate the impact of accurately modeling the scanner for iterative recon-

struction, we have obtained an empirical system kernel for the IndyPET scanner

based on scans of line source phantoms. This approach is different from previous

studies which have typically relied on analytical modeling of detector properties[61,

62] or on Monte Carlo simulations based on statistical detector models[63, 64, 65, 50].

For the IndyPET scanner, obtaining an empirical system kernel is greatly facilitated

by its non-circular detector geometry. Specifically, the detector geometry enables us

to measure the full range of incident photon angles using only sources positioned

near the center of the field of view. In contrast, a circular detector geometry would

require more measurements since the incident photon angle is a strong function of

radial source position, and for a source in the center of the field of view, all photon in-

cidences are approximately normal to the detector surfaces. As shown in Fig. 3.1(c),

our results indicate that, even for a centered source and normal photon incidence,

our empirical system kernel is very different from the triangular shape expected for

ideal detectors. In fact, treating the detectors as a black box may be simpler and

potentially more accurate than analytical modeling. One approximation in our cur-
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rent model is that we do not account for the depth dependence of the system kernel,

however, the approach can be extended to take this effect into account.

We compare reconstruction quality for FBP, EM and Bayesian techniques. For

the Bayesian techniques, we compare maximum a posteriori (MAP) reconstructions

using two different priors, a Gaussian Markov random field (GMRF) and a gener-

alized Gaussian Markov Random field (GGMRF)[10] model. In addition, we evalu-

ate a recently proposed Bayesian algorithm that employs a nonlinear wavelet prior

model to perform space-adaptive regularization[66, 67]. For all Bayesian methods,

the MAP optimization was implemented using iterative coordinate descent (ICD)

optimization[10, 42]. For EM and Bayesian GMRF, we compare reconstructions

for the empirical system kernel and an analytically calculated triangular system ker-

nel. In addition, we compare Bayesian GMRF reconstructions for parametric system

kernels of different widths.

Three data sets are used for this study. The first data set was acquired on

the IndyPET scanner using a bar phantom. This phantom is similar to an X-ray

resolution target and generates square-wave emission profiles with different period-

icities. Reconstructions of this phantom are analyzed in terms of spatial bias and

variance statistics. Bias and variance are calculated by fitting Fourier series to the

reconstructed wave forms and comparing the fitted coefficients to those of an ideal

square wave. Different combinations of reconstruction algorithms and system ker-

nels are compared in terms of their bias-variance envelopes which are obtained by

varying a smoothing parameter for each reconstruction method. In addition, we

use the bar phantom data to compare the convergence speed of EM and Bayesian

GMRF MAP. The second data set was collected on the IndyPET scanner using a

Hoffman 3-D brain phantom. Reconstruction images generated by different combi-

nations of reconstruction algorithms, system kernels and smoothing parameters are

compared in terms of visual quality. The third data set consists of simulated pro-

jection data corresponding to a circular lesion that was added to an approximately

uniform background. Twenty realizations of noisy projection data were generated
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using the empirical system kernel for the IndyPET scanner. Reconstructions for

different algorithms and smoothing parameters are analyzed quantitatively in terms

of the expected mean square error (MSE) for the lesion and the background regions.

While mean square error is not a direct indicator of clinical performance, it provides

an objective measure of the quantitative accuracy of the reconstruction. In compar-

ison, we have found the clinically more relevant contrast recovery ratio (CRC) to be

a strong function of the procedure and regions used for its computation, an observa-

tion that is consistent with earlier reports[48]. For this study, we limit our analysis

to MSE to avoid the additional complication of choosing a task-specific computation

method for the CRC.

One shortcoming of Bayesian MAP techniques is that the reconstructions have

spatially varying resolution[68]. Specifically, high activity regions are regularized

more strongly, which can be suboptimal for lesion data as in our simulated data set.

Modified algorithms have been proposed that result in constant resolution[68, 69] or

constant contrast-to-noise ratio[70, 71] reconstructions. For our simulated data set,

we evaluate the impact of the modification proposed by Fessler and Rogers[68].

3.2 IndyPET Scanner

The IndyPET[46] positron emission tomography (PET) scanner has been devel-

oped as a high resolution, high sensitivity dedicated research scanner for use in small

animal, intermediate sized animal, and small field of view human (brain, breast)

imaging applications. As illustrated in Fig. 3.1, the distinguishing feature of the

scanner is the use of two, approximately planar detector banks with adjustable sep-

aration which are mounted on a rotatable gantry. In comparison to using a full ring

of detectors, the scanner’s geometry results in reduced parallax and approximately

uniform resolution throughout the field of view. The scanner uses removable septa

which can be placed in front of the detectors. The use of septa greatly reduces the

influence of scatter. Septa were included for all measurements reported in this study.

The two detector banks of the scanner consist of 8 CTI-HR[72] BGO detector

modules each. The detector crystal in each of the 16 detector modules is cut into
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Fig. 3.1. The IndyPET tomography scanner (a) employs two approximately planar
detector banks mounted on a rotatable gantry (b). The plot (c) shows an empirical
system kernel corresponding to the response of a single detector pair as a function of
source offset from the ideal projection line. This kernel was obtained for a projection

with normal photon incidence and a source centered between the detectors. The
empirical result is considerably different from the analytically calculated, triangular

kernel for ideal detectors.

a 7 (transaxial) by 8 (axial) array of crystal segments with a transaxial spacing of

3.3 mm and an axial spacing of 6.3 mm. The crystal depth is 30 mm.

The scanner’s bucket controllers and coincidence electronics are built by CTI.

Coincidence events are sorted into sinogram bins corresponding to angle and dis-

placement using the CTI ACS-II real-time sorter. For the data sets used in this

study, the ACS-II sorter was configured to perform automatic randoms subtraction,

thus our projection data were precorrected for randoms. The bucket electronics re-

port the singles count rates for each bucket with and without deadtime correction.

For the results reported here, the ratios of the reported corrected and uncorrected

singles rates were used to obtain deadtime correction factors for the reconstructions.

Figure 3.2(a) shows the resolution of the IndyPET scanner as a function of source

offset from the center for different detector separations. The resolution was measured

as the FWHM of line source reconstructions obtained using FBP with a ramp filter.
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The resolution throughout the field of view is within 25% of the resolution at the

center.

In addition to the approximately uniform resolution, a second advantage of the

IndyPET scanner’s geometry is the variable detector separation which can be reduced

to increase sensitivity for smaller subjects. This results in added flexibility since

the geometry can be adapted to perform well in a large variety of imaging tasks

from scanning of mice to human heads. However, the scanner’s overall sensitivity is

lower than that of a circular scanner with the same radius. Figure 3.2(b) shows the

sensitivity of the IndyPET scanner with and without septa in comparison to that of

a CTI 951/31 scanner. The sensitivity was obtained by calculating the percentage of

detected decays for a 1ml sphere source in the center of the field of view. Because the

detectors do not form a full ring, data must be collected at different gantry angles,

resulting in increased imaging time. However, the geometry is more economical with

respect to the number of detectors required as compared to a circular scanner.

3.2.1 IndyPET Data Acquisition

Data collection on the IndyPET scanner is performed in a ‘step and shoot’ mode

where multiple frames of data are collected with equal durations at uniformly spaced

gantry angles. Because the detectors do not form a complete ring, the data collected

for each frame form a diamond shaped segment from a complete sinogram as illus-

trated in Fig. 3.3. In cases where the total acquisition time is such that radioactive

decay becomes significant, data can be collected using multiple gantry sweeps of 180

degrees with shorter acquisition duration per frame. This procedure avoids the prob-

lem of imaging different angular positions at significantly different activity levels.

3.2.2 Non-uniform Sinogram Spacing

The geometry of the IndyPET scanner results in projection measurements that

are non-uniformly spaced in angle and displacement. Iterative reconstruction algo-

rithms such as EM and Bayesian techniques can account for the non-uniform spacing

in their forward projection operator. FBP, however, requires a sinogram with a full

set of evenly spaced angles and uniform displacements. To obtain projection mea-
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Fig. 3.2. Resolution and sensitivity of the IndyPET scanner. The plots in (a) show the
resolution of the IndyPET scanner as a function of source offset from the center for

different detector separations. The resolution was measured as the FWHM of line source
reconstructions using FBP with a ramp filter. The sinogram for the resolution

measurement was generated as described in section 3.2.2, with the exception of using
only the 12 central rows of the sinogram segments for each frame. The barplot in (b)

shows the sensitivity of the scanner for different detector separations. The sensitivity was
obtained by calculating the percentage of detected decays for a 1ml sphere source in the

center of the field of view.

surements that can be used to generate an approximate sinogram suitable for FBP,

we adjust the detector bank separation so that the 180 degree range for the gantry

rotation is an integral multiple of the angular size of a single detector segment. The

gantry rotation steps can then be selected as integer multiples of the detector width,

which results in approximately uniformly spaced projection angles. Based on these

considerations, all projection data for this study were acquired using a detector sep-

aration of 37.815 cm and 45 frames with gantry rotation steps of 4 degrees between

frames. To generate a sinogram for FBP reconstruction, the diamond shaped data

sets for all frames are first individually corrected for relative detector sensitivity,

deadtime and decay. A full sinogram is then obtained by summing the corrected

diamond shaped segments after they have been shifted by the appropriate number

of rows to account for the gantry rotation. The entries of the summed sinogram are

individually normalized by the number of frames that contributed to the respective
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Fig. 3.3. Illustration of diamond shaped sinogram segment for a single gantry position.
The points a,b,c illustrate the positions of sample lines of response relative to the

detectors and the sinogram. For FBP reconstructions, an approximate complete sinogram
is generated using a mask to limit the angular range of each frame. This limits the degree

of non-uniform angular projection spacing due to the curvature of the detector banks.

position in the complete sinogram. The resulting sinogram is approximate because

the center of curvature of the detector banks does not coincide with the center of

ganty rotation, and thus, even when rotating by integer multiples of detector seg-

ments, the projection angles are non-uniformly spaced. To limit the effect of this

approximation, we only use use the central angular portion of the sinogram segment

for each frame as illustrated in Fig. 3.3. For the FBP results reported in this study,

only the central 32 (out of 56) rows of each sinogram segment were used. Because of

the diamond shape, the 32 central rows contain 81% of the total number of elements

in each sinogram segment.

We emphasize, that the generation of a complete sinogram and the masking of

sinogram segments were only used for FBP reconstruction. All iterative reconstruc-

tions reported in this study used the unmodified, original projection data where

each entry in each frame sinogram segment was parametrized as a separate projec-

tion associated with values for the projection angle and the displacement that were
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calculated taking the curvature of the detector banks into account. Furthermore,

for iterative reconstruction, the corrections for detector sensitivity, deadtime and

decay were not applied to the projection data, but rather, were incorporated into

the forward projection operator of the reconstruction algorithm.

3.2.3 Modeling the System Kernel

The basic concept of EM and iterative Bayesian reconstruction algorithms is

to forward project a trial image at each iteration and to compare the calculated

projections to the measured ones. Importantly, the forward operator can precisely

model the scanner’s geometry and can incorporate an accurate system kernel that

accounts for sinogram blurring due to the width of the detector segments and effects

such as crystal penetration and inter-crystal scatter. Incorporating the sinogram

blurring into the forward model of the reconstruction algorithm effectively deblurs

the reconstruction image and thus allows for resolution recovery.

For this study, we obtained an empirical model of the system kernel for the In-

dyPET scanner based on scans of line sources. This approach is different from pre-

vious studies which have typically relied on statistical detector modeling[61, 62] and

Monte Carlo simulations[63, 64, 65, 50]. We compare the reconstruction quality of

iterative reconstruction algorithms for the empirical kernel and the triangular kernel

shown in Fig. 3.1(c). The triangular kernel is the analytical result for a source cen-

tered between ideal detectors and is obtained by calculating the solid angle spanned

by the detectors seen from the source as a function of source displacement from the

ideal projection line. In addition, we perform a limited experiment to evaluate recon-

struction quality for a set of parametric kernels. Note, that the triangular and the

parametric kernels are 1-D functions of source displacement and do not incorporate

any dependencies on projection angle θ. In contrast, the empirical kernel is a 2-D

kernel that is a function of both the projection angle and the displacement of the

source from the ideal projection line.
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Parameterization of System Kernel

First, we introduce our notation and parameterization of the system kernel which

is incorporated into the tomographic projection matrix. Let x be the N -dimensional

vector of emission rates of the pixels in raster order. Further, let y denote the vector

of photon counts for the M projections for all projection angles and displacements

over all frames. We then define the M × N tomographic projection matrix P such

that Pij is proportional to the probability that an emission from pixel j is registered

by the ith detector pair. Given this notation, the expectation E[y] is given by the

forward projection Px,

E[y] = Px . (3.1)

For our model, the entries Pij are computed based on the scanner’s geometry and

its system kernel. Corrections for effects such as attenuation, detector normalization,

decay and deadtime are discussed in section 3.3. The system kernel specifies the

response of the detector pairs as a function of source position. Let s = (s1, s2)

denote the Cartesian coordinates in the field of view of the scanner and define hi(s)
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as the kernel of detector pair i. Then Pij can be computed as the 2-D integral

Pij =
∫

s∈Sj

hi(s) ds (3.2)

where Sj is the set of coordinates s in pixel j. In the following, we assume that pixels

in the reconstruction image are considerably smaller than the detectors so that hi(s)

is approximately constant over the support of a single pixel. Then

Pij ≈ hi(scj
)Aj (3.3)

where Aj is the area and scj
is the center coordinate of pixel j. Note, that for

larger reconstruction pixels, this assumption can be enforced by computing P for a

sub-sampled pixel grid and summing the contributions for each pixel[53].

Based on the tomographic coordinate system of projection angles and displace-

ments, we model the kernel hi(s) of a single detector pair as i follows. As illustrated

in Fig. 3.4, define the ideal projection i as the line connecting the surface centers

of the two detectors of pair i. Let θi be the projection angle and define ti as the

displacement of projection i from the coordinate origin. For an arbitrary location

s = (s1, s2), we can calculate the displacement difference ∆ts,i between location s

and projection i as ∆ts,i = s1 cos(θi) + s2 sin(θi) − ti. We then model the detector

kernel hi(s) as

hi(s) = h̃i(∆ts,i) (3.4)

= h̃i(s1 cos(θi) + s2 sin(θi) − ti) (3.5)

where h̃i is a 1-D function of ∆ts,i. The parameterization above ignores the depth

dependence of detector kernel, i.e., the coordinate parallel to the projection line.

This dependence could be added as an additional parameter.

Considering effects such as detector penetration, we expect the differences be-

tween the h̃i(∆ts,i) for different detector pairs i to be predominantly due to the

incident photon angles for the different projections. For the IndyPET scanner, it

is a good approximation to assume the incident photon angle to be equal to the
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Fig. 3.5. Scans of line source phantoms were used to obtain an empirical model for the
scanner’s system kernel. We note that the FWHM of the detector response in (b) is

approximately equal to the detector crystal spacing. The scale-bar indicates the crystal
spacing of 3.3 mm.

projection angle since the detector banks have low curvature. Based on these con-

siderations, we model the detector kernels hi as a function of an overall system kernel

h that is parameterized by projection angle

hi(s) = h̃i(∆ts,i) = h(θi, ∆ts,i) . (3.6)

The parameterization above does not account for the boundaries between different

detector blocks, an effect that has typically been ignored[50, 53, 45].

The simplicity of the parameterization in (3.6) is a direct consequence of the

geometry of the IndyPET scanner. In contrast, the parameterization for a circular

detector geometry would require an additional parameter since the detector orienta-

tion relative to the projection lines is a function of the displacement of the projection

from the center of the field of view.

Empirical Model Based on Line Source Scans

We obtained an empirical system kernel h(θi, ∆ts,i) for the IndyPET scanner

using scans of an axially oriented line source phantom, resulting in an approximate

point source in the transaxial 2-D reconstruction plane. The line source was mounted
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on a translation stage positioned near the center of the field of view and data sets were

collected as the source was moved horizontally in steps of 0.5 mm, see Fig. 3.5(a).

Figure 3.5(b) shows an example of the signal measured for a single detector pair as

a function of the horizontal position of the line source.

Based on the collected line source measurements, we have developed the follow-

ing modeling procedure to obtain an empirical system kernel. Define sk as the kth

horizontal position of the line source on the translation stage and let yk,i denote the

measured projection count for detector pair i at source position k. To eliminate dif-

ferences due to the different overall detector gains ci, the count data are normalized

to ỹk,i = yk,i/ci where the ci are obtained from a normalization scan. For each ỹk,i we

calculate the projection angle θi and the displacement difference ∆tsk,i between the

ideal projection i and source position sk. Based on this parameterization, the ỹk,i

are accumulated onto a 180×200 point meshgrid with dimensions −θmax ≤ θ ≤ θmax

and −10 mm ≤ ∆t ≤ 10 mm, where for our detector separation of 37.815 cm, the

maximum projection angle is θmax = 24.87 degrees. The accumulation is performed

using nearest neighbor interpolation since due to the geometry of the IndyPET, the

projection data are non-uniformly spaced in angle and displacement. After accumu-

lating the counts on the grid, the grid values are normalized by the number of data

points that have been assigned to each grid location. Grid points that have not been

assigned any data points are computed using bilinear interpolation. To reduce the

effect of measurement noise, the gridded data are smoothed using a 2-D Gaussian

lowpass kernel with a standard deviation of 2 samples, corresponding to 0.2 mm in

the displacement coordinate and to 0.5 degrees in the angular direction. The filtered,

gridded data are our model for the system kernel h(θ, ∆t) as shown in Fig. 3.6. This

kernel was computed using K = 65 different line source positions.

The result in Fig. 3.6 does not indicate a significant dependence on projection

angle. This effect is due to the limited range of projection angles acquired with the

IndyPET scanner. Furthermore, our measurements become noisier towards larger

angles since, due to the geometry, fewer data points were available in this range.
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Fig. 3.6. Empirical system kernel h(θ, ∆t) for the IndyPET scanner. The kernel is
parameterized by projection angle θ and the displacement ∆t of the source from the ideal

projection line.

Note, that for iterative reconstruction, we truncate the system kernel to the range

|∆t| < 5 mm.

A practical challenge in performing the modeling procedure above is to estimate

precisely the physical positions sk of the line source. While the horizontal increments

are accurately known by virtue of the translation stage, it is difficult to obtain an

accurate estimate for the initial position s0. Performing the modeling procedure with

a constant offset in the estimated sk implies that reconstructions of projection data

for a single, zero gantry position will be shifted by the same offset. However, when

the gantry is rotated, so is the shift in each single-frame reconstruction, such that the

reconstructed positions for a point source will move on a circle. For reconstructions

of complete data sets consisting of multiple frames, this results in blurring. Since our

objective in modeling the system is to achieve resolution recovery, it is critical that

we estimate the sk with an uncertainty much smaller than the width of a detector

crystal segment.

Interestingly, the circular blurring effect described above can be used to obtain an

accurate estimate of s0. To summarize the approach, we first obtain an approximate



- 50 -

initial estimate of s0 directly from the sinogram. Based on this estimate, we perform

the modeling procedure to obtain an approximate kernel h(θ, ∆t). This kernel is then

used to reconstruct projection data of a point source taken at different gantry angles.

By reconstructing the data set frame-by-frame, we can estimate the reconstructed

position of the point source for each gantry angle. This allows us to estimate the

phase and radius of the circular blurring, which in turn give an improved estimate of

s0. Note, that this procedure calibrates the offset relative to the center of rotation

of the gantry, independent of errors in the detector mounting on the gantry. The

details of the estimation and claibration procedure are listed in Appendix A.10.

3.3 Reconstruction Algorithms

In this study, we compare reconstructions obtained using FBP, EM and Bayesian

techniques with three different prior models. For each algorithm, we evaluate recon-

struction quality as a function of one smoothing parameter; filter cutoff frequency

for FBP, the number of iterations for EM, and the smoothing parameter of the prior

for the Bayesian methods.

3.3.1 Statistical Model for Iterative Reconstruction

For EM and the Bayesian methods, we use the exact Poisson counting statistics

to model the data acquisition. Let y denote the vector of photon counts for all

M projections. For the data collected on the IndyPET scanner, the number of

projections for a single reconstruction plane is M = 45 × 3136, corresponding to

45 acquired frames, each associated with a diamond shaped sinogram segment of

3136 entries. As mentioned in section 3.2, the counts y are pre-corrected for random

coincidences. Let P be the tomographic projection matrix so that Pi∗ denotes the

vector formed by its ith row. The shifted Poisson log-likelihood[73] may then be

written as

log py|x(y|x) =
M∑
i=1

(
− (Pi∗x+ s+2r) + (yi +2r) log(Pi∗x+ s+2r)− log((yi +2r)!)

)
(3.7)
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where s and r denote contributions due to scatter and random coincidences respec-

tively. Note that in general, scatter and randoms are a function of the projection

index i; however, for this study, we assumed identical scatter and randoms values

for all projections. The scatter value s was obtained by examining sinogram ac-

tivity outside the support of the imaged object. The randoms value was selected

experimentally such that yi + 2r was mostly positive. For all data sets, r was less

than 2 counts per projection. Importantly, for a given set of projection data, the

same values of s and r were used for all reconstruction algorithms to ensure a fair

comparison.

The system matrix P was calculated from the system kernel h(θ, ∆t) using (3.6)

and (3.3), i.e., by approximating the kernel as constant over the support of a single

pixel. If the entries Pij are computed on-the-fly for each forward projection, the Pij

for non-zero gantry angles are obtained simply by using the difference between the

projection angle θi and the gantry angle to index into the system kernel h. However,

in our implementation, we speed up computation by storing P . To reduce the storage

space required, we only store the matrix for a zero gantry position. In this case, the

entries Pij for non-zero gantry angles are obtained by rotating the coordinates of

pixel j by the negative gantry angle and mapping the rotated coordinates into the

pixel grid for the zero gantry position. Corrections for attenuation, deadtime, and

decay were performed by multiplying the entries Pij by the appropriate factors. Since

different frames require different corrections, these multiplications were performed

on the fly for each forward projection. The attenuation coefficients were calculated

analytically by forward projecting the known or estimated support of the imaged

object using a constant attenuation coefficient.

3.3.2 Bayesian Reconstruction Algorithms

Bayesian reconstruction methods regularize the tomographic reconstruction by

using a prior probability distribution p(x) that incorporates assumptions about typ-

ical images such as local smoothness. The image reconstruction is computed as the
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approximate maximum a posteriori (MAP) estimate

x̂MAP = arg max
x

(log p(y|x) + log p(x)) (3.8)

where log p(y|x) is the Poisson likelihood function (3.7).

For this study, we compare three Bayesian techniques using a Gaussian Markov

random field prior (GMRF), a generalized Gaussian Markov random field (GGMRF)

prior and an adaptive wavelet graph model (WGM) prior respectively. The com-

monly used GMRF prior can be written as

log p(x) = − 1

2σ2

∑
{k,j}∈N

bk−j(xk − xj)
2 + constant (3.9)

where σ is a smoothing parameter and N is the set of all neighboring pixel pairs in

the image x.

A disadvantage of the GMRF prior model is that the square potential function

tends to oversmooth edges. To address this problem, several ‘edge-preserving’ po-

tential functions have been proposed[5, 6, 7, 8, 9, 10, 11]. One such model is the

GGMRF[10] which can be written as

log p(x) = − 1

pσp

∑
{k,j}∈N

bk−j(xk − xj)
p + constant (3.10)

where p is called a shape parameter. For the results presented in this study, we

chose a GGMRF shape parameter of p = 1.5 which should produce sharper edges

than a GMRF but result in reconstructions that appear less segmented as compared

to using a smaller p-value or a Huber[74] prior model.

The adaptive wavelet graph model (WGM)[66, 67] is a nonlinear prior model

formulated in the wavelet domain. The WGM exploits dependencies between wavelet

coefficients at different resolutions to adapt the degree of regularization to the local

image statistics. Specifically, the coarse scale wavelet coefficients are used to estimate

the regularization parameters at the finer scales. This procedure allows for strong

regularization of uniform image regions to reduce noise while edges and textures

are preserved. Since the prior model for this method is data dependent, it is not a
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MAP reconstruction technique. However, for simplicity, below we will use the term

MAP optimization when referring to this algorithm. The WGM requires a set of

training data to estimate the parameters of the wavelet prior model. For the results

in this study, the WGM was trained on the same set of MRI reconstructions as in

references[66, 67].

For all three prior models, the MAP optimization is performed using the iterative

coordinate descent (ICD) algorithm[10, 42]. The ICD algorithm sequentially opti-

mizes the MAP equation (3.8) with respect to single pixel values xj. In comparison

to gradient methods[75, 54, 56, 76], the ICD algorithm allows for simple enforcement

of pixel positivity, resulting in more robust convergence. However, a disadvantage of

ICD as compared to gradient methods is that the computational complexity cannot

be reduced by using a factored matrix model as in [56, 50, 45].

Compared to previous implementations, the ICD algorithm in this study uses a

simple multiresolution initialization strategy instead of FBP initialization. The mul-

tiresolution initialization is performed by calculating a coarse-to-fine scale sequence

of MAP reconstructions, starting at a coarsest resolution of 16 by 16 pixels with

a zero initial condition. The reconstruction at each resolution is interpolated and

then used to initialize the reconstruction at the next finer scale. An advantage of

this strategy is that the computationally inexpensive coarse scale reconstructions

provide a good initialization for the fine scale reconstructions. This initialization

typically reduces the number of computationally expensive iterations at the finest

scale. In addition, the multiresolution initialization eliminates the need for an FBP

reconstruction, which on the IndyPET scanner requires the preliminary generation

of a full sinogram as described in section 3.2.2. One approximation made in the

multiresolution initialization is that the assumption of constant system kernel per

pixel (3.3) does not hold at coarse scales. However, this approximation does not af-

fect the final fine scale reconstructions since the coarse scale solutions are only used

for purposes of initialization. The choice of MRF smoothing parameters at coarse

scales is not critical. For all results presented in this study, we have used σn = 2−nσ0
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where σn denotes the smoothing parameter at scale n and n = 0 denotes the finest

scale. For all reconstructions shown here, 25 iterations were performed at each scale

to ensure sufficient convergence.

One concern with Bayesian reconstruction algorithms for emission tomography

is that the reconstructions have spatially varying resolution[68] which can result in

over-regularization of high count regions. This effect is undesirable, particularly,

for ROI studies with high dynamic range. To address this issue, several modified

algorithms have been proposed[68, 69, 70, 71]. In this study, we evaluate the impact

of the modifications proposed by Fessler and Rogers[68] applied to the GMRF and

GGMRF priors for a simulated data set containing a lesion on an approximately

uniform background.

3.3.3 Expectation Maximization Reconstruction Algorithm

The EM algorithm used in this study is the basic algorithm[51] extended to

include corrections for scatter and random coincidences. The EM update equation

used was

xn+1
j =

xn
j∑M

i=1 Pij

M∑
i=1

Pij
yi + 2r

2r + s +
∑N

k=1 Pikxn
k

(3.11)

where xn is the reconstruction estimate after the nth iteration. The smoothness of

the reconstructions was controlled by the number of iterations performed. For all

reconstructions, the EM algorithm was initialized with a constant image whose for-

ward projection matched the total number of counts in the measured projection data.

To ensure a fair comparison, our implementation of EM uses the same programming

code as the Bayesian ICD-MAP implementation, with the only modification being

the appropriate update equation and elimination of the prior model. Thus, exactly

the same system matrix computation and corrections are used for both algorithms.

3.3.4 Filtered Backprojection

For filtered backprojection reconstruction, the frame sinogram segments were first

precorrected for deadtime, exponential decay, overall detector sensitivity, scatter and

randoms. An approximate complete sinogram was then generated as described in
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section 3.2.2. The smoothness of the FBP reconstructions was controlled by varying

the parameter α of a reconstruction filter with frequency response

H(f) = Hramp(f)

(
0.5 + 0.5 cos

(
πf

αfN

))
for |f | ≤ min(αfN , fN) (3.12)

and zero elsewhere, where fN is the Nyquist frequency. Note, that for α = 1, we

obtain a Hanning filter, and for α > 1, the Hanning response smoothly transitions

to a ramp filter. For the results presented in this paper, α was varied in the range

from 0.3 to 8.0 and, in addition, a ramp filter was used to obtain reconstructions

with minimal smoothing.

3.4 Experimental Results

Phantom data acquired on the IndyPET scanner as well as simulated data were

used to evaluate reconstruction quality for different reconstruction algorithms and

for different system kernels. Three data sets were used, a bar phantom, a Hoffman

3-D brain phantom, and a simulated data set containing a circular lesion on an

approximately uniform background. Quantitative analyses of reconstruction qual-

ity for FBP, EM and the Bayesian techniques were performed for the bar phantom

and the simulated data set. For the bar phantom, we also compare reconstruction

quality for the empirical and the triangular system kernels; and we evaluate recon-

struction quality for a set of parametric system kernels with different widths. Note,

that whenever we refer to the empirical kernel, we mean the 2-D kernel shown in

Fig. 3.6 including the dependence on projection angle. Finally, we compare the

computational efficiency of EM and Bayesian GMRF MAP and evaluate different

initialization strategies for the ICD-MAP algorithm.

3.4.1 Bar Phantom

As illustrated in Fig.3.7, the bar phantom consists of four arrays of parallel

Plexiglas bars with thicknesses of 1.55, 2.31, 2.90, and 4.32 mm separated by gaps of

equal widths. The space between the bars was filled with FDG, resulting in square

wave emission profiles with different periods for each quadrant. The projection data

were acquired on the IndyPET scanner. Fourteen different data sets were collected
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Quadrant 2
2.31 mm bars

Quadrant 3
2.90 mm bars

Quadrant 1
1.55 mm bars

Quadrant 4
4.32 mm bars

Fig. 3.7. Illustration of bar phantom. The bar phantom consists of four arrays of parallel
bars with thicknesses of 1.55, 2.31, 2.90, and 4.32 mm separated by gaps of equal widths.

sequentially, each corresponding to a full 180 degree gantry sweep using 45 frames.

The acquisition time per frame was identical for all 14 data sets. By summing

different subsets of these data sets frame by frame, we generated 4 combined data

sets with a total of 10.4M, 4.4M, 2M, and 586,000 counts in the reconstructed plane.

FBP, EM, and Bayesian reconstructions of the four combined data sets were

computed using a wide range of smoothing parameters for each algorithm. The

reconstruction resolution was 256 by 256 pixels for a field of view of 18 cm, resulting

in a pixel size of 0.7 mm square. For EM and Bayesian MAP with a GMRF prior,

we compare reconstructions for both the empirical system kernel shown in Fig. 3.6

and the triangular kernel shown in Fig. 3.1(c). For Bayesian GGMRF MAP and the

Bayesian wavelet graph model (WGM), only the empirical system kernel was used.

In a separate experiment described in section 3.4.1, we compare Bayesian GMRF

reconstructions for a set of parametric system kernels of different widths.

Figures 3.8 and 3.9 show sample reconstructions for the data set with 10.4M

counts. The images were cropped to 192 × 196 pixels, corresponding to a phys-

ical size of 13.5 × 13.78 cm. The smoothing parameters for the reconstructions

shown in Fig. 3.8 were chosen to minimize the expected spatial reconstruction error

(bias2+variance, see section 3.4.1) for the 4.32 mm bars in quadrant 4. Similarly,

Fig. 3.9 shows reconstructions with minimum error for the 2.90 mm bars in quad-

rant 3. The images of the EM reconstructions are slightly clipped due to the high
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FBP ramp filter
EM, 198 iterations
triangular kernel

MAP GMRF, σ = 5.5
triangular kernel

EM, 348 iterations
empirical kernel

MAP GMRF, σ = 6.9
empirical kernel

MAP GGMRF, σ = 6.9
empirical kernel

WGM, ω = 2.5
empirical kernel

Fig. 3.8. Bar phantom reconstructions for 10.4M total counts. The images correspond to
a physical size of 13.5 × 13.78cm at a resolution of 0.70mm/pixel. The smoothing

parameter for each method was selected to minimize the expected error for the bar profile
in quadrant 4 (4.32 mm bars).
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FBP ramp filter
EM, 342 iterations
triangular kernel

MAP GMRF, σ = 8.7
triangular kernel

EM, 1068 iterations
empirical kernel

MAP GMRF, σ = 13.0
empirical kernel

MAP GGMRF σ = 15.0
empirical kernel

WGM, ω = 6.0
empirical kernel

Fig. 3.9. Bar phantom reconstructions for 10.4M total counts with smoothing parameters
selected to minimize the expected error for the bar profiles in quadrant 3 (2.90mm bars).
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amplitude of the noise peaks in the reconstructions.

Based on visual inspection, the empirical system kernel significantly improves the

quality of the iterative reconstruction techniques. Also, when the empirical system

kernel is used, the iterative techniques provide improved resolution over FBP. For

the Bayesian reconstructions, the non-Gaussian GGMRF and WGM prior models

provide sharper edges as compared to the GMRF prior. However, the GMRF prior

appears to have a wider frequency response, allowing for good reconstruction quality

of all quadrants using a single regularization parameter. Note, that none of the

reconstruction methods can resolve the horizontal 1.55 mm bars in quadrant 1, thus

our quantitative analysis below is limited to quadrants 2-4.

Bar Phantom Bias and Variance Analysis

The bar phantom reconstructions were analyzed by comparing the reconstructed

wave forms to the expected square wave profile. Bias and variance measures were

computed separately for each quadrant by fitting harmonic series to the reconstructed

bar profiles. Let xQ(r, n) denote the reconstruction values in a 50 by 50 pixel window

centered over quadrant Q. Let n denote the coordinate running perpendicular to the

bars (e.g. horizontal for quadrants 2 and 4) and let r be the coordinate parallel to

the bars. The 1-D average reconstruction bar profile x̄Q(n) is obtained as

x̄Q(n) =
1

R

R∑
r=1

xQ(n, r) (3.13)

where R = 50 is the size of the window and 1 ≤ n ≤ R. We then determine the

coefficients ak and bk of a harmonic series x̃Q(n)

x̃Q(n) = b0 +
K∑

k=1

(ak sin(2πkfQn) + bk cos(2πkfQn)) (3.14)

by using a least squares optimization to fit x̃Q(n) to x̄Q(n). The frequency fQ is

a fixed frequency appropriate for each quadrant. For the results presented in this

study, the order of the fitted series was K = 7.

The reconstruction bias is calculated by comparing the fit x̃Q(n) to an ideal square

wave. Let αk and βk be the Fourier coefficients of an ideal square wave with unit
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Fig. 3.10. Bias vs. standard deviation for the bar phantom reconstructions for 10.4M
total counts. Bias and standard deviation were calculated using the Fourier analysis

described in section 3.4.1. The curve for each reconstruction algorithm was obtained by
varying the smoothing parameter.
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amplitude, a DC value of one, and a phase equal to the phase of the fundamental of

x̃Q(n). We then calculate the squared reconstruction bias for quadrant Q as

bias2
Q = min

c

{
K∑

k=1

(
ak

c
− αk)

2 +
K∑

k=0

(
bk

c
− βk)

2

}
. (3.15)

The minimization over c accounts for the fact that the absolute scaling of the re-

construction algorithms is not calibrated. Thus, we scale the reconstructed signal

to the ideal square wave such that bias is minimized. The minimization in (3.15) is

performed analytically. The bias is affected by the choice of the scatter and randoms

parameters r and s in (3.7) used for the reconstruction. Specifically, a smaller value

for s results in increased bias due to an increased DC offset in the reconstructed

wave profile. Thus, we emphasize that, for a given set of projection data, we use

the same scatter and randoms values for all reconstruction methods to ensure a fair

comparison.

While the bias characterizes the systematic deviation of the reconstruction from

the true signal, the variance characterizes the random variation of the reconstruction

around its average. The variance for quadrant Q is calculated as the combined

variance over all rows r around the fit x̃Q(n)

std2
Q =

1

c2(R2 − 1)

R∑
r=1

R∑
n=1

(xQ(n, r) − x̃Q(n))2 (3.16)

where c is the scaling constant determined in (3.15). Note, that the variance defined

here is the spatial variance characterizing the noisiness of a single reconstruction as

compared to the variance of the reconstruction estimator.

Figure 3.10 shows reconstruction bias vs. standard deviation for the 10.4M count

case separately for the three quadrants. The curves were obtained by varying the

smoothing parameter for each reconstruction method. Note, that the points closest

to the coordinate origin in Fig. 3.10(a) and (b) correspond to the reconstruction

images shown in Fig. 3.8 and Fig. 3.9 respectively.

The bias vs. standard deviation plots indicate, that using the empirical system

kernel as compared to the triangular kernel significantly lowers the bias at equal
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Fig. 3.11. Reconstruction bias vs. standard deviation for the different quadrants of the
bar phantom for different count levels.
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variance for EM and Bayesian GMRF MAP. Interestingly, when the triangular kernel

is used, EM and GMRF MAP perform similarly. However, when the empirical kernel

is used, GMRF MAP achieves significantly lower bias at equal variance as compared

to EM. For the empirical kernel, the GGMRF prior performs slightly better than

the GMRF model. The WGM model performs well in quadrant 4 but not as well

in quadrants 2 and 3. The FBP reconstructions have low variance and high bias

even for a ramp filter since no resolution recovery is performed. FBP only partly

resolves the bars quadrant 3 and does not resolve quadrant 2. For quadrant 4, the

FBP bias vs. standard deviation is similar to the low variance range of the curves

for the iterative algorithms using a triangular system kernel. However, when the

empirical system kernel is used, the iterative techniques achieve significantly lower

bias at equal variance as compared to FBP.

Figure 3.11 shows the bias vs. standard deviation curves for the bar phantom

data sets with 4.4M, 2M and 586K total counts. The results are very consistent with

those for the 10.4M count data set. Due to the lower signal to noise ratio at lower

count levels, the advantage of using the empirical system kernel decreases slightly.

This is expected, as the potential for resolution recovery is best at high signal to

noise ratios. Note, that the reconstructions for 586K counts does not resolve the

bars in quadrant 2.

In general, we would expect the reconstruction bias to decrease as the standard

deviation increases, i.e. as less smoothing is performed. However, most of the curves

in Figs. 3.10 and 3.11 indicate that after reaching a minimum, the bias increases for

larger values of the standard deviation. We attribute the increase to two factors.

First, our reconstructions have slight circular artifacts resulting from inaccuracies

in the normalization scan. Thus, the reconstruction profile deviates systematically

from an ideal square wave as less smoothing is performed. Secondly, the bias is

calculated using a limited window of 50 by 50 pixels for each quadrant which may

result in noisy estimates of the higher order Fourier coefficients.

The reduction in bias achieved by the empirical system kernel is mainly due to
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Fig. 3.12. Normalized magnitude of the fundamental Fourier component of the
reconstructed bar profiles (10.4M counts). The normalized magnitude was calculated

from the Fourier coefficients ak, bk of the harmonic fit as
√

a1 + b1/b0. The ideal value for
a square wave of unit amplitude and DC of one is 4/π. The empirical system kernel
significantly improves the amplitude of the reconstructed bar profiles around the DC

level.

a much larger amplitude of the reconstructed bar profiles. Figure 3.12 shows the

normalized magnitude
√

(a2
1 + b2

1)/b0 of the fundamental frequency component of

the reconstructed wave form as a function of reconstruction standard deviation. The

ideal value for a square wave of unit amplitude and DC value of b0 = 1 would be

4/π ≈ 1.27. The curves in Fig. 3.12 demonstrate that using the empirical system

kernel results in a much larger variation of the reconstructed profile around the DC

value as compared to using the triangular kernel or FBP.

Figure 3.13 shows the reconstructed bar profiles in quadrant 4 for the reconstruc-

tion images shown in Fig. 3.8. The plotted profiles are the averages x̄4(n) as defined

in (3.13) normalized by their DC value. For EM and GMRF MAP, the dashed lines

correspond to the reconstructions using the triangular system kernel. Again, the

iterative reconstructions using the empirical system kernel achieve much larger am-

plitudes in comparison to DC. EM using the empirical kernel produces a slightly
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Fig. 3.13. Bar profile reconstruction averages x̄4(n) for quadrant 4 (4.32 mm bars). The
profiles were calculated from the reconstruction images shown in Fig. 3.8, i.e. for

smoothing parameters minimizing the error in quadrant 4. The dashed lines for EM and
MAP GMRF correspond to reconstructions using the triangular system kernel.

asymmetric profile with peaks overshooting the ideal profile. The GMRF MAP pro-

file is symmetric but has very smooth transitions resulting in blurred edges. The

GGMRF MAP method produces slightly sharper transitions. The WGM prior re-

sults in much sharper transitions but has some artifacts in the very high amplitude

region.

Comparison of Parametric System Kernels of Different Widths

To evaluate the impact of deviations in the system kernel used for iterative recon-

struction, we compare Bayesian GMRF reconstructions of the bar phantom for a set

of parametric kernels of different widths. The parametric kernels were obtained by

convolving the triangular kernel of Fig. 3.1(c) with Gaussians of different standard

deviations β. To obtain a baseline 1-D kernel that is similar to the 2-D empirical
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Fig. 3.14. Parametric kernels for sensitivity analysis. The empirical 2-D system kernel
h(θ, ∆t) was averaged in the angular coordinate θ to obtain a 1-D average kernel (solid
line). A parametric fit (dashed line) to the averaged empirical kernel was obtained by
convolving the ideal triangular kernel with a Gaussian. Parametric kernels of different

widths are then generated by varying the standard deviation of the convolving Gaussian
relative to the value obtained for the fit. The 1-D kernels are normalized for equal area.

system kernel, we first computed an average of the empirical kernel in Fig. 3.6 over

the 80% central portion of the angular range. The β value for the baseline parametric

kernel was then estimated to obtain a least-squares fit to the averaged empirical ker-

nel. For the reconstructions, we consider parametric kernels with parameters from

β = 0 (triangular kernel) to β = 2βf , where βf is the fitted value. Figure 3.14 shows

examples for β = 0.5 βf and β = 1.5 βf . All parametric kernels were normalized

such that the area under the curve was equal to that of the 1-D averaged empirical

kernel.

Figure 3.15 compares the bias vs. standard deviation curves of reconstructions

using parametric kernels of different widths and for the triangular and the original

2-D empirical kernel shown in Fig. 3.6. We observed that some improvements in

reconstruction quality can be achieved by increasing the width of the parametric

kernel as compared to the triangular kernel. However, the result for β = βf deviates

noticeably from that for the original 2-D empirical system kernel. This indicates, that
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Fig. 3.15. Impact of deviations in the system kernel used for iterative reconstruction.
Shown are the bias vs. standard deviation plots for Bayesian GMRF reconstructions of

the bar phantom (10.4M counts). The β/βf parameters indicate the width of the
parametric kernels where βf corresponds to fitting the averaged empirical kernel.
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Fig. 3.16. Minimum reconstruction error as a function of the width parameter β of the
parametric system kernels. The plotted value for each width is obtained as the minimum√

(bias2 + variance) for quadrant 4 taken over a range of smoothing parameters for the
GMRF prior.

small deviations in the system kernel can significantly affect reconstruction quality.

For very high values of the reconstruction standard deviation, i.e. as the influence

of the Bayesian prior model is minimal, the empirical system kernel results in the

lowest bias for quadrants 2 and 4. This effect may indicate, that the empirical kernel

more accurately describes the scanner as compared to the parametric models.

Figure 3.16 shows minimum reconstruction error as a function of the width of the

parametric system kernels. The minimum expected reconstruction error is calculated

as the minimum value of
√

(bias2 + variance) over all smoothing parameters for fixed

β. The results indicate, that the fitted width β = βf provides a good compromise

for all quadrants. Using a wider system kernel increases the error in quadrant 2

but improves the result for quadrants 3 and 4. However, as can be seen from the

curve for β = 1.2βf in Fig.3.15(a), a wider kernel improves the result only for a

very small range of standard deviations. This effect may be due to interactions with

the GMRF prior, i.e. over-sharpening the reconstruction through the forward model

may counteract the blurring of the GMRF prior.
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3.4.2 Hoffman 3-D Brain Phantom

The second data set used in this study was acquired on the IndyPET scanner

using a Hoffman 3-D brain phantom. The data set was reconstructed at a resolution

of 256 by 256 pixels with a field of view of 20 cm, resulting in a pixel size of 0.78 mm

square. The reconstructed plane contained a total of 2M counts. Reconstructions

were performed using FBP, EM and the Bayesian techniques. For EM and Bayesian

GMRF MAP, we compare the empirical and the triangular system kernels. For the

other Bayesian techniques, we used the empirical system kernel only.

Figure 3.17 shows reconstructions of the Hoffman 3-D brain phantom. Note,

that due to the planar structure of the phantom, the reconstructions correspond to

overlapping physical planes in locations where the shapes of the adjacent planes in

the phantom differ. The individual reconstruction images were cropped to 177×148

pixels, corresponding to a physical size of 13.8 × 11.5 cm. Each row in Fig. 3.17

corresponds to a single reconstruction algorithm with three hand-picked smoothing

parameters. The first three rows correspond to FBP and to algorithms using the

triangular system kernel. The bottom two rows show EM and GMRF MAP recon-

structions using the 2-D empirical system kernel. In general, using the empirical

kernel improves the quality of the iterative reconstructions. The EM reconstruc-

tions deteriorate with increasing numbers of iterations before some of the detail is

converged.

Figure 3.18 compares EM and Bayesian reconstructions using the empirical sys-

tem kernel. We observe that EM does not reproduce the interior contours as well as

the Bayesian techniques. As compared to the GMRF, the GGMRF prior produces

sharper contours with few artifacts. The WGM produces a much sharper image,

however, the result has significant artifacts.

3.4.3 Simulated Phantom

A simulated data set was generated by adding a constant circular lesion of 4 mm

diameter and 5 times background activity to an approximately uniform background

as shown in Fig. 3.19. The background image was an FBP reconstruction of an FDG
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Fig. 3.17. Reconstructions of Hoffman 3-D brain phantom. Each row shows
reconstructions for a single algorithm using three hand-picked regularization parameters.

The first three rows correspond to FBP and iterative methods using the triangular
system kernel. The last two rows correspond to iterative methods using the empirical

system kernel.
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Fig. 3.18. Comparsion of EM and Bayesian reconstructions using different prior models.
In all cases, the empirical system kernel was used.
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Fig. 3.19. Simulated phantom. A circular lesion of five times background activity was
added to an approximately uniform background. The image was cropped to a size of

101 × 106 pixels, corresponding to a simulated physical size of 3.16 × 3.31 cm.

mouse study on the IndyPET scanner. Simulated projection data were generated by

forward projecting the image in Fig. 3.19 using the empirical system kernel for the

IndyPET scanner. The data samples were formed by Poisson random variables with

the appropriate means. Dead-time, decay, and relative detector sensitivity were not

modeled. Forward projection and reconstruction were performed at a resolution of

256 by 256 pixels assuming a field of view of 8 cm. This results in a pixel size of

0.31 mm square which is more than 10 times the detector resolution of the scanner.

The total number of counts in the reconstruction plane was 130,000. Twenty separate

noisy realizations of projection data were generated.

Reconstructions of the simulated data set were performed using FBP, EM and

the Bayesian techniques. The empirical system kernel was used for EM and the

Bayesian techniques. Even though the use of the same system kernel for forward

projection and reconstruction will bias the results towards the iterative reconstruc-

tion techniques[77], we can still obtain fair comparisons between different iterative

techniques and, in addition, obtain an approximate idea about their performance

relative to FBP.

The reconstructions were evaluated quantitatively in terms of mean square error

estimator performance for each reconstruction technique as a function of smoothing

parameter. We do not use the clinically more relevant contrast recovery ratio (CRC)

since we have found the CRC values and the associated rank order of performance

for the different algorithms to be a strong function of the exact procedure and the
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regions chosen for the CRC calculation. Thus, for clinical evaluation, we consider it

necessary to precisely specify a task with an associated ROI estimator or to perform

human observer studies[78]. For this study, we limit ourselves to MSE analysis to

decouple the reconstruction problem from the ROI estimation problem. Let x be

the ground truth image and let x̂ be a single reconstruction. Define L and B as

the known sets of lesion pixels and background pixels. The set B was obtained by

thresholding the ground truth image, eroding the resulting mask and excluding the

lesion plus a 1 mm thick annulus around it. Further, let µL and µB be the true mean

activity values in the lesion and background. We then calculate the relative MSE

errors e2
L and e2

B for the lesion and background regions as

e2
L =

1

µ2
LNL

∑
j∈L

(x̂j − xj)
2 (3.17)

e2
B =

1

µ2
BNB

∑
j∈B

(x̂j − xj)
2 (3.18)

where NL and NB are the number of pixels in the lesion and background regions

L and B respectively. We note that e2
L and e2

B are normalized relative to the true

signal amplitudes since one is typically more interested in the ratio of lesion activity

to background activity as compared to the absolute values. The errors e2
L and e2

B

are averaged over the 20 reconstructions of the different noise realizations to give

estimates Ê[e2
L] and Ê[e2

B] for the expected relative errors for each reconstruction

method as a function of regularization parameter.

Figure 3.20(a) shows a plot of the expected reconstruction error for the lesion√
Ê[e2

L] vs. the expected reconstruction error for the background
√

Ê[e2
B] for different

algorithms. The curve for each algorithm was obtained by varying the smoothing

parameter. The results indicate, that the Bayesian methods can achieve lower error

in the lesion region than EM. The GGMRF prior model performs significantly better

than the GMRF prior for this problem. The curve for the GGMRF prior is closest

to the coordinate origin, signifying lowest combined error.

An interesting characteristic of the Bayesian methods is that the minimum error

in the lesion region and the minimum error in the background region are achieved at
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Fig. 3.20. Simulated phantom. Expected error for the known lesion region as a function
of the expected error in the background region. The curves were obtained by varying the
smoothing parameter for each method. The errors are averages over reconstructions of 20
noisy realizations of the projection data. Shown in (a) is a comparison for the different
iterative methods and FBP. Shown in (b) is the effect of using the modification of the

MAP prior proposed in [68].
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Fig. 3.21. Reconstruction images and profiles for the simulated tumor phantom. The
images correspond to a physical area of 3.16 × 3.31cm at a pixel resolution of 0.31mm.
The smoothing parameter for each method was selected to minimize the sum of the

relative errors for the tumor and the background region. The 1-D profiles correspond to a
single row of pixels intersecting the center of the lesion.
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different points on the curve, i.e. for two different values of the smoothing parame-

ter. In other words, there is no single smoothing parameter that optimizes algorithm

performance for both lesion and background. This behavior may be a result of the

activity dependency of the regularization of Bayesian methods[68]. Note, that as

indicated by the single diamond in Fig. 3.20(a), a lower bound for achievable perfor-

mance for this problem is given by the combination of the lowest value of lesion error

over all methods and lowest value of background error over all methods. Specifically,

since we assume known size and location of the lesion, we can trivially achieve this

bound by using one reconstruction method for the background and another one for

the lesion. The distance of the bound to the measured curves indicates, that there

is significant room for further improvement.

Figure 3.20(b) shows the reconstruction error for Bayesian GMRF and GGMRF

reconstructions using the modification proposed by Fessler and Rogers[68] to achieve

approximately space-invariant regularization. This modification is effective in reduc-

ing the combined lesion and background errors since the curves move closer to the

coordinate origin. For the GGMRF prior, the modification results in a much smaller

compromise between choosing the optimal smoothing parameter for background or

lesion. However, the minimum error in the lesion region is slightly higher for the

modified priors.

Figure 3.21 shows reconstruction images as well as 1-D profiles through the re-

constructed lesion for the different algorithms. The images were cropped to a size

of 101 × 106 pixels corresponding to a simulated physical size of 3.16 × 3.31 cm.

The reconstruction resolution is 0.31 mm per pixel which is ten times higher than

the 3.3 mm nominal detector resolution of the IndyPET scanner. The smoothing

parameters for the different algorithms correspond to the points closest to the origin

in Fig. 3.20, minimizing the sum Ê[e2
L] + Ê[e2

B] of the relative errors for the lesion

and background regions. We observed that the iterative algorithms resolve the le-

sion substantially better than FBP. In comparison to EM, the Bayesian GMRF and

GGMRF reconstructions more accurately quantify the lesion. The WGM prior model
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Fig. 3.22. Computational efficiency of EM and Bayesian ICD-MAP with a GMRF prior
and multiresolution initialization. The curves show reconstruction root mean square error

relative to the converged image for MAP and relative to the reconstruction after the
desired number of iterations for EM. The smoothing parameters for (a) and (c)

correspond to the reconstructions in Fig. 3.8 and Fig. 3.9 respectively.

segments the lesion surprisingly accurately, however, it slightly underestimates lesion

activity and has some artifacts. Overall, the modified GGMRF model appears to

achieve the most accurate result. Note, that the reconstructions have ringing arti-

facts in the background which is consistent with observations in earlier studies[53].

The ringing is due to the extremely high reconstruction resolution, which in com-

bination with the wide detector kernel results in a highly ill-posed reconstruction

problem.

3.4.4 Comparison of Computational Efficiency

Convergence speed was compared for EM and Bayesian MAP using a GMRF

prior for reconstructions of the bar phantom data sets. Figure 3.22 shows root mean

square error (RMSE) of the reconstruction images as a function of CPU-time. For

EM, the RMSE values were calculated in reference to the final reconstruction after

the desired number of iterations. For MAP, the RMSE was calculated in reference

to the converged reconstruction image. To account for the multiresolution initializa-

tion, the RMSE curves for MAP were obtained by separately running the complete

multiresolution strategy for different numbers of iterations, using the same number
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of iterations at each scale. The CPU-times were measured on a 700 MHz Pentium III

CPU and do not include the time needed for pre-processing such as the computation

of the tomographic system matrices that can be performed off-line. The CPU-time

required for a single iteration of EM was approximately the same as for a single MAP

iteration at the finest reconstruction scale.

The results in Fig. 3.22 demonstrate that ICD-MAP converges dramatically faster

than EM. In addition, the convergence speed for EM is a strong function of the

smoothing parameter and the signal to noise ratio of the projection data whereas

the convergence speed of MAP is not affected. Based on the large difference between

the algorithms, it is questionable if an ordered subsets acceleration[47] of EM can

result in convergence speeds that are comparable to MAP.

We note that due to the large dimensionality of the problem, even the MAP

reconstructions take about 40 minutes for the reconstruction of a single 2-D plane.

Specifically, the acquisition of 45 frames on the IndyPET scanner results in 45 ×
3136 separate projection measurements. Furthermore, the sparsity of the projection

matrix is reduced by using the relatively wide empirical system kernel. Storage of

the complete projection matrix for all 45 frames for a reconstruction resolution of

256 by 256 pixels would require on the order of 5GB, however, by storing the matrix

for a single gantry position only, this is reduced to 120MB.

Figure 3.23 compares the convergence speed of ICD-MAP for different initializa-

tions of the algorithm. The graphs are based on reconstructions of the bar phantom

data set with 10.4M counts using a GMRF prior. We compare the multiresolution

strategy to initialization by a constant and by an FBP ramp reconstruction image.

Both the constant and the FBP image were scaled such that their forward projection

matched the total number of counts in the measured sinogram. The graph for the

multiresolution initialization was obtained as in Fig. 3.22 and accounts for the total

CPU-time needed for the reconstructions at all resolutions. The results indicate,

that the multiresolution initialization significantly improves the convergence speed

of the algorithm. Based on the known convergence properties of ICD[41], we do not
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Fig. 3.23. Convergence speed of ICD-MAP for different initializations. The graph for the
multiresolution initialization includes the CPU-time for the reconstructions at all

resolutions. The graphs are based on the reconstruction of the 10.4M count bar phantom
data using a GMRF prior with smoothing parameters selected to minimize error in

quadrant 4.

expect a constant initialization to perform well. However, it is surprising, that the

convergence for FBP initialization is actually worse than that for constant initial-

ization. This effect may be due to local or global scaling differences of the FBP

reconstruction in comparison to the MAP estimate. While the convergence for FBP

initialization can potentially be improved through more careful scaling, the multires-

olution initialization is uncomplicated, very effective and does not require separate

implementation of FBP.

3.5 Conclusions

We have presented a quantitative comparison of FBP, EM and Bayesian recon-

struction algorithms in combination with different system kernels for the IndyPET

animal tomography scanner. The results demonstrate that accurately modeling the

tomography scanner considerably improves the reconstruction quality of the iterative

techniques.
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When an inaccurate system kernel is used, EM and Bayesian MAP with a GMRF

prior produce comparable reconstruction quality. For this case, the quality of the

iterative methods is not clearly superior to FBP as evidenced by the similar bias vs.

standard deviation envelopes for the bar phantom reconstruction.

However, when an accurate system kernel is used, the iterative methods produce

much higher reconstruction quality as compared to FBP. Furthermore, when an ac-

curate system kernel is used, the Bayesian methods perform considerably better than

EM. Specifically, Bayesian MAP techniques using GMRF and GGMRF prior models

achieve lower bias at equal variance as well as visually superior reconstructions as

compared to EM.

For the Bayesian methods, we have compared Gaussian and generalized Gaussian

Markov random field prior models as well as a recently proposed wavelet graph prior

model. Our results indicate, that the GGMRF can improve quantitative accuracy

and can produce sharper edges over the GMRF. The wavelet graph model produced

sharper edges than the MRF priors but the results had artifacts. For a simulated

phantom containing a lesion on an approximately uniform background, we have found

the modifications proposed by Fessler and Rogers[68] to improve the performance of

the Bayesian GMRF and GGMRF techniques.

In terms of computational efficiency, Bayesian MAP using an ICD optimization

algorithm with multiresolution initialization was much faster than EM.
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4. MULTISCALE BAYESIAN METHODS FOR

DISCRETE TOMOGRAPHY

Abstract

Statistical methods of discrete tomographic reconstruction pose new problems

both in stochastic modeling to define an optimal reconstruction, and in optimiza-

tion to find that reconstruction. Multiscale models have succeeded in improving

representation of structure of varying scale in imagery, a chronic problem for com-

mon Markov random fields. This chapter shows that associated multiscale methods

of optimization also avoid local minima of the log a posteriori probability better

than single-resolution techniques. These methods are applied here to both segmen-

tation/reconstruction of the unknown cross-sections, and estimation of unknown

parameters represented by the discrete levels.

4.1 Introduction

The reconstruction of images from projections is important in a variety of prob-

lems including tasks in medical imaging and non-destructive testing. Perhaps, the

reconstruction technique most frequently used in commercial applications is convolu-

tion backprojection (CBP) [79]. While CBP works well for reconstruction problems

with a complete set of projections having high signal-to-noise ratio (SNR), special

cases benefit from alternative algorithms which can better model the imaging geom-

etry and measurement process. These cases arise, for example, in low dosage medical

imaging [80], non-destructive testing of materials with widely varying densities [81]

and applications with limited angle projections [82] or hollow projections [83]. In

such cases, statistical and discrete-valued methods can substantially improve the re-

construction quality by incorporating important prior information about both the
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imaging system and the object being imaged. Discrete reconstruction methods are

based on the assumption that the object being imaged is composed of a discrete set

of materials each with uniform properties. Therefore, an ideal reconstruction should

only contain pixel or voxel values from a corresponding set of discrete levels. In

this case, the problem of reconstruction reduces to one of determining the specific

levels present in a reconstruction and then classifying each pixel to one of these

discrete levels. Discrete reconstruction methods impose a very strong constraint on

the reconstruction process, and therefore can substantially improve reconstruction

quality.

Early methods for discrete-valued reconstruction focused on reconstructions of

binary arrays from only the horizontal and vertical projections [84]. The deter-

ministic projections were treated as a system of linear equations. Attention was

particularly paid to the ambiguity of reconstructions which was formulated in the

context of switching components [84, 85]. Algorithms for unambiguous reconstruc-

tion were developed by assuming object constraints such as connectedness in 2-D [86]

or convexity in 3-D [87]. In addition, these concepts were extended to four or more

projection angles including the analysis of the ambiguity problem [85, 88]. However,

all of these techniques assume deterministic projection measurements and do not

perform optimally under high noise conditions.

A second approach to discrete-valued reconstruction detects parameterized ob-

jects directly in the projection domain. This strategy is applicable when the objective

is to detect specific objects or regions such as tumors in medical imaging or material

defects in non-destructive testing. Rossi and Willsky [89] introduced this approach

by performing maximum likelihood (ML) estimation of the location of a single object

in the imaging plane. This concept was later extended to a three-dimensional param-

eterization supporting multiple objects per plane [90]. Here, constrained objects in

3-D are formed as a combination of basic cylinders whose parameters are estimated

as part of the reconstruction. A review of object parameterization methods as well

as a new algorithm for the approximate reconstruction of compact objects modeled
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by polyhedral shapes was presented by by A. Mohammad-Djafari and C. Soussen in

[91]. Parameterized object reconstruction methods are specifically designed for low

SNR conditions. However, they rely on a priori knowledge about shape characteris-

tics of the objects in the cross-section. These methods are therefore not applicable in

cases where such information is unavailable or the objects in the cross-section cannot

easily be parameterized.

In this work, we focus on discrete-valued reconstruction from noisy projections

using statistical methods. Statistical methods model the random nature of the physi-

cal data collection process, then seek the solution that best matches the probabilistic

behavior of the data. Consequently, statistical methods can improve performance

considerably in cases of low SNR. Statistical approaches also easily incorporate spe-

cial geometries such as limited or missing angle projection measurements. Common

statistical techniques incorporate implicit information about desired characteristics

of the reconstruction without explicit modeling of objects in the cross-section.

A statistical method that is well suited for tomographic reconstruction is Bayesian

maximum a posteriori (MAP) estimation. Bayesian methods in general have been

shown to improve performance in many emission and transmission tomography prob-

lems [92, 6, 7, 41] as well as in image restoration tasks [93, 1]. Bayesian MAP esti-

mation reconstructs the image as a tradeoff between matching the projection data

and regularizing the solution by a prior probability distribution. The regularization

imposed by the prior reflects assumed characteristics of feasible reconstructions. Due

to this regularization, the MAP estimation problem is well-posed and avoids the high

noise sensitivity frequently encountered in maximum likelihood (ML) estimation.

Priors for Bayesian reconstruction methods are often chosen to impose smooth-

ness constraints on the reconstruction to eliminate high frequency noise. A prior

model that has generally proven to be useful in the tomographic setting is the Markov

random field (MRF) image model [92, 94, 6, 7, 10]. The chapter by M. T. Chan,

G. T. Herman and E. Levitan in [91] presents a new MRF for modeling image prior

distributions and describes methods for estimating the MRF’s parameters. These
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parameter estimation techniques allow the model to be adapted to the specific charac-

teristics of an ensemble of images. Importantly, the Bayesian estimate is computed

directly from the convolution backprojection reconstruction, rather than from the

original projection data. This approach has the advantage of reducing computation.

In contrast, we use a simple discrete MRF model [95, 2, 96], and instead fo-

cus on the computational difficulties resulting from direct Bayesian reconstruction

from the tomographic data. In order to solve this optimization problem, we employ

multiscale algorithms to both reduce computation and improve convergence to the

global minimum. In addition, we introduce a method for estimating the densities

of the discrete regions as part of the reconstruction process. This is important be-

cause precise knowledge of these discrete densities is required for accurate Bayesian

reconstruction.

The MAP reconstruction itself can be formulated as an optimization problem

which can be solved using a number of different techniques. The expectation-

maximization (EM) algorithm, suitable for ML reconstruction [51], has been adopted

for MAP estimation with Gaussian priors [97, 98, 99, 100]. Extensions of these mod-

els to more general MRF priors were proposed in [6, 101, 7, 57]. However, application

of the EM algorithm for MAP estimation is difficult and usually suffers from slow

convergence.

Instead of using EM techniques, we focus on the direct optimization of the MAP

equation. We adopt a pixel-wise update method known as iterative coordinate de-

scent (ICD) [41, 42] which maximizes the MAP criterion by iteratively updating each

pixel of the image. The discrete version of ICD used here essentially implements

the iterated conditional modes (ICM) technique introduced by Besag [2]. However,

while ICM was designed for image restoration tasks, the ICD algorithm is specifi-

cally designed for the tomographic reconstruction problem resulting in dramatically

improved computational efficiency.

In addition to solving the optimization problem, the discrete-valued reconstruc-

tion requires knowledge of the density or emission rate levels in the cross-section. In
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practice, exact information about these discrete levels is often unavailable. In such

cases it is desirable to estimate the densities or emission rates as part of the recon-

struction. In Section 4.5, we discuss our method to estimate these discrete classes

concurrently with the reconstruction process. We show how the class estimation can

be formulated as a continuous-valued tomographic reconstruction problem with the

number of points equal to the number of classes.

Finally, we extend our reconstruction method to a multiresolution algorithm.

Multiresolution techniques achieve performance improvements in a variety of imag-

ing problems [20, 102] including image segmentation [96, 28] and continuous-valued

tomographic reconstruction [32]. Multiresolution algorithms reconstruct the image

at different resolutions, typically progressing from coarse to fine scale. The coarse

scale solutions serve as initialization or prior information for reconstructions at finer

scales. Due to the improved initialization and the higher SNR at coarse scale, mul-

tiresolution algorithms are typically more robust with respect to local minima. In

addition, local pixel interactions at coarse scale are equivalent to large scale interac-

tions at fine scale. This combined with the low computational complexity at coarse

scale makes multiscale algorithms very efficient.

The multiscale algorithm presented here is a straightforward extension of our

fixed scale algorithm. The reconstruction is performed in a coarse-to-fine fashion

by initializing each resolution level with the interpolated reconstruction of the next

coarser level. The reconstructions at each level are computed using the fixed resolu-

tion method. Our experimental results demonstrate that this multiscale algorithm

is less prone to being trapped in local minima and in many cases, computationally

more efficient than the fixed resolution version.

4.2 Stochastic data models for tomography

In this section, we will develop the statistical framework for MAP reconstruction

in computed tomography. Our framework is applicable to both transmission and

emission measurements and supports general imaging geometries. The models pre-

sented here are based on the exact Poisson statistics of the photon measurements.
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Emitter

Detector  i

y  - detected events i

yT - dosage

x  - absorption of pixel jj

(a) Transmission setup

Detector  i

Detector  i

x  - detection rate jPij

x  - emission ratej

(b) PET emission setup

Fig. 4.1. Physical setup for transmission and positron emission tomography (PET). In
transmission tomography (a), photons are induced into the cross-section. After

attenuation by the absorptive material, detectors measure the remaining photon rates. In
positron emission tomography (b), the cross-section contains a radioisotope and is

surrounded by a ring of detectors. If two detectors register photons at the same time, a
pixel emission is assumed to have occurred on the projection line between them.

Computationally more efficient but approximate models can be obtained by using a

Taylor expansion of the likelihood function [41, 42].

In transmission tomography, the objective is to measure photon attenuation for

different projections through a cross-section of absorptive material. An illustration

of the physical setup is shown in Fig. 4.1(a). The cross-section is surrounded by

a ring of photon emitters and detectors. The emitters induce a calibrated photon

rate yT directed along certain angular and parallel projections. After attenuation

by the absorptive material, the photon rates are measured by the detector opposite

the respective emitter. The photon rates measured by the detectors are not direct

measurements of attenuation. Instead they are noisy photon counts which can be

modeled as Poisson-distributed random variables.

In order to write the probability density for the Poisson measurements, define X

as the N -dimensional vector of attenuation densities of the pixels in raster order. Let

Y denote the vector of photon counts for all M projections at different angles and

parallel offsets. Furthermore, let Pij correspond to the length of intersection between

the jth pixel and the ith projection. Then P is the matrix of elements Pij and Pi∗
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denotes the vector formed by its ith row. Given these assumptions, the photon count

Yi, corresponding to projection i, is Poisson distributed with mean yT exp(−Pi∗x).

The distribution of the Yi may then be written as

P(Y = y|x) =
M∏
i=1

exp(−yT e−Pi∗x)(yT e−Pi∗x)yi

yi!
. (4.1)

We use upper case letters for random variables and lower case letters for particular

realizations. Taking the logarithm of (4.1), we obtain the log-likelihood

(transmission) L(y|x) = logP(Y = y|x) =
M∑
i=1

(
−yT e−Pi∗x + yi(log yT − Pi∗x) − log(yi!)

)
. (4.2)

In emission tomography, no dosage is induced into the cross-section. Instead, the

image plane contains some photon emitting material. A physical setup for the specific

example of positron emission tomography (PET) is shown in Fig. 4.1(b). In this case,

the cross-section contains a radioactive isotope. Recombination of positrons in the

radioisotope results in emission of gamma rays in two opposite directions. These

gamma rays are detected by a ring of detectors around the cross-section. If two

detectors register photons at the same time, this is counted as an emission on the

projection line between them. In the following, we will develop the statistical model

for the general emission case.

The objective in emission tomography is to reconstruct the emission rates of

all pixels in the image plane. Again, the photon detections can be modeled as

Poisson distributed random variables. In order to emphasize the similarity to the

transmission problem, we will use the same notation, but interpret x as the vector

of emission rates for all N pixels and Y as the observed photon counts. We define

Pij as the probability that an emission from pixel j is registered by the ith detector

pair. The photon counts Y are then Poisson distributed with parameter Pi∗x which

yields the distribution

P(Y = y|x) =
M∏
i=1

exp(−Pi∗x)(Pi∗x)yi

yi!
. (4.3)
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The log-likelihood is therefore given by

(emission) L(y|x) = logP(Y = y|x) =
M∑
i=1

(−Pi∗x + yi log(Pi∗x) − log(yi!)) . (4.4)

The log-likelihood functions for both the transmission and the emission case have

the form

logP(Y = y|x) = −
M∑
i=1

fi(Pi∗x) (4.5)

where fi(·) are convex and differentiable functions. This common form will lead

to similar methods of solving these two problems. In the following, we will write

all equations for the emission case; however, all methods apply analogously to the

transmission case.

For the emission problem, maximum likelihood (ML) estimation of x from y

yields the optimization problem

x̂ML = arg min
x

M∑
i=1

(Pi∗x − yi log(Pi∗x)) . (4.6)

For low signal-to-noise-ratio medical imaging problems, the ML estimate has well

documented shortcomings [103, 104, 105]. Noise and sampling limitations can pro-

duce high frequency noise in the ML reconstruction that is not present in the original

cross-section. It is therefore desirable to regularize tomographic inversion by some

means. Maximum a posteriori probability (MAP) estimation addresses this problem

by treating the original image as a random field, X, with prior distribution, p(x).

Again, we use a lower case x to denote a particular realization of the random vector

X. The prior distribution regularizes the optimization problem so that a unique so-

lution always exists [106]. The logarithm of the a posteriori distribution of X given

Y may be computed using Bayes’ formula.

Lp(x|y)
4
= logP(X = x|Y = y)

= L(y|x) + log p(x) − logP(Y = y) (4.7)
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The maximum a posteriori (MAP) estimate is then the value of x̂ which maximizes

the a posteriori density given the observations y

x̂ = arg max
x

Lp(x|y) (4.8)

= arg max
x

{L(y|x) + log p(x)}
= arg max

x
{L(y, x)} .

The last equation indicates that the MAP estimate also maximizes the log of the

joint distribution, L(y, x) = logP(X = x, Y = y).

The MAP estimate has been shown to substantially improve performance in many

image reconstruction and estimation problems. While computation of the exact

MAP estimate is computationally intractable for the discrete problem, approximate

solutions can be obtained with reasonable complexity as outlined in the next section.

We will treat only the MAP estimation problem, since the ML estimate is the special

case of a constant prior distribution.

4.3 Markov random field prior models

While the likelihood term L(y|x) in the MAP equation (4.8) is determined by

the physics of the data collection process, the prior distribution is selected by the

experimenter to model desired characteristics of typical reconstructions. Most com-

monly, the prior models are chosen to reflect the high correlation of adjacent pixels.

A model that has proven particularly useful is the Markov random field (MRF) [107].

Similar to a Markov chain in one dimension, the 2D MRF limits pixel interactions

to a local neighborhood of pixels. This localization allows for efficient optimization

of the MAP equation.

In order to write the equations for the MRF prior, we first need to define the

concept of a neighborhood. If i denotes a single pixel location, we will denote its

neighborhood by ∂i. This neighborhood can consist of any set of pixels {k : k 6= i}
which satisfies the symmetry property that i ∈ ∂k ⇒ k ∈ ∂i. Given this definition,

a MRF is a random field which has the property

p(xi|xj, j 6= i) = p(xi|x∂i). (4.9)
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In other words, the prior conditional probability of a pixel value depends only on a

local neighborhood of pixels. Under some weak technical conditions, a random field

is a MRF if and only if it has a probability distribution corresponding to a Gibbs

distribution [107, 108]. This result, which is known as the Hammersley-Clifford

theorem, may be used to express the likelihood function log p(x). While the theory

of MRF’s is quite extensive [109, 110, 111], we will restrict ourselves to a simple

model based on at most an 8-point neighborhood.

Since we are interested in discrete-valued tomographic reconstruction, we assume

that each pixel takes on a value from a set E of K discrete emission rates. We

then apply a discrete MRF prior model that is frequently used in segmentation

problems [95, 2, 96]. The model encourages neighboring locations to have the same

states or, in our case, emission rates. To define the model, we must first define two

simple functions, t1(x) and t2(x). t1(x) is the number of horizontally and vertically

neighboring pixel pairs with different emission rates in x, and t2(x) is the number

of diagonally neighboring pixel pairs with different emission rates in x. The discrete

density function for x ∈ EN is then assumed to be of the form

log p(x) = −(β1t1(x) + β2t2(x)) + log(Z) (4.10)

where Z is an unknown constant called the partition function. The regularization

parameters β1 and β2 weight the influence of the prior in comparison to the likelihood

term. Larger values of β1 and β2 assign higher cost to local pixel differences which

will result in a smoother reconstruction. Based on the geometry of the 8-point

neighborhood, β2 is often chosen as β2 = β1/
√

2. In the following, we will often

write β for β1 and assume β2 = β1/
√

2.

Substituting the prior (4.10) into the MAP and likelihood equations (4.8) and

(4.4) for the emission case, we obtain the optimization criterion

x̂ = arg max
x∈EN

{ M∑
i=1

(−Pi∗x + yi log(Pi∗x))

−(β1t1(x) + β2t2(x))
}
. (4.11)
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4.4 Optimization techniques

In order to compute the MAP reconstruction, we must perform the optimization

of (4.11). Gradient methods such as steepest descent or conjugate gradient optimiza-

tion are not directly applicable, since the discrete prior (4.10) is non-differentiable.

A method that is well suited for the MAP optimization is a discrete version of

iterative coordinate descent (ICD) [41, 42]. The ICD method sequentially updates

each pixel of the image. With each update, the current pixel is chosen to maximize

the posterior probability (4.11). Therefore, the discrete ICD algorithm essentially

implements the well known ICM optimization introduced by Besag [2]. However,

while ICM was originally developed for image restoration tasks, the ICD implemen-

tation is specifically designed for the tomographic reconstruction problem. The ICD

algorithm takes advantage of the sparse structure of the forward projection matrix

P to dramatically speed-up the optimization. Furthermore, ICD initializes the opti-

mization with the convolution backprojection instead of the ML initialization used

by ICM. The ML estimate is not a good initialization for tomographic reconstruc-

tion problems and, since the pixel likelihoods are not independent, the ML estimate

is computationally expensive to compute. The convolution backprojection, in com-

parison, is inexpensive to compute and captures most of the low-spatial frequency

behavior of the reconstruction. This makes the CBP a suitable initialization, espe-

cially since coordinate-wise update methods have slow convergence for low spatial

frequencies and fast convergence for high-spatial frequencies. In the following, we

will show how the ICD can be used to efficiently compute the MAP estimate.

Let v1(z, x∂j) be the number of horizontal and vertical neighbors of xj which do

not have emission rate z, and v2(z, x∂j) be the number of diagonal neighbors of xj

which do not have emission rate z. Then, the maximization of the MAP equation

with respect to pixel xj can be written as

xn+1
j = arg min

z
{−L(y|Xj = z,Xk = xn

k , k 6= j)

+(β1v1(z, x∂j) + β2v2(z, x∂j))}. (4.12)
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In our notation, xn is the image containing all previous pixel updates. Thus, the

reconstruction xn+1 differs from xn only at pixel j. A full update of the reconstruction

requires N applications of (4.12).

Computation of the log-likelihood L(y|z, xn) using (4.4) for each pixel update

would still lead to prohibitive computational complexity. This can be avoided by

using only the change in the log-likelihood

∆L(z) =
∑
i∈Ij

(
−Pijz + yi log(Pi∗xn + Pij(z − xn

j )) − yi log(Pi∗xn)
)

(4.13)

where Ij is the set of projections i which intersect pixel xj, i.e. Ij = {i : Pij 6=
0 , 1 ≤ i ≤ M}. Leaving out the terms which are constant with respect to z, the

update equation for xj can then be written as

xn+1
j = arg min

z

{ ∑
i∈Ij

(Pijz − yi log(Pi∗xn + Pij(z − xn
j )))

+(β1v1(z, x∂j) + β2v2(z, x∂j))
}
. (4.14)

Assuming a reasonably small set E of K fixed emission rates, the minimization can

be carried out by trying all z ∈ E and selecting the one which minimizes (4.14). We

store the M -dimensional state vector S = Px between iterations. After a pixel xj is

updated, the components of S can be efficiently updated using

Sn+1
i = Sn

i + Pij(x
n+1
j − xn

j ). (4.15)

This update is necessary only for the components i ∈ Ij since for all other projections

Pij = 0.

In order to assess the computational complexity of the reconstruction, we first

define M0 as the average number of projections passing through a single pixel

M0 =
1

N

N∑
j=1

|Ij| . (4.16)

The computational cost for a pixel update is then on the order of KM0 operations.

The complexity of a full-update of the reconstruction is therefore NKM0. This is
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quite reasonable, considering that due to the sparsity of P , M0 is typically small

compared to M , i.e. M0 ¿ M . In cases where K is large, it might be desirable to

reduce computation by using a global second order approximation to the likelihood

functions (4.2) and (4.4) as described in [41, 42]. Using these techniques, computa-

tion for a single pixel update can be reduced to order K+M0, resulting in N(K+M0)

complexity for a full reconstruction update.

4.5 Estimation of discrete levels

So far, we have assumed the set E of discrete emission rates or densities to

be known. In practice, however, the exact emission rates corresponding to differ-

ent regions in the cross-section may not be known. Even if a good initial guess is

available, the accuracy of the emission rates is critical for the reconstruction. For

illustration, assume that the emission rate of a particular region is over-estimated

by some amount. For projections yi which pass through this region, the forward

projected reconstruction Pi∗x will be larger than the measured photon count, i.e.

Pi∗x > yi. To compensate for this mismatch, the reconstruction algorithm may mis-

classify large numbers of pixels. Therefore, it is desirable to estimate the discrete

emission rates as part of the reconstruction algorithm.

In this section, we show how the emission rates can be estimated concurrently

with the reconstruction. We implement ML estimation of the emission rates by

iteratively updating entire regions of pixels with equal emission rates [112]. We

will show that this estimation is equivalent to a continuous-valued tomographic ML

reconstruction problem with K pixels. The updates of the emission rates will be

performed between each full ICD update of the reconstruction.

Let θ1 . . . θK denote the discrete emission rates so that E = {θ1, · · · , θK}. Chang-

ing a single emission rate θk is equivalent to changing all pixels in the reconstruction

that are classified to have emission rate θk. If we define a region as the collection

of all pixels with the same emission rate, we obtain K different regions in the re-

construction. Analogously to the projection matrix P for individual pixels, we can

now define a projection matrix Q for the regions. Given the region geometries, we
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can compute the entry Qik as the probability that an emission from the kth region

is registered by the ith detector.

Assuming knowledge of Q, the likelihood for the emission rates can be computed

analogously to the pixel likelihoods in (4.2) and (4.4). The resulting optimization

problem is equivalent to a continuous-valued reconstruction with K pixels and pro-

jection matrix Q.

In practice, direct computation of Q from the geometry of the regions would

be computationally involved and difficult to update. Instead, we can obtain an

expression for the entries of Q by adding the contributions of all pixels in a region.

We can rewrite the i’th forward projection Pi∗x as follows

Pi∗x =
N∑

j=1

Pijxj

=
K∑

k=1


θk

∑
{j:xj=θk}

Pij




=
K∑

k=1

θkQik = Qi∗θ (4.17)

where

Qik =
∑

{j:xj=θk}
Pij. (4.18)

For the emission case, this yields the likelihood function

logP(Y = y|θ) =
M∑
i=1

(−Qi∗θ + yi log(Qi∗θ) − log(yi!)) . (4.19)

This log-likelihood function is clearly of the same form as (4.4), except that the

discrete-valued N -component vector x is replaced by the continuous-valued K-comp-

onent vector θ. Also, the new projection matrix Q is of size M × K instead of

M × N . Thus, maximum likelihood estimation of θ is equivalent to a continuous-

valued tomographic ML reconstruction with K pixels.

Since θ is continuous-valued, the optimization of (4.19) is different from the dis-

crete case. In general, all methods proposed for continuous-valued tomographic

reconstruction can be applied. Again, we will use ICD optimization since it is eas-

ily implemented with constraints such as positivity of the emission rates. The ICD
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update equation of the θk is analogously to (4.14) given by

θn+1
k = arg min

v≥0




∑
i∈Ĩk

(Qikv − yi log(Qi∗θn + Qik(v − θn
k )))


 (4.20)

where v ≥ 0 enforces the non-negativity of the emission rates and Ĩk is defined

as Ĩk = {i : Qik 6= 0 , 1 ≤ i ≤ M}. Since the cost function in (4.20) is well

approximated by a quadratic, the optimization can be efficiently implemented using

Newton’s method.

Let φ1 and φ2 be the first and second derivatives of the log-likelihood function

evaluated at the current emission rate θk. The Newton update for minimization of

(4.20) is then given by

θ′k = max

{
θk − φ1

φ2

, 0

}
(4.21)

where the derivatives φ1 and φ2 are computed as

φ1 =
∑
i∈Ĩk

Qik

(
1 − yi

Qi∗θ

)
(4.22)

φ2 =
∑
i∈Ĩk

yi

(
Qik

Qi∗θ

)2

. (4.23)

The Newton updates (4.21)-(4.23) are repeatedly applied until |φ1| < ε. For our

experimentation, we have found an accuracy of ε = 0.001 to be sufficient. For

efficient computation, we store and update the same state vector S = Px = Qθ as in

the discrete MAP reconstruction (4.15). If θn
k is updated to θn+1

k , S can be updated

as

Sn+1
i = Sn

i + Qik(θ
n+1
k − θn

k ) (4.24)

for all i ∈ Ĩk.

In order to assess computational complexity, we define H as the average number

of Newton-iterations per class update (4.20). Furthermore, we use the number of

projections M as a bound for the size of the sets Ĩk. Computation of a single emission

rate θk then requires on the order of MH multiplies and divides. Typically, only

a few Newton-iterations are necessary to obtain sufficient accuracy (H < 2). The
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computational complexity of updating the ML estimate of θ is then KMH. Note

that KMH is typically small in comparison to a complete update of the discrete

reconstruction x of order NKM0.

The iterations for the estimation of θ can be performed between full reconstruc-

tion updates. Each time a pixel changes during the reconstruction, the new Q matrix

can be obtained as follows: If xn
j = θk and xn+1

j = θl, then

Q′
ik = Qik − Pij

Q′
il = Qil + Pij (4.25)

for all projections i ∈ Ij. This recursion results in a computationally efficient algo-

rithm since it avoids recomputing Q using (4.18) after each reconstruction update.

In order to apply the estimation of the emission rates as described above, it is

necessary to obtain initial values for the estimates of θk. In practice, initial values

for the θk can be extracted from the convolution backprojection reconstruction. One

possibility is to extract the initial θk manually by taking the average value of approx-

imately uniform regions in the CBP. This ensures that the estimated emission rates

correspond to the regions of interest in the reconstruction and minimizes chances of

the estimation getting trapped in local minima.

If, on the other hand, a fully unsupervised algorithm is desired, clustering tech-

niques can be applied to the CBP reconstruction to estimate the initial emission

rates θk. To do this, we used a clustering method based on Gaussian mixture models

and the EM algorithm [113]. This method used the Rissanen criterion to estimate

both the number of clusters K as well as the mean emission rate of each cluster.

These estimates were then used to initialize the estimation of the emission rates

which resulted in a fully unsupervised reconstruction algorithm.

4.6 Multiscale approaches

We now extend the previous results to a multiresolution framework. Multires-

olution algorithms reconstruct the cross-section at different resolutions, typically

starting at coarse resolution and progressing to the desired finest resolution. Fig.
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Fig. 4.2. Illustration of multiresolution structure. Shown are pixels in three different
resolution levels. We assume a quadtree structure in which each coarse scale pixel

corresponds to four pixels at the next finer scale.

4.2 illustrates the multiresolution structure used in our algorithm. We assume a

quadtree model in which each coarse scale pixel corresponds to four pixels at the

next finer scale. Each resolution level is half the size of the next finer level in each

direction and therefore contains only 1/4th the number of pixels. The small number

of pixels at coarse scales implies lower computational complexity at these levels.

Compared to the fixed scale reconstruction, the multiscale approach has several

significant advantages. While at first, reconstructing the cross-section at several

resolutions might seem like additional overhead, the multiscale algorithm has sub-

stantially faster convergence behavior. The fixed scale ICD reconstruction algorithm

updates one pixel at a time using a prior that only depends on a small pixel neighbor-

hood. As a result, propagation of information per iteration is limited which results

in slow convergence for low spatial frequencies. The multiscale version of the al-

gorithm improves this by first reconstructing the image at coarse resolutions where

local interactions are equivalent to large scale propagation at fine resolutions. The

coarse scale reconstructions then serve as an initialization for the finer reconstruc-

tions. Since the coarse reconstructions already contain the large scale behavior of

the solution, substantially fewer iterations are necessary at the finer scales. This,

combined with the fact that the coarse scale reconstructions are of low complexity,

makes the multiscale algorithm very efficient. In addition to increased efficiency,

the multiresolution algorithm is more robust with respect to local minima in the
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optimization. This increased robustness holds for both the reconstruction and the

estimation of the emission rates.

4.7 Multiscale MRF

The multiscale MRF model is a straightforward generalization of the fixed reso-

lution model in section 4.3. For the multiresolution case, we essentially use the fixed

scale algorithm for each resolution level and use the result to initialize the next finer

level [96].

Let x(n) denote the reconstruction at resolution n, where n = 0 is the finest

resolution and n = L − 1 is the coarsest resolution. In order to calculate the log-

likelihood function for level n, we simply compute a new projection matrix P (n)

which incorporates the larger pixel size at level n. The matrix P (n) is of dimension

M × 4−nN . The log-likelihood for the emission case is then given by

L(n)(y|x(n)) =
M∑
i=1

(
−P

(n)
i∗ x(n) + yi log(P

(n)
i∗ x(n)) − log(yi!)

)
. (4.26)

This yields the MAP equation

x̂(n) = arg min
x(n)

{
−L(n)(y|x(n)) + β

(n)
1 t1(x

(n)) + β
(n)
2 t2(x

(n))
}

. (4.27)

The remaining question is how to choose the coarse resolution parameters β
(n)
1 and

β
(n)
2 . An intuitive approach is to choose these parameters so that the cost functions

for any two adjacent resolutions are equal when the finer reconstruction x(n−1) equals

the coarser reconstruction x(n) [96]. This assumes that the finer reconstruction x(n)

is constant on blocks of 2 by 2 pixels.

Let I denote the operator which interpolates by a factor of two using pixel-

replication. The equality of adjacent levels can then be written as x(n−1) = Ix(n).

We now observe that a horizontal or vertical pixel difference in x(n) results in two

horizontal or vertical plus two diagonal differences in the pixel-replicated Ix(n), and

one diagonal pixel difference in x(n) yields one diagonal pixel difference in Ix(n).

Therefore, x(n−1) = Ix(n) implies

t
(n−1)
1 = 2 t

(n)
1
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t
(n−1)
2 = 2 t

(n)
1 + t

(n)
2 . (4.28)

Consequently, the fine and coarse resolution cost functions will be equal if

β
(n)
1 = 2(β

(n−1)
1 + β

(n−1)
2 )

β
(n)
2 = β

(n−1)
2 (4.29)

for all resolutions n. By using these parameters, minimization of (4.27) corresponds

to the minimization of the original MAP equation (4.11) under the constraint that

the solution be constant on the appropriately sized blocks.

Coarse resolution minimization using the parameters given by (4.29) will effec-

tively minimize (4.11) if the correct segmentation is approximately block constant.

However, this recursion for the parameters has an undesirable property. It implies

that the MRF models for coarser resolution segmentations should have progressively

higher spatial correlation, or alternatively, finer resolution segmentations should have

lower correlation. This, of course, runs counter to normal assumptions of spatial co-

herence in images, and will tend to cause insufficient spatial correlation at finer res-

olutions or excessive correlation at coarse resolutions. A more reasonable approach

is to assume that the spatial correlation is independent of the resolution since this

avoids the problem of excessive correlation at coarse resolutions. Also, this assump-

tion is appropriate when prior information is unavailable about the likely scale of

regions in the image. Therefore, in all experimentation, we will fix the parameters

of the MRF as a function of scale

β
(n)
1 = β1

β
(n)
2 = β2. (4.30)

The L level Multiresolution MAP reconstruction algorithm may then be summa-

rized as follows:

1. Compute CBP and estimate initial emission rates θ.

2. Classify CBP pixels into discrete emission rates θk using thresholding. Deci-

mate the result (L − 1)-times to initialize x(L−1). Set n = L − 1.
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Table 4.1
Computational complexity for reconstruction and emission rate updates. While the
complexity of the reconstruction is a function of the resolution n, the cost for the

estimation of θ is constant. For the overall reconstruction, the time spent on estimation
of θ is typically less than 10% of total execution time.

Reconstruction Update Emission Rate Update

Fixed Scale NKM0 KMH

Multiscale 4−nNKM
(n)
0 ≈ 2−nNKM0 KMH

N Number of pixels in the reconstruction

K Number of discrete emission rates θk

M Number of projections

M
(n)
0 Average number of projections

intersecting a pixel at scale n, M0 = M
(0)
0

H Average number of Newton iterations

for update of single θk

3. Compute reconstruction x(n) using the following method:

(a) Update x(n) using one full pass of discrete ICD algorithm.

(b) If no pixel change occurs, goto 4.

(c) Perform six full updates of discrete levels θ, goto (a).

4. If n = 0 stop.

5. Initialize x(n−1) with pixel-replicated x(n).

6. Set n = n − 1, goto 3.

The parameters β1 and β2 can be chosen manually to achieve the amount of

regularization desired.
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4.8 Computational complexity

Table 4.1 compares the computational complexity for one full update of the recon-

struction to one update of the emission rates θ. The complexity of the reconstruction

update NKM0 depends on the number of pixels N and therefore on the resolution

of the reconstruction. In the multiresolution framework, each level contains 1/4th

the number of pixels of the next finer level. The reconstruction complexity at scale

n is therefore 4−nNKM
(n)
0 , where M

(n)
0 replaces M0. Due to the larger pixel size

at coarse resolution, more projections intersect each coarse-scale pixel and M
(n)
0 in-

creases with n. In order to compare the complexities for different scales, we can

approximate M
(n)
0 as follows: As the size of a pixel doubles in each direction, we

assume that the number of parallel projections intersecting the pixel at each angle

doubles. The cost of a reconstruction update at scale n is therefore approximately

2−nNKM0. Assuming that the multiscale reconstruction performs the same number

of iterations at each scale as the fixed resolution algorithm, the multiscale overhead

is bounded by a factor of 2. In most real applications, however, the multiscale algo-

rithm performs considerably fewer computationally expensive iterations at fine scale

than the fixed scale method.

The complexity of the emission rate update is not a function of resolution. To

obtain a bound on the computational cost, we assume that all M projections in-

tersect each region. Since the number of Newton iterations per class update H is

usually small, the upper bound KMH for the emission rate update is small in com-

parison to the cost NKM0 for a reconstruction update at finest or fixed scale. At

coarse resolutions, however, the complexity for the emission rate update may become

comparable to the cost for a reconstruction update. Again, the advantage of the mul-

tiscale method is that the emission rates often converge after the reconstruction of

the coarser scales. Therefore, fewer iterations for reconstruction and emission rate

estimation are necessary at finer scale.

In practice, the total cost of the emission rate estimation is usually small com-

pared to that of the reconstruction updates. Performing six updates of θ between full
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reconstruction updates, we find that the cost of the emission rate updates is typically

less than 10% of the total execution time. In addition, the multiscale algorithm is

typically faster than the fixed resolution method.

(a) Original phantom (b) CBP (c) Thresholded CBP

(d) Fix-Resolution MAP

β = 1.0

(e) Multiresolution MAP

β = 1.0

Fig. 4.3. Results for synthetic cross-section. Shown in (a) is the original cross-section.
The continuous-valued CBP (b) contains considerable noise which is still present in the

thresholded version (c), using the thresholds determined by unsupervised clustering. The
fixed resolution algorithm (d), gets trapped in a local minimum resulting in class

estimates close to the initialization. The multiresolution algorithm (e) estimates the
classes correctly and achieves higher reconstruction performance.

4.9 Results

Reconstructions using the fixed and multiscale algorithms on synthetic data are

shown in Fig. 4.3. Fig. 4.3(a) shows the original cross-section of size 192 by 192 pixels

where each pixel is of both width and height 3.13mm. The cross-section contains

pixels with three different emission rates as shown in Table 4.2. The projection data

was calculated at 16 evenly spaced angles each with 192 parallel projections. The
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Table 4.2
Original and estimated emission rates for synthetic cross-section. While the fixed scale

algorithm gets trapped near the clustering initialization, the multiscale method estimates
the emission rates quite accurately. All units are in mm−1.

Em.-Rate θ1 Em.-Rate θ2 Em.-Rate θ3

Original Phantom 0.001 0.05 0.1

CBP Clustering 0.0005 0.0108 0.04

Fixed-Res. MAP 0.0007 0.0105 0.0632

Multi-Res. MAP 0.0010 0.0512 0.1028

Table 4.3
CPU-time in seconds for fixed- and multiresolution algorithms. Both algorithms were run

until convergence and terminated when no pixel change occurred in a discrete
reconstruction update.

Multi-Resolution Fixed-Resolution

Phantom I 27 59

Phantom II 349 404

projection beam was assumed to be infinitely thin. The data samples where formed

by Poisson random variables with the appropriate means.

Fig. 4.3(b) shows the convolution backprojection (CBP) reconstruction using a

generalized Hamming filter weighted by a Gaussian envelope. The CBP reconstruc-

tion was used to obtain initial values for the emission rates θ. The unsupervised

clustering routine using a Gaussian mixture model applied to the CBP reconstruc-

tion identified three clusters with mean emission rates θ = [0.005, 0.0108, 0.04]. The

clustering result consists of two classes with very low emission rates corresponding

to background pixels and only one class with higher emission rate corresponding to

the discs in the foreground. A first discrete-valued reconstruction can be obtained



- 104 -

Reconstruction Error

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPU−time

N
or

m
al

iz
ed

 R
M

S
E

Multi−Resolution
Fixed−Resolution

(a)

Error in estimated emission rates

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

CPU−time

N
or

m
al

iz
ed

 R
M

S
E

 in
 e

st
im

at
ed

 e
m

is
si

on
 r

at
es

Multi−Resolution
Fixed−Resolution

(b)

Fig. 4.4. Comparison of convergence for the fixed- and multiresolution MAP
reconstructions of Fig. 4.3(d)-(e). Shown in (a) is the normalized reconstruction error as
a function of CPU-time. The multiscale algorithm converges considerably faster than the
fixed resolution method. This is partly due to the fast convergence of the emission rate
estimates in the multiscale case (b). The multiresolution algorithm achieves lower final

error in estimation and reconstruction.

by thresholding the CBP reconstruction using the midpoints between the emission

rates determined by the clustering routine. The resulting thresholded CBP is shown

in Fig. 4.3(c). In addition to the errors in class estimates, the result contains noise

and aliasing effects. Fig. 4.3(d) shows the fixed resolution MAP reconstruction us-

ing β = 1.0 where we assume that β1 = β and β2 = β/
√

2. The fixed resolution

reconstruction was initialized to the thresholded CBP reconstruction and the class

estimates were initialized to the clustering result. While the reconstruction is less

noisy than the thresholded CBP, the estimation of emission rates is trapped in a

local minimum close to the initial values from the clustering result. This results in

the classification of all 5 discs into the same class of emission rates.

The reconstruction result using the multiscale algorithm with L = 5 resolution

levels and β = 1.0 is shown in Fig. 4.3(e). The algorithm was initialized as in the

fixed scale case. The estimated emission rates using the multiscale technique are very

close to the true values as shown in Table 4.2. This results in correct classification

of the 4 larger discs in the cross-section. Only the smallest disc is misclassified
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to a smaller area but higher emission rate than in the original phantom. This is

not surprising, considering the high level of noise and the small size of the disc

which practically eliminates it from coarser resolution levels. For β = 1.0, there is

essentially no high frequency noise in the reconstruction. Overall, the quality of the

multiscale reconstruction is superior to the fixed scale MAP reconstruction and the

thresholded CBP. The multiscale method is particularly robust with respect to the

estimation of the emission rates.

(a) Original phantom (b) CBP (c) Thresholded CBP

(d) Fix-Resolution MAP

β = 1.0

(e) Multiresolution MAP

β = 1.0

Fig. 4.5. Results for second synthetic cross-section. The clustering only identifies 2 out
of 7 classes correctly which is reflected in the thresholded CBP (c). The fixed resolution
algorithm (d) estimates 3 of 7 classes correctly, and fails to divide the two gray ovals on

right into two distinct classes, which results in compensation artifacts. The
multiresolution algorithm (e) performs better, estimating 5 out of seven classes correctly.
Neither algorithm divides the bright left and center spot into two distinct classes. Both

also miss the emission rate of the small patch within the lower right oval.

In addition to the superior reconstruction quality, the multiresolution method is

faster than the fixed scale algorithm. Table 4.3 shows the execution times for both
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the fixed- and multiresolution reconstructions (Phantom I). Both algorithms were

run until convergence and terminated when no pixel change occurred in a discrete

reconstruction update. While the multiscale method terminated after 25 seconds,

the fixed scale method needed 56 seconds to converge. Fig. 4.4 compares the error

convergence of the two algorithms. Fig. 4.4(a) shows the reconstruction error as

a function of CPU-time. The reconstruction error is calculated as normalized root

mean square error, i.e.

E =

√√√√∑N
j=1(x̂j − xj)2∑N

j=1 x2
j

(4.31)

where x denotes the true cross-section and x̂ denotes the current estimate of the

cross-section. In the multiscale case, x̂ is computed by interpolating x(n) using pixel

replication. The multiscale algorithm converges considerably faster and achieves

lower final reconstruction error than the fixed resolution method. We also observed

that the multiscale method achieves larger posterior likelihood, confirming that the

fixed scale algorithm gets trapped in a local minimum.

The difference in convergence speed and final reconstruction error between the

fixed and multiscale algorithm is reflected in the convergence behavior of the emission

rate estimates. Fig. 4.4(b) shows the convergence of the normalized root mean

square error of the emission rate estimates. For the multiscale algorithm, the θ

are essentially converged after only a few coarse scale iterations. This reduces the

number of computationally expensive iterations at finer scales, thereby accelerating

overall convergence substantially.

Results for a second synthetic cross-section are shown in Fig. 4.5. The original

cross-section in Fig. 4.5(a) contains 7 discrete levels of emission rates. The size

of the phantom is 128 by 128 pixels where each pixel is of both width and height

1.56mm. The projection data was calculated at 128 evenly spaced angles, each

with 128 parallel projections. Again, the data samples were obtained as Poisson

random variables with the appropriate mean. Fig. 4.5(b) shows the convolution

backprojection which is blurred and contains considerable amounts of noise. The

clustering routine was used to obtain initial values for the emission rates. Due to the
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Table 4.4
Original and estimated emission rates for second synthetic cross-section. Bold faced

numbers represent emission rates that were estimated within a reasonable tolerance of
their true values. Both, the fixed and multiscale algorithm were initialized to the
emission rates determined by the clustering algorithm. All units are in mm−1.

θ1 θ2 θ3 θ4 θ5 θ6 θ7

Orig. Phantom 0.001 1.2 1.6 2.0 2.4 3.2 3.6

CBP Clustering 0.0005 0.028 0.094 0.307 1.606 2.359 3.335

Fixed-Res. MAP 0.001 0.028 0.094 0.338 1.445 2.403 3.574

Multi-Res. MAP 0.001 0.144 0.336 1.211 1.602 2.404 3.578

high noise in the CBP reconstruction the number of clusters was not estimated but

manually set to seven. As shown in Table 4.4, the clustering only identified 2 out

of the 7 classes within a reasonable tolerance of their true values. The thresholded

CBP shown in Fig. 4.5(c) shows that the two gray ovals on the right are erroneously

classified to have the same emission rate. Similarly, the bright patch on the left is

set to the same emission rate as the center spot. In addition, the small patch within

the gray oval on the lower right is misclassified. Fig. 4.5(d) shows the reconstruction

using the fixed resolution algorithm. As before, the emission rates were initialized to

the cluster means and the reconstruction was initialized to the thresholded CBP. As

indicated in Table 4.4, the fixed resolution algorithm terminates with class estimates

close to the initial cluster values. While the background level of 0.001 is now correctly

estimated, the emission rate for the two gray ovals with original rates 1.2 and 1.6

has moved between the two values to θ5 = 1.4458. Notice that the overestimation

of the lower right oval yields a mismatch between observed projection counts y and

the forward projected reconstruction Px. Since the pixel values x within the oval

are too large, we obtain Pi∗x > yi for many projections intersecting this region. To

compensate for this, the reconstruction algorithm inserts a pattern of black spots

into the region which lowers the average projection count. Analogously, the gray
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Fig. 4.6. Error convergence for fixed- and multiresolution MAP reconstructions of the
second phantom. While the multiscale error at coarser scales is comparably high,

convergence at each resolution is rapid. Again, the multiresolution algorithm terminates
earlier and achieves lower final reconstruction error than the fixed-resolution method.

oval on the upper right contains white spots to compensate underestimation of the

emission rate 1.6 by 1.4458. Effects such as these result from the algorithm’s being

trapped in local minima of the MAP cost function. This is particularly critical for

fixed resolution reconstructions that include the estimation of emission rates.

The multiscale algorithm is less prone to being trapped in local minima. For this

phantom, 5 out of 7 emission rates are estimated correctly. The reconstruction as

shown in Fig. 4.5(e) contains little noise and classifies the two gray ovals correctly.

However, the left and center bright regions with emission rates 3.6 and 3.2 are still

both classified as having a single emission rate of 3.5783. This can be improved by

initializing the emission rates closer to their true values. In general, by varying the

initial estimate for the emission rates, it is often possible for the fixed scale algorithm

to obtain reconstructions comparable to the multiscale reconstruction. However, the

fixed resolution algorithm is less robust with respect to the emission rate estimation

and close initialization does not guarantee a comparable reconstruction.

In almost all cases, with and without estimation of emission rates, the multires-

olution algorithm is faster than the fixed resolution method. As shown in Table

4.3 (Phantom II), the multiscale algorithm terminates after 349 seconds compared
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Table 4.5
Percentage of CPU-time used for estimation of emission rates. In all cases, the

complexity for estimating θ is smaller than 10% of the total execution time. Shown in
brackets are the CPU-times for estimating θ over the total execution times in seconds.

Multi-Resolution Fixed-Resolution

Phantom I 6.48% (1.75/27s) 1.64% (0.97/59s)

Phantom II 8.70% (30.37/349s) 2.77% (11.21/404s)

to 404 seconds for the fixed resolution method. Fig. 4.6 compares the error con-

vergence for the fixed and multiscale reconstructions of the second phantom. The

multiscale error at coarse scales is comparably high since the coarse scale recon-

structions cannot account for the phantom’s fine structure. However, the multiscale

algorithm converges rapidly at each scale, resulting in lower total execution time.

Again, the multiresolution algorithm achieves lower final reconstruction error.

Finally, we examine the computational complexity of the estimation of emission

rates in relation to the overall complexity of the algorithms. Table 4.5 shows the

percentage of CPU-time used for the estimation of θ. For all reconstructions, six

full updates of θ were performed between full reconstruction updates. In all cases,

the emission rate updates make up less than 10% of the total CPU-time. The per-

centages are smaller for the fixed resolution algorithm than for the multiresolution

algorithm. Since the fixed resolution algorithm performs more computationally ex-

pensive iterations at fine scale, the relative cost for reconstruction updates is higher

than for the multiscale method. Added over all resolutions, however, the multiscale

algorithm performs more iterations than the fixed scale method. Since an iteration

at any scale includes a fixed-cost update of θ, the multiscale method spends more

absolute time on estimating the emission rates. This may be reduced by introduc-

ing a convergence criteria for the emission rate updates instead of running a fixed

number of iterations between reconstruction updates.
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In conclusion, the results indicate that the multiresolution algorithm can achieve

reconstruction results superior to the fixed scale method. It is particularly robust

with respect to the initialization of emission rates. Furthermore, the multiscale

method is typically faster than the fixed resolution algorithm. For both algorithms,

the computational cost for estimating the emission rates is small in comparison to

the reconstruction complexity.

4.10 Conclusion

In this work, we have described a fixed- and multiscale method for discrete-valued

Bayesian reconstruction. The multiscale MRF reconstruction algorithm is a straight-

forward extension of the fixed scale model. Interaction between resolution levels is

obtained by initialization of each reconstruction with the previous coarser recon-

struction. The algorithm includes an efficient method for estimating the discrete

emission rates. The quality of the multiresolution reconstructions is significantly

better than thresholded CBP reconstructions. In comparison to a fixed scale MAP

reconstruction, the multiresolution method is less prone to local minima and con-

verges faster.
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5. PERCEPTUAL IMAGE SIMILARITY EXPERIMENTS

Abstract

In this chapter, we study how human observers judge image similarity. To do

so, we have conducted two psychophysical scaling experiments and have compared

the results to two algorithmic image similarity metrics. For these experiments, we

selected a set of 97 digitized photographic images which represent a range of semantic

categories, viewing distances, and colors. We then used the two perceptual and the

two algorithmic methods to measure the similarity of each image to every other image

in the data set, producing four similarity matrices. These matrices were analyzed

using multidimensional scaling techniques to gain insight into the dimensions human

observers use for judging image similarity, and how these dimensions differ from the

results of algorithmic methods. This chapter also describes and validates a new

technique for collecting similarity judgments which can provide meaningful results

with a factor of four fewer judgments, as compared with the paired comparisons

method.

5.1 Introduction

Advances in digital cameras, large accessible data storage, internet repositories,

and image applications have fueled the recent development of methods for searching,

retrieving, and navigating through a set of images [114, 115, 116, 117, 118, 119]. In

a typical search task, the user selects an image and asks the computer to retrieve

images which are similar. The computer compares the features of the selected image

with the characteristics of the other images in the set and returns the most simi-

lar images for inspection. Typically, this is done by computing, for each image, a

vector containing the values of a number of attributes and computing the distance



- 112 -

between image feature vectors. The best image matches are typically displayed to

the user as an array of “postage stamp” sized images, in descending order of this

computed distance. These methods produce several well-documented artifacts. The

methods, for one, do not include any knowledge about the intrinsic organization

of the images. For example, if a query image is equidistant between two clusters,

the Euclidean metric will return the images in metric order, interdigitating images

from the two clusters. The success of these metrics, furthermore, depends largely on

the power of the identified features. Often, these features are thought to contribute

to human judgments of image similarity (e.g. color, texture, and shape), but with

few exceptions[120, 119], the characteristics of human similarity perception have not

been included in the selection of these features. The third artifact of these methods is

that the images are displayed in metric order, but not in an order which is conducive

for navigation. Similar images are in order by row, but even if the ordering is perfect,

similar images are not near each other in the array. Recently, the idea of representing

images in a multidimensional, browsable space has been proposed[121, 122]. These

navigation spaces, however, are not perceptual, and therefore do not give the user

intuitive cues for finding images which are “redder”, “darker”, “out-of-doors”, “more

natural”, or “containing more people”.

The purpose of this perceptual image similarity project is to examine the issue

of image similarity from the perspective of the human observer. In this work, we

present two psychophysical scaling experiments in which we measure the similarity

of 97 carefully selected digital photographic images. In these experiments, each im-

age is compared with every other image, and the observer judges their perceived

similarity. The users are free to use whatever criteria they choose for making this

decision. We compare these perceptual judgments to similarity ratings produced by

two algorithmic methods, one based on similarities in the color histograms of the

images, the other based on more sophisticated perceptually-relevant features [119].

We evaluate these perceptual and algorithmic similarity ratings using multidimen-

sional scaling techniques and explore the results of two- and three-dimensional MDS
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solutions.

The next step in this research is to model perceptual image similarity judgments

in terms of calculable image features. This would allow us to extend our findings to

the development of better image search and retrieval methods, and to the develop-

ment of more intuitive navigation spaces.

5.2 Experimental Design

In these experiments, human observers judged the similarity of 97 carefully-

selected JPEG images. Two psychophysical scaling methods were used to measure

the perceived similarity of each image with every other image in the set. In the “Ta-

ble Scaling” experiment, observers organized printed thumbnail images on a tabletop

so that similar images would be near each other and dissimilar images would be far

apart. This design allowed the observer to see all the images at once. In the “Com-

puter Scaling” Experiment, the images were presented on a computer display. On

each trial, a reference image was compared with eight randomly-chosen images, and

the observer selected the image which was most similar. Both experimental proce-

dures produced a similarity matrix which served as the input to multidimensional

scaling algorithms. We also calculated image similarity matrices for these 97 images

using the algorithmic similarity metrics. The multidimensional scaling results for

these algorithmic matrices were compared with the psychophysical results.

5.2.1 Selecting the Stimuli

Ninety-seven JPEG images were selected from the PhotoDisc collection of 5000

photographic images. This set was chosen because they were reputed to be of good

photographic quality, and had been used by other researchers in this field[116, 119].

These images were selected according to three explicit criteria. First, we wanted to

make sure that we included a wide range of topics. To achieve this goal, we consulted

books designed to teach photography and matched our selections to these focus areas.

These were: animals, people, indoor scenes, nature, buildings, textures, and man-

made. The photographic textbooks also focused on the distance of the object from
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the viewer, and so, for each category, we explicitly selected images which were wide-

angle, normal (e.g., 50 mm for 35 mm film), or close-up. In order to insure that we

had selected a set of images which covered a broad range of colors and light levels, we

measured each image in calibrated CIELab space, and iterated on the image samples

until we achieved a balanced distribution in all three dimensions of this color space.

The images were in both landscape and portrait modes.

5.2.2 Observers

Fifteen volunteer observers were recruited from the T.J. Watson Research Cen-

ter, Hawthorne Laboratory. They were 12 men and 3 women, ranging in age from

approximately 23 to 45. Observers received a lunch voucher for each session.

5.2.3 Experiment 1: Table Scaling

For this experiment, we printed the 97 JPEG images on a color printer at 300

dots per inch. The size of the prints was 3 cm by 2 cm, on a 3.5 cm by 3.5 cm white

background.

The images were placed randomly on a large round table, and the observers’ task

was to arrange them so that the physical distances between them were inversely

proportional to their perceived similarity. That is, the more similar the images

appeared, the closer they were to be placed next to each other. Since the table surface

was, by definition, a 2-D surface, this experiment forced the observers to project the

multidimensional relationships between the images down to a two-dimensional space.

Nine subjects served in this experiment. Each session took 30-45 minutes, and the

observers found this to be a “fun, puzzle-like” task. For each observer’s solution, we

measured the physical distance between each pair of images and created a similarity

matrix. We created a pooled matrix by accumulating these distances across subjects.

5.2.4 Second Experiment: Computer Scaling

In the second experiment, fifteen observers compared each of the 97 thumbnail

images with every other image. In the traditional multidimensional scaling paradigm,

these measurements would be made using a “paired comparisons” design. In paired
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comparison, all stimulus pairs are compared, and for each pair, the observer assigns a

number proportional (or inversely proportional) to perceived similarity. We modified

this procedure for two reasons. First, with n = 97 stimuli, the paired comparisons

procedure would require n(n− 1)/2 comparisons, which, in this case, would be 4656

trials. Second, we were seeking a procedure which would not depend on subjective

magnitude judgments, since these can be prone to bias. We therefore developed a

variation on the traditional paradigm. In this variation, each image was compared

with each other, taken eight at a time, thereby reducing the number of trials by a

factor of four. Thus, on each trial, the observer viewed a randomly-selected reference

stimulus and eight test stimuli, selected randomly from the set of 97, and judged

which of the eight appeared most similar.

The experiment was conducted on a color-calibrated display monitor, using the

Netscape browser to present the stimulus images. The display measured 32 cm by 24

cm, and subtended roughly 40 by 30 degrees of visual angle when viewed at a distance

of approximately 47 cm. The image bitmaps used in this experiment measured 123 by

83 pixels. Viewed on the display monitor, the size of each image was approximately

4.7 cm by 3.1 cm, and subtended approximately 6 by 4 degrees of visual angle. Figure

5.1 shows one trial of this experiment, as displayed to the observer on the computer

display. The reference stimulus was presented along the left edge of the display,

accompanied by two rows of four test stimuli running horizontally along the display.

On each trial, the observer evaluated the eight test stimuli, judged their similarity to

the reference stimulus, then used a mouse to “click” on the most similar test image.

This response launched the next trial of the experiment. The experiment was self-

paced, and observers could take breaks whenever they chose. The 1164 trials and 20

practice trials typically took three 1-hour sessions to complete.

In addition to these objective judgments, we also collected verbal protocols from

the observers, asking them to free-associate about the reasons they had for making

their selections. The purpose of this technique was to develop a better intuition

for what observers thought they were doing, and to gain insight into candidate
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Click on the image on the right which is most similar to the one on the left.

Fig. 5.1. One trial of the computer scaling experiment. The reference stimulus on
the left is compared to the eight test stimuli on the right. The task was to select

the one test stimulus that is most similar to the reference.

dimensions of image similarity.

Validation of the Experimental Design

In our Computer Scaling paradigm, each image appears as a reference stimulus

twelve times, and on each of these trials, is paired with a randomly-selected set of

eight test stimuli. Each observer selects just one “most-similar” image on each of

these trials, and so, over the course of the experiment, data are only entered into

12 cells in each 97-cell row of the similarity matrix. To create the overall similarity

matrix, results of the individual observers were accumulated. In particular, if a

subject selected test image k as a match to reference image r, then the rk-th entry

of the similarity matrix was incremented by one. With fifteen observers, there are

only 15 x 12 votes in each row of the similarity matrix, or 180 distributed over the

97 images. This produces a rather sparse similarity matrix.

In order to verify that these sparse measurements can lead to a meaningful

dataset, we performed a Monte Carlo simulation. The simulation assumes a “true”

similarity matrix S whose entries sij are between zero (least similar) and one (most

similar). Preliminary experiments showed that most images are perceived as being

very dissimilar to each other. Therefore, similarity matrices tend to be sparse and
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contain mostly small entries. For the simulation, the similarities were assumed to

be approximately exponentially distributed[123] with mean λ−1 = 0.5. Furthermore,

the matrix was assumed to be 30% sparse which we consider a conservative estimate.

This leads to the probability distribution

psij
(s) = 0.3δ(s) + 0.7

λe−λs

1 − e−λ
(u(s) − u(s − 1)) for i 6= j (5.1)

where δ is the Dirac-delta and u denotes the unit-step function. The similarity

matrices used for the simulation were obtained by sampling from this distribution

and symmetrizing the result. Notice that the symmetry assumption is a consequence

of our intent to embed the estimated similarity matrix into a metric space using

multidimensional scaling.

In order to model the subject’s choice behavior, we assume a choice process

based on Gaussian confusion probabilities. For illustration, assume that the subject

is presented with one reference image r and two test images t1 and t2. Let srt1 and srt2

denote the similarities of the reference image to test images one and two respectively.

Then, assuming without loss of generality that srt1 < srt2 , the probability of selecting

the test images is assumed to be

P (t1) =
1

2
e−

(srt1
−srt2

)2

2σ2 (5.2)

P (t2) = 1 − 1

2
e−

(srt1
−srt2

)2

2σ2 . (5.3)

For our subject experiment where eight test images are displayed at each trial,

this generalizes as follows: Assume we wish to calculate the probability for choosing

test image tj, 1 ≤ j ≤ 8. We first divide the 7 remaining test images ti into two

sets T
(1)
j and T

(2)
j . The first set T

(1)
j contains those test images that are more similar

to the reference image than tj, i.e. T
(1)
j = {ti : srti > srtj}. The second set T

(2)
j

contains the test images that are less or equally similar to the reference image than

tj, i.e. T
(2)
j = {ti : srti ≤ srtj , i 6= j}. Generalizing the two-test case from above, we
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obtain

P (tj) =

∏
ti∈T

(1)
j

1
2
e

−(srti
−srtj

)2

2σ2
∏

ti∈T
(2)
j

(1 − 1
2
e

−(srti
−srtj

)2

2σ2 )

8∑
k=1


 ∏

ti∈T
(1)
k

1
2
e

−(srti
−srtk

)2

2σ2
∏

ti∈T
(2)
k

(1 − 1
2
e

−(srti
−srtk

)2

2σ2 )




(5.4)

where the denominator normalizes the sum of the probabilities P (tj) to one. The

standard deviation used was σ = 0.1.

Using the assumptions above, we performed the Monte Carlo simulation by gen-

erating experimental trials and selecting image matches according to (5.4). The

estimate Ŝ was then formed as follows: Starting with a matrix of zeros, the entry ŝij

was incremented by one if the test image j was selected as a match to reference i.

The matrices were added across the hypothetical subjects, symmetrized and divided

by the number of subjects.

Notice, that the estimates ŝij are biased, i.e. they will not converge to the true

sij as the number of subjects increases. However, the magnitude rankings of the ŝij

converge to those of sij. Since we evaluate the data with respect to its value for the

multidimensional scaling procedure we are mostly interested in correct rankings as

compared to the correct numerical values.

In order to evaluate the simulation results, we calculated the sparsity of the

estimate as well as the percentage of correct ranking relationships of matrix entries.

The percentage of correct ranking relationships was computed by examining all pairs

{(i,j),(k,l)} of matrix entries and comparing whether their ranking relationship was

the same in S and Ŝ.

The results are shown in Fig. 5.2. Figure 5.2(a) shows the percentage of correct

similarity rankings as a function of the number of subjects. The solid curve shows

correct rankings evaluated over all matrix entries. For 15 subjects, the percentage of

correct rankings is 73 %. The dashed curve evaluates correct rankings only for entries

sij greater than 0.3. In particular, these entries were paired with all other entries

and ranking relationships were compared as in the general case. The percentage

correct in this case is higher than in the general case. For 15 subjects, we obtain
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Fig. 5.2. Results of the Monte Carlo simulation. Shown in (a) is the percentage of correct
similarity rankings as a function of the number of subjects. The solid line evaluates correct
rankings for all matrix entries, whereas the dashed line shows percentage correct for entries

greater 0.3 only. Shown in (b) is the sparsity of the estimate.

91.1% correct rankings. The interpretation is that we measure the larger similarities

more exactly than the small similarities. This is consistent with our design using

sparse measurements and selecting only the highest similarity match at each trial.

Figure 5.2(b) shows the sparsity of the estimate. Notice that sparsity here is defined

as the percentage of zero estimates for non-zero entries in the true S-matrix. Ideally,

the sparsity should be zero. However, considering, that most of the true matrix

entries are assumed to be small, we consider a sparsity of 26.2% for 15 subjects

satisfactory. Notice that these results are fairly robust with respect to small changes

in the simulation assumptions and parameters. Concluding, the results suggest that

using our experimental design, data from 15 subjects should be sufficient to obtain a

meaningful estimate of the similarity matrix for multidimensional scaling evaluation.

5.2.5 Computing Similarity Matrices for Image Processing Algorithms

In the above experiments, we use perceptual judgments to measure the distance

between the 97 images. For comparison, we also used algorithmic image similarity

metrics to characterize these distances. The first metric is based only on global color-

histograms of the images. In particular, this metric computes image dissimilarity as
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the L1-norm of color-histograms in CIELab color-space. The number of bins used

for the histograms was 8/16/16 for the L, a∗ and b∗ channels respectively. While this

is a very simple algorithm, algorithms like these are often an important component

of more sophisticated measures[116, 118].

The second metric[119] is a multichannel model derived from models for image

quality assessment. This metric is based on a multiresolution framework of color,

contrast and orientation-selective attributes. Image dissimilarity is calculated as a

weighted combination of attribute differences. The relative weights of the attributes

are based on a training set of perceptual judgments.

5.3 Results

5.3.1 Qualitative Findings

Figure 5.3 shows the accumulated results for one image for all fifteen observers in

the computer scaling experiment. The number of “votes” is indicated below each of

the ten most frequently selected images. Although individual observers used different

verbal descriptors of their behavior when making these judgments, their selections

were very similar. In this example, an image of three snowdrop flowers is judged

to be most similar to other images showing a countable number of colorful flowers,

followed by other foliage and flower scenes, outdoor scenes with lots of green foliage

and color, and later by an image of foliage with animal figures.

Figure 5.4 shows a similar result for a very different image. Here, the picture of the

young girl with a baseball glove is matched most frequently to other images including

children, then to a solitary portrait, followed by group images which include either

a child or outdoor sports. Qualitatively, thus, there seemed to be a high agreement

across subjects in their rating of image similarity.

Although these matches were very consistent across observers, they were not

always symmetric. For example, a nature scene might commonly be matched to

nature scenes including children. However, when these nature scenes containing

children are shown as reference, they will most frequently be matched to images of

other children and not to nature scenes without children. This is an important point;
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the MDS analysis does not capture such non-symmetric behavior, since the images

are embedded in a metric space. In future work we will explore methods to analyze

these aspects of the data.

5.3.2 Multidimensional Scaling

Multidimensional scaling is a psychometric procedure originally designed to es-

timate the perceived distances between stimuli which vary along a large number of

dimensions, where the goal is to uncover the dimensions along which these judgments

are made[124]. This concept has been used, for example, to discover the perceptual

dimensions of perceptual relationships between notes in a musical scale[125] and the

dimensions of color sensation[126]. It has been used in the image analysis community

to identify the perceptual dimensions of textures[127], and in the image retrieval com-

munity to measure the similarity of images based on their color histograms[121, 122]

as well as to explore the behavior of a texture perception algorithm[128].

The goal of the multidimensional scaling procedure is to place objects that are

specified only by their distances into a lower dimensional space. In particular, the

input to the MDS algorithm is a distance matrix of the pairwise object distances. The

procedure then places the objects into a metric space while preserving the distances

as much as possible. Notice that there is a large variety of MDS algorithms which

differ in their assumptions and optimization strategies. For an excellent overview,

the reader is referred to [129].

The multidimensional scaling procedure employed here is metric least-squares

scaling. We first convert the similarity matrix S from the subject experiment to a

dissimilarity matrix D as

dij = 1 − sij. (5.5)

Now assume that the images i and j are placed at position xi and xj in the met-

ric space. We then define d̃ij as the Euclidean distance d̃ij =‖ xi − xj ‖2. The
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optimization or stress function θ used for the MDS algorithm is then

θ =

N∑
i=1

N∑
j=1

(d̃ij − dij)
2

N∑
i=1

N∑
j=1

d2
ij

(5.6)

where N is the number of images in the set. The minimization of θ is performed

using a conjugate gradient optimization.

We used this multidimensional scaling algorithm to reduce the dimensionality of

the four similarity matrices we described above, derived from, 1) the color histogram

metric, 2) the perceptually- based image similarity metric, 3) the Perceptual Table

Scaling data, and 4) the Perceptual Computer Scaling experiment. In order to

compare the MDS results for the different methods, we allowed for translations and

rotations to minimize the differences in a least square sense.

5.3.3 The multidimensional scaling results

We performed a multidimensional scaling analysis in two and three dimensions

for each of the similarity matrices derived from the different methods.

MDS in 2 dimensions

Figure 5.5 shows the two-dimensional result obtained when using the color his-

togram algorithm to compute distances between images. Not surprisingly, the two-

dimensional solution reflects the influence of color. We have added some color words

to the figure to simplify interpretation. Although the images do seem to segment

into color regions, these regions are rather diffuse. For example, images with a lot of

green span from the landscape view of foliage at the bottom left through the land-

scape view of agricultural terraces in the middle of the image, and beyond. Looking

at this projection, we clearly see that equal distances in the space do not correspond

to equal differences in perceived color. For example, the foliage image in the bot-

tom left and the terraces image are very similar in overall color but are quite far

apart in this space. Conversely, the terraces image is right next to a sailboat image

whose overall color is quite different. This may be due to the high stress (0.27) of

the MDS solution. It may also be due to the fact that overall perceived color is
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Reference Test images in order of decreasing number of votes

Fig. 5.3. Computer Scaling matching results for snowdrop-flowers image. The two rows
on the right show the test images that were most frequently matched to the reference on
the left. Indicated below each image is the number of votes this match received across

the 15 subjects. In this case, the reference was most frequently matched to other images
showing a small number of flowers, followed by other foliage and flower scenes.

Reference Test images in order of decreasing number of votes

Fig. 5.4. Computer Scaling matching results for “girl-baseball-glove” image. This image
is most frequently matched to images of other children, followed by a portrait and group

images containing either children or sports scenes.
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Fig. 5.5. Multidimensional Scaling result using the color histogram distance metric



- 125 -

Fig. 5.6. Multidimensional Scaling result for the perceptually optimized distance
metric.
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Fig. 5.7. Multidimensional Scaling result using the image distances from the table
scaling experiment
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Fig. 5.8. Multidimensional Scaling result using the image distances from the
computer scaling experiment
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Fig. 5.9. Multidimensional scaling results for 3 dimensions as seen in the VRML
browser. The top left shows a top view of the 3-D space. The three other panels
(top right; bottom left, bottom right) show three sequential views as the viewer

looks out from the center of the space.

not well-described by this simple algorithm. We believe, for example, that the color

of the main object in the image contributes more to the overall impression of the

color than would be expected given its pixel contribution. That is, we would expect

close-up images of people to be close together perceptually because the color of the

skin is more important to the overall impression of image color than the color of the

background or the color of the clothing. To test results of this type, we are planning

to compare them with semantic color descriptors for these 97 images, such as the

“overall color”, the “color of the main object”, “the background color”, etc.

One very interesting observation from these data is that overall color alone does

capture information about the semantic meaning of these images. For example,

a large number of the outdoor, natural scenes appear near to each other in this
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projection, suggesting that color alone carries semantic information. Since it is very

difficult to develop algorithms which capture the semantic information in images,

understanding the correlations between color and semantics could be a useful tool

in developing semantic image descriptors which rely on calculated image attributes.

Figure 5.6 shows the results of the 2D MDS for the perceptually-based image pro-

cessing metric. This algorithm contains terms which capture color attributes, and

the influence of color is apparent in this projection. With this algorithm, the achro-

matic and brown images are at the center of the projection, and the spectral colors

rotate around this hub. This algorithm is designed to capture additional features in

the image. Low spatial-frequency color images are grouped together which can be

seen especially within color regions in this projection. For example, the images with

large blue expanses with brown subjects in the foreground are together in the top

right region, including buildings, windmills, and horses. The portraits of humans,

with large expanses of skin color against a darker background, are also organized to-

gether. Images with high-spatial-frequency luminance modulations are also near each

other. Looking toward the center of the projection, for example, there is a cluster of

traffic, crowd, city street and texture images. The perceptually weighted attributes,

low-spatial-frequency color and high-spatial-frequency luminance, do seem to pro-

duce a more perceptually-plausible organization of these images than did the color

histogram alone, capturing some compositional attributes in the images.

Figure 5.7 shows the two-dimensional multidimensional scaling result of the per-

ceptual table scaling experiment. The popularity of color-histogram-based image

similarity metrics is validated by these perceptual results. Overall color does seem

to play a significant role in the perceptual organization of these images. The color

organization, however, is much less pronounced, suggesting that other factors are

playing significant roles in these judgments. There appear to be groupings of blue,

green, and brown/orange images, and perhaps achromatic images. The attributes

described in the result for the perceptually-weighted algorithm also seem to be oper-

ating. Within color areas, there appear to be clusters of low-spatial-frequency color
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images and clusters of high-spatial-frequency luminance images.

Another organization, however, appears to emerge from this projection. In mul-

tidimensional scaling, the two-dimensional algorithm maps the stimuli onto a two-

dimensional plane, and analysts typically try to interpret these dimensions in concep-

tual terms. Following this tradition, we have superimposed two candidate axes onto

this image. One axis is what we call the natural vs. man-made axis, running from

the rock and flower images in the bottom left through the nature scenes, to nature

scenes with man-made objects, to man-made objects with nature, to the buildings

and shipping docks in the upper right-hand side of the projection. The other axis is

the human vs. non-human a axis, running from the less human-like images of sunsets

and clouds in the top left through scenes with animals, to scenes with small images

of humans in various settings to images featuring large full-face portraits of humans

in the bottom right side of the projection. These candidate dimensions also seem to

describe the images as we move around the obviously circular projection. Starting

with natural images of seascapes, in the upper left, we move to increasingly man-

made, less natural images, which do not contain humans, then move through the

man-made objects, which likewise do not include humans, through to images which

increasingly include humans, on to the end of the “more human axis”. Continuing

our path, we have humans in nature, then natural objects without humans.

Figure 5.8 shows the 2D result for the Perceptual Computer Scaling experiment.

Again, this result supports the idea that overall color is important in image similarity

judgments, and also provides support for the low-spatial-frequency color and high-

spatial-frequency luminance hypothesis. There appear to be clusters within this

organization which clearly reflect these features.

Perhaps more striking is the similarity in organization of these results to those

of the table-sorting experiment. In this image we have superimposed onto the 2D

projection the same qualitative axes as in the previous figure. Although there are

differences in the fine structure of how the images are organized, the overall structure

produced by the two psychophysical experiments is extremely similar. In the com-
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puter scaling experiment, there is a progression across the circular array from natural

to man-made, and, in what appears to be an orthogonal dimension, an equally com-

pelling progression from less human-like to more human-like. Around the circle, we

go from nature scenes which do not include humans or man-made objects, to nature

scenes which include some man-made objects, such as buildings, through to images

of man-made objects without nature or humans, to images of man-made objects

with humans, but not nature. From the end of the human axis, we progress to

images with humans and natural scenes, and back to images with purely natural

scenes without humans or man-made objects. Interestingly, in both psychophysical

projections, animals are organized more closely with natural scenes than they are

with humans, perhaps because in these images, all the animal images were taken in

nature.

MDS in 3 dimensions

One of the most interesting features of the two dimensional projections of the

psychophysical results is the circular structure. Using the Diamond visualization

tool[130], we were able to look more closely at this three-dimensional MDS struc-

ture. We found that the 3-D solution is best described as a sphere of images, where

the sphere has a thickness of not more than 10 percent of the distance across the

diameter. This means that the images in the central region of the 2-D projections

are really images which would belong the shell of the 3D solution. To examine this

further, we created a three-dimensional geometry and pasted the center point of each

image onto its coordinate position in this 3D space. In order to view these images,

we positioned them so that each was normal to a vertical axis in this space. For

example, all the images on the top of the sphere were effectively rotated 90 degrees.

We created a VRML “world” which allowed us to view the images in this 3-D

geometry from a number of different perspectives. Perhaps the most interesting view

of these data was to zoom into the center of this rotating set of images, and watch the

images move slowly past. Figure 5.9 shows a matrix of four views generated from the

VRML world. The top left panel contains a view from the top, showing concentric
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rings of images forming a shell around the center of the space. The remaining

panels contain three sequential views around the interior of the 3D shape, looking

outward. The shapes of the images appear distorted because we have introduced a

fisheye transformation in order to see more images. The view on the top right shows

a progression from images with human figures, with children organized together,

moving through to outdoor scenes with humans as small, subordinate features, to

green outdoor nature scenes with animals, to outdoor, nature scenes without animals

or people. A grouping of nature scenes with flowers and vegetables is at the bottom

right-hand corner of the panel, and includes the snow-drop image discussed in Figure

5.3. It is interesting to notice that the ordering of similarity across observers in Figure

5.3 is well-matched to the distances in this projection.

The panel at the lower left shows another snapshot of this 3D space, the next view

in the sequence. This view overlaps the view just discussed, beginning with images of

humans in natural scenes. The top of the view shows nature scenes with animals on

green backgrounds followed by animal images on blue ocean backgrounds (fish and

birds), water scenes without people, then sea scenes with man-made objects. The

right-hand side of the panel is filled with man-made objects: ships, bridges, trains

and train tracks. The panel at the bottom right picks up where the previous one left

off and shows the progression from ocean scenes with boats, to outdoor scenes with

buildings, to man-made scenes with humans, back to where we began.

The overall impression generated by this 3D view is that the results generated by

human observers are very systematic, with sensible progressions, following semantic,

color, and structural characteristics.

MDS Stress

As expected, very low dimensional spaces cannot represent the full complexity of

perceptual similarity judgments. This is reflected in the stress values shown in Table

5.1. Comparing the two psychophysical techniques, we notice that the stress in the

table scaling method is lower than for the computer scaling method. This suggests

that, when constrained to a 2-D projection, subjects are more likely to agree on the
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Table 5.1
Stress values for MDS results as a function of dimensionality.

Dimensions Computer scaling Table Scaling Color-histogram Perceptually optimized

MDS space algorithm algorithm

2 0.33 0.25 0.27 0.26

3 0.23 0.16 0.17 0.19

4 0.18 0.10 0.13 0.14

two most fundamental dimensions, thereby reducing the dimensionality of the data

across subjects.

The similarity between the MDS solutions for the Table Scaling and Computer

Scaling experiments, and their intuitive appeal, suggests that, despite this high stress,

they do capture some of the most important dimensions of image similarity.

5.4 Discussion

Algorithmic image similarity metrics commonly make use of attributes which are

thought to influence human judgments of image similarity. In this work, we have

explicitly studied human visual similarity judgments in an effort to develop simi-

larity metrics better matched to human judgments. Using psychophysical scaling

techniques, we have compared the results of several methods for measuring the sim-

ilarity of images. The first is a simple color histogram algorithm, the second is a

metric with parameters weighted by psychophysical judgments, and the remaining

two are the results of psychophysical scaling experiments which explicitly measure

human judgments of image similarity.

5.4.1 Evaluating the psychophysical results

Although the two scaling results were designed to test the visual similarity of

our 97 test images, the experimental conditions were quite dissimilar. In Table

Sorting, all images were in view simultaneously whereas in Computer Scaling, the

observer selected the one image among a set of eight which looked most similar. In
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Table Scaling, the images were printed; in Computer Scaling, they were presented

on a computer display. In Table Scaling, the experiment constrained the solution

to the 2D tabletop, whereas the Computer Scaling experiment did not. In Table

Scaling, the similarity matrix was fully populated, since a physical distance was

computed between each pair of images once the solution was obtained. In Computer

Scaling, the matrix was sparse. Given these differences, it is quite remarkable that the

two techniques produced such similar 2D solutions when their respective similarity

matrices were scaled using multidimensional scaling. This similarity suggests that

the two techniques tapped the same perceptual processes, independent of differences

in experimental methodology.

5.4.2 Using these Results

The systematic nature of these data make them an excellent basis for future re-

search in image similarity. It is clear that human observers use many dimensions in

their evaluations of image similarity, including color, high-frequency luminance in-

formation, low-frequency color information, and perhaps most important, semantic

information. That the two- and three-dimensional solutions to the scaling judgments

produce smooth, orderly transitions from image to image suggests that these cues

may be smoothly combined. This suggests that it may be possible to develop descrip-

tors which describe these smooth transitions as a function of measurable features of

the images.

In the analysis of the 2D MDS projections for the psychophysical scaling experi-

ments, we suggested the possibility of dimensions running from more- to less-human-

like, and from natural to man-made. Returning to these images, it is clear that other

organizations are also possible. For example, it is easy to see that the images are

grouped according to semantic category: buildings, animals, boats, children, and

man-made objects are organized near each other. This suggests that it might also

be useful to use cluster analysis techniques.
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5.4.3 Modeling

The psychological image similarity spaces we have uncovered using the multi-

dimensional scaling techniques appear to be visually intuitive, and if this were the

entire set of existing images in the universe, we might be inclined to offer our 3D

VRML world as a navigation tool. Certainly images which appear similar to each

other appear near each other, and it is easy to understand how to navigate within

this space. However, this is not the universe of images, and in order to make these

results useful, it must be possible to compute where new images should go. This

means that we need to model image positions in terms of images features which can

be computed automatically. To do so, our first task will be to try to model the

positions of the images in terms of measurable image characteristics, then test this

model with a new set of images.

Another use for these data is to test the performance of various image similarity

metrics. We have seen in this study that, at least qualitatively, the color histogram

and the perceptually optimized metric capture some aspects of the human judgment

data, but do not adequately model the human similarity space. At minimum, an

error measure could be devised comparing the results of the proposed metric with the

perceptual results. As more is learned about the visual mechanisms underlying these

results, however, it is hoped that a more theoretical, quantitative model could be

developed which could describe the deficiencies of image similarity metrics in terms

of visual processes.

5.4.4 Image Semantics

It is quite clear that these results suggest semantic categories. It is easy to

see semantic clusters in the data, of people, outdoor scenes, seashore scenes, etc.

These semantic categories, however, appear to correlate with image descriptors. For

example, images with indoor scenes tend to be brownish, have low light levels, and

many straight edges. One idea for getting a handle on these semantic categories

is to explore how much of the information contained in these semantic categories

can be accounted for in terms of calculable image processing descriptors and image
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statistics.

5.4.5 Why are the MDS results so circular/spherical?

The circular structure of the computer-scaling result could reflect the sparsity

of the similarity matrix. In particular, the distance matrix contains a considerable

number of entries equal to one. The optimal geometric solution to preserve these dis-

tances in two dimensions is a circular structure. This explanation, however, does not

explain the circular structure of the table-scaling result, since that matrix was fully

populated. The circular structure might disappear if a non-metric MDS algorithm

is used instead of the metric algorithm discussed above.

5.5 Conclusions

We have conducted two psychophysical scaling experiments aimed at uncovering

the dimensions human observers use in rating the similarity of photographic im-

ages, and have compared the results with two algorithmic image similarity methods.

Although these experiments were conducted with different media, different tasks,

and different methodologies, they produced very similar multidimensional scaling

results. First, the overall color of the images was an important factor in judging

similarity, and the dimensions “Human vs. non-human” and “natural vs. man-

made” were very salient. These low-dimensional solutions did not capture all the

richness in these multidimensional judgments, as reflected in the overall stress of the

multidimensional analysis, but they did provide systematic structures with relatively

smooth transitions and intuitive organizations. These features encourage us to use

these results as a basis for developing perceptually-based image similarity metrics

and intuitive navigation environments.
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APPENDIX

A.6 A Review of Multiscale Random Process Liturature

A.6.1 Continuous State Models

In [12], Basseville, Benveniste, Chou, Golden, Nikoukhah and Willsky develop a

linear signal processing technique for signals on trees. A distance measure on the tree

is defined as the number of nodes traversed on the shortest path between two nodes.

This measure is used to define isometries as mappings that preserve all distances

on the tree. Two classes of stationarity are defined and investigated. The first and

stronger class is given by isotropic processes whose covariance function is invariant to

isometries on the tree, i.e. it depends only on the distance between two nodes in the

tree. Isotropic systems are defined such that the linear system response commutes

with isometries on the tree. These systems are non-causal in scale. The second,

weaker class of stationarity is obtained by requiring the covariance of associated

processes to be invariant only to translations on the tree, i.e. isometries that shift

an infinite path on the tree by one node. Processes and systems associated with this

weaker class of stationarity are called stationary. The system response of stationary

systems is analyzed, specifically it is shown that the input/output response for two

nodes only depends on the distance of the two nodes from their first common tree

ancestor.

Parameterizations of processes and Levinson-Schur type algorithms are devel-

oped for both isotropic and stationary processes. Multiscale AR(p) processes are

introduced as parameterizations for isotropic processes. A p-th order AR process

has inputs only from nodes at the same or coarser scales with distance less or equal

p. It is shown that the parameterization of such processes by partial correlation

coefficients is more convenient than using the AR coefficients, and generalizations
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of the Levinson and Schur recursions for these processes are derived. For stationary

systems, it is shown that any such system can be written as a combination of two

basic systems, a coarse-to-fine interpolation and a forward-average shift. These sys-

tems are shown to correspond to classical separable 2-D systems. Requiring these

systems to be causal and have finite-memory leads to the MAR state representation.

Several estimation algorithms for MAR processes are developed. For the case, where

the MAR system parameters depend only on scale, the Haar wavelet transform is

applied to the states and observations at each scale. This results in two decoupled

white noise dynamic systems at each node. For the general case, a Kalman-like gen-

eralization of the Rauch-Tung-Striebel (RTS) algorithm is used for state estimation.

[cont, lin, wav, Mar 92]

In [131], Simoncelli, Freeman, Adelson and Heeger propose shift-invariant mul-

tiscale transforms as an alternative to wavelet transforms which typically are not

shift invariant. The authors define shift-invariance in space, orientation and scale.

Specifically, a transform is considered shift-invariant with respect to a subband, if

the subband response at any parameter value (e.g. location for space invariance) can

be interpolated from the transform coefficients of that subband. It is shown, that in

order to obtain shift invariant self-inverting transforms, it is generally necessary to

relax orthogonality. This leads to overcomplete transform representations. Examples

of shift-invariant transforms are proposed. [cont, lin, March 92]

In [13, 14], Basseville, Benveniste and Willsky develop linear system theory for

multiscale autoregressive (MAR) processes as the multiresolution counterpart to LTI

systems for time series. In part I [13], isotropic processes on trees are defined as

processes whose covariance is only a function of the distance between tree nodes.

Causal white noise driven models that produce isotropic processes are developed as

a class of AR models on trees. Levinson and Schur recursions are developed for

isotropic processes on dyadic trees. In part II [14], lattice structures for whitening

and modeling are developed for isotropic processes on dyadic trees. It is shown, that

parameterization by reflection coefficients leads to a more elegant representation
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as compared to the coefficient representation of these processes. Whitening and

modeling filters are specified in terms of reflection coefficients and a recursive filtering

technique is presented. [cont, lin, Aug 92]

In [15], Chou, Golden and Willsky develop a class of linear multiscale stochas-

tic models based on a modification of the wavelet synthesis equation. The wavelet

synthesis equation is modified by a allowing a vector of scaling coefficients at each

location. Before applying the synthesis filter, the coarse scale scaling coefficients are

multiplied by a diagonal matrix, i.e. are filtered separately at each location in a spa-

tially homogeneous way. Furthermore, instead of interpolating noise realizations of

detail coefficients, the noise is directly added to the interpolated scaling coefficients.

The resulting model is Markovian in scale and allows for data measurements at all

scales. The model is applied to a smoothing problem for a first-order Gauss-Markov

process. [cont, lin, Dec 93]

In [132], Luettgen, Karl, Willsky and Tenney show how MRF’s can be represented

exactly on trees. The proposed representations are based on a generalization of

midpoint deflection for Brownian motion (1-D case) which is generalized to a midline

deflection construction for the 2-D case. For representation of a 1-D MRF, each tree

node corresponds to an interval of the fine scale signal. The nodes contain the

two endpoints as well as the center point of the interval. The node’s children are

then refinements of this interval, with the left child containing the interval from the

left boundary point to the center. This model can be modified by including the 2

center points of each interval in order to avoid overlap of data points in adjacent

tree nodes. For the 2-D case, the model is generalized such that each node contains

the boundary of a square block as well as the horizontal and vertical midlines. In

order to reduce the complexity of the 2-D model, an approximate model is proposed

in which the 2-D block boundaries are approximated by scaling coefficients of their

1-D wavelet transform. Since the proposed MRF representation is scale recursive, it

allows for fast recursive realization algorithms. Results are demonstrated for sample

path generations of textures. [cont, Dec 93]
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In [20], Luettgen, Karl and Willsky propose a non-iterative multiscale algorithm

for the computation of optical flow. The problem formulation by Horn and Schunck

is interpreted in an estimation theoretic framework. The Horn and Schunck gradient

prior term is replaced by a “similar” prior term which is realized by a multiresolution

MAR model. The multiscale model is the standard MAR model where the state at

each node depends only on the parent state. The state vector at each node corre-

sponds to the optical flow, whereas the output vector corresponds to the observed

brightness. The MAR output equation is chosen to satisfy the brightness constraint

as in the approach by Horn and Schunck. The noise term in the state equation is

chosen to result in a prior similar to that of Horn and Schunck. The reconstruction

algorithm is recursive, Kalman-like and results in constant complexity per image

pixel, regardless of image size. Results for different reconstruction sequences are

presented. [cont, lin, Jan 94]

In [133], Dijkerman and Mazumdar use wavelet representations to obtain mul-

tiresolution representations of stochastic processes. The decorrelation properties of

the wavelet transform are investigated. An AR model for the wavelet coefficients is

developed. Wavelet coefficients are modeled as linear functions of coarse scale coeffi-

cients and causal coefficients within scale. This model is used to obtain approximate

multiscale representations of random processes with specified fine scale correlation.

The approximation of the correlation can be evaluated by visual inspection of the

difference between the correlation matrices or by using Bhattacharya distance. [cont,

lin, July 94]

In [19], Claus and Chartier extend and generalize the work in [13, 14]. The

Levinson and Schur recursions for isotropic processes are generalized from dyadic to

qth order trees. The Schur recursion is generalized and formulated more compactly.

[cont, lin, Aug 94]

In [134], Luettgen and Willsky develop a fast likelihood calculation algorithm for

noisy observations in a stochastic MAR multiresolution model. In the MAR model,

each node state depends only on the parent state and is white noise driven. The
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observations are assumed to be independent white conditioned on the node state.

Since the observations are not independent in general, fast likelihood calculation

is problematic. The proposed algorithm relies on pre-whitening the data followed

by fast likelihood calculation on the independent residuals. The whitening is per-

formed by first applying Kalman filtering resulting in partial whitening on paths

from the tree root to the leaves. The remaining correlations are removed by using

the multiscale state model to subtract the conditional expectation of the observations

between nodes that are still correlated. The overall algorithm consists of an upward

and a downward sweep and has constant per pixel computational complexity. The

proposed algorithm is applied to a texture discrimination task and compared to a

GMRF model. [cont, lin, Feb. 1995]

In [135], Dijkerman, Mazumdar and Bagchi introduce reciprocal random pro-

cesses on N-ary trees. Reciprocal processes are defined such that the conditional

probability of a value of a tree node, given the values of all other nodes in the tree

is only dependent on the values of the parent node and the children nodes. Nearest

neighbor models (NNM) are introduced and it is shown that a zero-mean Gaussian

process on a binary tree is reciprocal if and only if it admits a NNM. A recursive

description of such processes is derived and it is shown that in the case of zero bound-

ary conditions on the truncated tree, reciprocal processes reduce to autoregressive

processes. The proposed framework is applied to a 1-D smoothing problem. [cont,

lin, Feb. 95]

In [136], Perez and Heitz investigate the Markovian properties of MRF transfor-

mations typically used in multiresolution image modeling. The locality of subsam-

pled MRFs is studied by considering the restriction of the original fine scale MRF to

a subset of its original site. Locality is examined by determining the minimal neigh-

borhood with respect to which the restricted field is an MRF. The authors show that

most subsampling schemes as well as typical renormalization group transformations

result in loss of locality. For hierarchical MRFs defined on quadtrees and pyramidal

structures, it is shown that the restriction to a single resolution level results in loss
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of locality, making separate simulation for each level intractable. [cont, jan 96]

In [35], Irving, Fieguth and Willsky propose an overlapping tree approach to ad-

dress the problem of blockiness with standard quadtree multiscale models. A linear

mapping is used to transform a given fine scale process into an overcomplete, over-

lapping tree structure. Specifically, each fine scale node of the tree corresponds to

only a single pixel of the original process. However, multiple fine scale nodes can

correspond to the same pixel in the original process, i.e. the linear transform effec-

tively copies single pixels into multiple different nodes, resulting in an overcomplete

representation at fine scale. At the coarser scales, nodes correspond to overlapping

spatial averages of pixels. The spatial overlap at each scale and some additional

constraints uniquely specify the fine scale forward transform. Multiscale modeling

and estimation are performed using the standard MAR framework where each node

depends only on its tree parent. The observations are assumed to be conditionally

white given the state of the node. Note that for estimation applications, the original

process observations are transformed into the tree representation. This results in

multiple copies of a single observations in different nodes. Although these nodes

contain the same observations, they are modeled as independent by the MAR frame-

work. To compensate for this, the MAR noise variances in each node are multiplied

by the number of nodes that contain the same observation. The results of the es-

timation or modeling are transformed back into the original process domain. The

back-transform is obtained by averaging values of fine scale nodes corresponding to

the same pixel location. Since the averaging is performed over nodes corresponding

to the same location, the authors claim no loss in resolution. There is a degree of

freedom in choosing the backtransform weights for nodes corresponding to the same

pixel. Experimental results are provided for stationary and non-stationary texture

synthesis as well as for texture denoising. [cont,lin,Nov 1997]

In [21], Fieguth, Karl and Willsky develop a multiresolution algorithm for surface

estimation as an alternative to commonly used variational methods. The multireso-

lution model is the standard MAR model, i.e. scale recursive such that the state at
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each node is a linear function of the parent node state. The observations are assumed

to be independent for each node given the state. The paper focuses on specifying

a multiresolution model of this form to approximate a commonly used variational

model that requires the solution to an Euler-Lagrange pde. To improve the model,

the overlapping tree model [35] is applied. The surface reconstruction is performed

using an earlier published recursive Kalman-like algorithm. [cont, lin, May 98]

In [22], Frakt and Willsky propose a computationally efficient algorithm to de-

termine the parameters of an internal MAR multiscale stochastic model such that

the finest scale of the MAR process matches a specified correlation function. The

complexity of the proposed algorithm is O(N2) where N denotes the number of sig-

nal samples at fine scale, i.e. N2 equals the size of the specified fine scale correlation

function. [cont, lin, 98]

In [23], Daoudi, Frakt and Willsky unite the multiscale autoregressive frame-

work (MAR) with wavelet models for general wavelet bases. In order to use the

MAR framework with bases other than the Haar basis, state augmentation is per-

formed such that the scaling coefficients at each node only depend on scaling and

wavelet coefficients in the direct parent node. Specifically, nodes contain overlapping

information. A second state augmentation is then performed in order to satisfy in-

ternality, i.e. so that the state at each node is a linear function of the states in the

leaves of its subtree. Specifically, at each node, the children nodes are augmented to

contain a range of scaling coefficients that are adjacent to the node. The augmented

scaling coefficients are then propagated down the tree where the information is split

between children in order to keep the state dimension bounded. This satisfies the

necessary and sufficient condition for internality that each state is a linear func-

tion of the states in the two children. The fine scale signal is extracted by simply

taking the scaling coefficient at the correct leaf position instead of averaging of the

same coefficient in the overcomplete representation. The authors point out, that

both wavelet and scaling coefficients are predicted from both coarse scale wavelet

and scaling coefficients. The model observes the tree constraint and thus leads to
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recursive algorithms as developed earlier for the MAR framework. [cont, lin, April

99]

A.6.2 Discrete State Models

In [96], Bouman and Liu propose a multiresolution texture segmentation algo-

rithm. Texture labels are modeled as discrete MRF’s at multiple resolutions. Coarse

scale labels correspond to fine scale blocks with constant labels. The MRF param-

eters are chosen to be identical at all scales. The image observations at the finest

scale are modeled as causal AR processes given the texture label. Coarse scale log-

likelihood expressions are computed as the decimated fine scale log-likelihood. The

segmentation algorithm proceeds in a coarse-to-fine scale fashion. At each scale,

the algorithm iteratively computes the MAP segmentation and uses the result to

initialize the segmentation at the next finer scale. In order to perform unsupervised

segmentation, the algorithm is extended to include parameter estimation routines.

Specifically, the number of textures and their parameters are estimated using a modi-

fied AIC criterion. The estimation of texture parameters is performed by alternating

texture segmentation and parameter estimation. [discr, Feb 91]

In [27, 38], Kato, Berthod and Zerubia propose a 3-D MRF for modeling the

label pyramid in image segmentation tasks. The model is based on a multiresolu-

tion pyramid for the segmentation labels. The coarse scale models are obtained by

assuming a constant segmentation label for all fine scale pixels within the support

of the coarse scale block. The 3-D MRF neighborhood system consists of a standard

MRF neighborhood within the same scale plus the quadtree parent and the four

children at the adjacent scales. The segmentation is performed at all resolutions is

parallel using multitemperature annealing. The multitemperature annealing assigns

higher temperature to the coarser resolution levels, thereby using the higher SNR at

coarse scales to increase robustness to local minima. The 3-D MRF model was first

proposed in [27] without the multitemperature annealing. [discr, May 93/Jan96]

In [102], Heitz, Perez and Bouthemy develop a multiresolution relaxation algo-

rithm to minimize a single global energy function in image segmentation tasks. The
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model uses a multiresolution label pyramid assuming a Markov random field (MRF)

model with an 8-point neighborhood at each scale. The coarse scales are based on

a nested subspace approach where each coarse scale label corresponds to a block

at fine scale that has constant labels. The central contribution of the paper is the

computation of the coarse scale MRF energy functions to match the fine scale energy

function. The authors show that the fine scale energy function can be rewritten for

the coarse scale using 1 through 4 site clique energy terms associated with the same

8-point neighborhood used at fine scale. Observations are only used at the finest

scale. The model is applied to estimating discrete valued long range motion in an

image sequence. The coarse to fine reconstruction algorithm uses ICM optimization

at each scale. The coarse scale reconstructions are used to initialize the next finer

scales. This algorithm extends the work by Bouman and Liu to include a systematic

computation of the coarse scale MRF energy functions. [discr, Jan 1994]

In [28], Bouman and Shapiro propose a hierarchical multiresolution MRF model

for image segmentation. The approach is based on a multiscale Markov random field

(MSRF) consisting of a sequence of Markov Random fields forming a Markov chain in

scale. The authors propose a sequential MAP (SMAP) estimator that minimizes the

expected size of the largest misclassified region in the image. This is in contrast to

the more conservative MAP estimator that maximizes the probability that all pixels

are classified correctly. The SMAP estimator computes the image classification in

a coarse to fine scale fashion. At each scale, the best segmentation is computed

given the segmentation at the previous coarser scale and the observed data. The

optimization at each scale can be expressed as a sum of a coarse scale log-likelihood

and a log prior expression given by the coarse-to-fine scale transition probabilities of

the Markov chain in scale. The coarse scale log-likelihoods account for all possible

label changes on the way down to the finest scale where observations are available.

Assumptions for the prior model are that the labels at each scale are independent

given the labels at the next coarser scale. Furthermore, each label is assumed to

depend only on a small window at the next coarser scale. Two choices of coarse
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scale neighborhoods are considered, one corresponding to a quadtree model and

one corresponding to a pyramidal model. For the quadtree model, the coarse scale

neighborhood consists of only the tree parent. For this model, the coarse scale log-

likelihoods can be computed using a fine-to-coarse scale recursion. In the pyramidal

model, each label depends on a 3-point window at the next coarser scale. For this

model, a fine-to-coarse likelihood recursion is not possible. Thus, a hybrid model is

used, where the segmentation at each scale is computed using a pyramidal model for

the coarser scale dependencies and a quadtree model for the finer scales to recursively

compute the log-likelihood expressions. For unsupervised segmentation, a two-pass

EM procedure is proposed to estimate the prior parameters. The computational

overhead of the parameter estimation is reduced by subsampling the image at high

resolutions. [discr, Mar 94]

In [137, 138], Kato, Zerubia and Berthod propose hyperparameter estimation

techniques for the 3-D MRF model presented in [27, 38]. The parameter estimation

is performed by using expectation maximization (EM) techniques. The hyperparam-

eters are obtained by iterating MAP segmentation and ML parameter estimation.

In [138], the authors introduce two different techniques based on adaptive simulated

annealing (ASA) and iterative conditional estimation (ICE). Extending the algo-

rithms in [27, 38] to use the hyperparameter estimation results in an unsupervised

segmentation algorithm where only the number of classes is assumed to be known.

[discr, Jun 95].

In [34], Laferte, Heitz, Perez and Fabre provide an extension to SMAP[28] by

allowing observations at multiple resolutions. As in SMAP, this is done for both

quadtree and a pyramidal graph structures. The authors present a non-iterative,

Viterbi-like algorithm for exact MAP estimation on the quad-tree. [seg, 95]

In [139] and [140] Tretter, Bouman, Khawaja and Maciejewski use a hierarchical

stochastic tree model for object detection and estimation of object parameters such

as location, scale and orientation in automated inspection tasks. The proposed state

model consists of an object tree where each node corresponds to a subassembly of
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the object under inspection. Each node’s state contains the location, orientation and

scale of the subassembly. The states are modeled using Gaussian coarse-to-fine scale

transition probabilities between parent and child nodes. The data term for each

node is based on the wavelet transform of a 2-D monochrome image of the entire

object. Based on the node’s state, the measured data points are compared to an

affine transform of mean and variance statistics of the known subassembly obtained

from training data. The estimation of the states is defined using a sequential MAP

(SMAP) cost function. The SMAP estimation is carried out using a fast tree search

strategy that identifies and evaluates multiple candidate paths of object relationships

in scale. Training and parameter estimation for the model are performed using a

similar search in conjunction with the EM algorithm.

In [141], Krishnamachari and Chellappa develop two methods to approximate

subsampled GMRF’s with coarse scale GMRF’s. The first method optimizes the

parameters of the coarse scale GMRF to minimize the Kullback-Leibler distance be-

tween the pdf’s of the subsampled GMRF and the coarse scale GMRF. The second

method optimizes the coarse scale parameters based on the local conditional distri-

bution invariance. The authors propose a texture segmentation algorithm using this

model. Texture regions are modeled using a fine scale GMRF whose parameters are

assumed to be known. Based on the parameters at fine scale, GMRF parameters at

coarser resolutions are estimated using the proposed framework. The segmentation

is then computed in a coarse-to-fine scale fashion. Starting with the coarsest scale,

the segmentation is computed separately at each scale using ICM. The segmentation

at each scale is then propagated as initialization to the next finer scale. In addi-

tion, a confidence measure is attached to each location of the segmentation at each

scale. At finer scales, only pixels with low confidence coarse scale segmentation are

processed. [discr, Feb 97].

In [142], Irving, Novak and Willsky apply a multiresolution AR model to SAR

target discrimination. High resolution SAR data is organized into a quadtree struc-

ture by downsampling and applying a log-detection transform. The data is modeled
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using a white noise driven AR model in scale where the value at each node depends

on the direct ancestors at coarser scales. Training data is used to obtain the AR

coefficients and a model for the residual noise for the two classes to be discriminated,

man made objects and natural clutter. The AR coefficients are determined using a

least squares approach. The residuals are modeled as Gaussians for the man-made

case and as Rayleigh for the natural clutter. Classification is performed using a hy-

pothesis test based on a multiresolution discriminant. The discriminant is computed

as the log ratio of the conditional pdf’s of the residuals given the two coarsest scales.

[discr, oct 97]

In [143], Frakt, Karl and Willsky propose a computationally efficient multiscale

algorithm for hypothesis testing in tomography applications. The proposed algo-

rithm proceeds from coarse to fine scale. At each scale, a composite hypothesis test

is performed and all but one composite hypothesis are discarded. The remaining hy-

pothesis is split into four smaller composite hypotheses at the next finer scale. For

the tomography application, the hypothesis at each coarse scale location is the pres-

ence of an anomaly which is contained entirely within a region corresponding to the

coarse scale location. The regions corresponding to adjacent coarse scale locations

overlap. The first hypothesis test at the coarsest scale identifies a single region. At

the next scale, this region is split into four and the best region is selected. The deci-

sion statistics are computed as affine transforms of the tomographic projection data.

The coefficients of the affine transform are optimized to maximize the worst case dif-

ference between the likelihood means for the cases where the hypothesis is true and

false. The projection data is modeled as jointly Gaussian. Anomalies are modeled

as square patches that are independent from the background which is modeled as a

Gaussian MRF. The proposed approach is compared to a simpler approach that uses

hypotheses corresponding to anomalies that take up the entire region corresponding

to a coarse scale location. [disc, June 98]

In [144], Hsu and Wilson propose a multiresolution model for texture analysis

and synthesis. Textures are modeled as transformations of a prototype patch plus a
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stochastic residual component such as an MRF. The prototype transformation con-

sists of a translation followed by an affine coordinate transform and spatial window-

ing. The selection of an appropriate analysis scale is formulated as a rate-distortion

problem. The rate is computed as the expected information rate of the set of proto-

type transforms and the distortion is computed as the expected mean square error

between transformed prototype and ground truth. The authors propose a texture

analysis by synthesis algorithm based on a multiresolution Fourier transform (MFT)

representation of the texture patches. [disc, Oct 1998]

In [145], Li and Wilson develop a spatially non-homogeneous multiscale MRF for

texture segmentation. The model is based on both region and boundary processes

which contribute to the MRF potential functions at each scale. The MRF neighbor-

hood consists of the 4-point neighborhood at the same scale as well as the quadtree

parent at the next coarser scale. The coarse to fine scale unsupervised segmenta-

tion algorithm simultaneously optimizes both boundary and region processes. At

each scale, a Gibbs sampling scheme is used to identify the boundary sites. The

segmentation result at the current scale is then used as coarse scale condition and

initialization for reconstruction at the next finer scale. [discr, Oct 1998]

In [29], Comer and Delp propose a multiresolution AR approach to texture seg-

mentation. The observed data is modeled using a multiresolution AR process on a

Gaussian pyramid. The observation at each node is modeled as an AR process using

arbitrary coefficients at coarse scale and the causal coefficients at the same scale.

The label pyramid is modeled using a 3-D MRF model (Kato, Zerubia, Berthod).

The multiscale MPM reconstruction and parameter estimation are performed simul-

taneously using an EM/Gibbs sampler like approach. [discr, March 99]

In [30], Laferte, Perez and Heitz develop non-iterative inference algorithms for a

discrete multiscale model with a causal Markovian structure. The quadtree model

assumes that nodes are conditionally independent given the quadtree parent. Obser-

vations are assumed to be independent and to be available at all resolutions. Three

recursive estimation algorithms are derived, a Viterbi-like algorithm for exact MAP
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estimation, a Welch-like algorithm for MPM estimation and an extension of SMAP

for the case where observations are available at all nodes. Furthermore, two different

EM techniques for parameter estimation are developed. Results for supervised and

unsupervised image classification are presented. [discr, nonlin, 00]

A.6.3 Hybrid and Nonlinear Continuous State Models

In [24], Yang and Wilson propose an adaptive multiresolution method for adap-

tive image restoration. The prior model uses a quadratic smoothness constraint on

the difference between the segmentation and the interpolated segmentation at the

previous coarser scale. The segmentation is computed using Hopfield neural net-

works to solve the optimization. The optimization is performed from coarse to fine

scale. The segmentation at each scale is computed separately conditioned on the

previous coarser scale solution. The model is extended to be adaptive by relaxing

the prior term in the vicinity of edges. [cont,non-lin, jul 95]

In [16], Nowak provides a multiscale hidden Markov model (MHMM) approach

for Bayesian image analysis assuming Gaussian or Poisson noise processes. The

model is based on the Haar wavelet decomposition of both the signal (mean) and the

observations. The fine scale observations are assumed to be spatially independent.

The development is based on examining the conditional pdf of a node observation

given the observation at the parent node and the signal at all nodes, all in terms

of the scaling coefficients. For the Gaussian case, this conditional node likelihood

depends on the Haar wavelet coefficient of the signal. For the Poisson case, it is

a function of the ratio of the signal’s scaling coefficients of child and parent node.

The signal dependencies, i.e. the Haar coefficient for the Gaussian case and the

ratio of child/parent scaling coefficients are defined as canonical parameters. The

approach focuses on modeling these canonical parameters. One advantage of this

representation is that it leads to a simple factorization of the overall likelihood which

in turn leads to elegant recursive estimation algorithms. Two classes of prior models

are proposed. First, independent parameter models are formulated based on mixture

modeling of the canonical parameters. Specifically, the canonical parameters at
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each node are modeled independently using distributions that are conjugate to the

conditional likelihood, i.e. mixtures of Gaussian densities for the Gaussian case

and mixtures of Beta densities for the Poisson case. Second, a multiscale HMM

(MHMM) model with a causal structure in scale is developed. Each node is assigned

a hidden state such that given the hidden state, the canonical (prior) parameters for

different nodes are independent. The state transition probabilities are specified for

parent to child state transitions. An upward/downward algorithm is used to calculate

the posterior state probabilities. These are then used to recursively compute the

posterior density as in the independent parameter case. Applications to Bayesian

image denoising and edge detection are examined. For the Poisson case, the model

is limited to the Haar wavelet basis. [cont,nlin, 98]

In [17], Crouse, Nowak and Baraniuk develop multiscale HMM models using

mixtures of Gaussians to model wavelet coefficients. The model is motivated by the

non-ideal decorrelation properties of the wavelet transform, specifically clustering of

small wavelet coefficients and persistence of large and small coefficient values across

scales. Wavelet coefficients are modeled as mixtures of Gaussians. Each node is

assigned a hidden state such that the state probabilities correspond to the mixture

component probabilities. Three models are considered, an independent parameter

model (IM) with independent node states, a Markov chain model where states are

connected within scale (1-D) and a hidden Markov tree (HMT) model where the state

variables are connected across scale. The authors point out, that for the HMT model,

Markovianity is assumed only for the states but not directly imposed on the wavelet

coefficients. The parameters of the HMM models are obtained as the ML estimates

and are computed using the EM algorithm. In order to increase the robustness

of the model, tying between tree nodes is performed, i.e. wavelet coefficients at

different locations are tied by assuming the same distribution. Applications to signal

estimation as well as signal detection and classification are discussed. [cont, nonlin,

May 98]

In [36], Nowak extends the independent parameter model using Gaussian mix-
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tures presented in [17] to average over circular shifted versions of the wavelet trans-

form in order to reduce blockiness. The resulting model is shown to be stationary

with respect to the fine scale signal. The autocorrelation is piecewise linear with a

power spectrum that decays with approximately 1/f. In contrast, the model using

only a single shift of the wavelet transform results is non-stationary with piecewise

constant correlation. The proposed model is applied to denoise a 1/f Gaussian pro-

cess. [cont, 98]

In [25], Nowak and Kolaczyk propose a multiresolution MAP estimation algo-

rithm for Poisson inverse problems. The approach is based on the independent

parameter multiresolution prior model earlier proposed in [16]. Splitting coefficients

consisting of parent-child ratios of Haar scaling coefficients are modeled as mixtures

of Beta densities. The MAP reconstruction is computed using the EM algorithm.

For a prior model consisting of a two component mixture of beta densities where one

component is a point mass, the EM updates are simple analytical expressions.

To formulate the algorithm, the likelihood and prior expressions are formulated

in terms of the unobservable data, i.e. the emissions from each image pixel. The

prior model is derived by expressing the conditional parent-child relationships of the

unobservable data. These distributions depend on the splitting factors of the emis-

sion means. These splitting factors are modeled as mixtures of Beta distributions.

The MAP reconstruction is computed using the EM algorithm. The E-step calcu-

lates the expectation of the unobservable data given the observed projection data

and a current estimate of the image. The M-step maximizes the conditional pdf of

the splitting factors given the unobservable data. [cont, nlin, Nov 98]

In [146], Nowak and Baraniuk develop a wavelet shrinkage approach for Poisson

noise. For Poisson measurements, the noise variance of the wavelet coefficients is

signal dependent. The authors propose a wavelet filter that adapts to the signal to

noise ratio of each coefficient. The filter is designed by cross-validation using multiple

time frames of photon data. More specifically, the signal resulting from summing all

but one data frames is filtered, the result is compared to the remaining data frame
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and the filter is optimized with respect to a quadratic cost function called predictive

sum of squares (PRESS). [cont, nlin, May 99]

A.6.4 Specialized Applications

Image Coding

In [147], Kim, Krim and Willsky use a multiresolution AR model to develop a

segmentation driven compression algorithm for SAR images. The model is based on

a quadtree multiresolution pyramid where each level contains a log-magnitude image

representation of the observed image. The multiresolution AR model linearly pre-

dicts the image value at each node based on its coarse scale ancestors in the quadtree.

The AR coefficients for each node are determined to provide the best least-squares

fit to the measured data for a window centered around the node. Segmentation is

performed based on the AR coefficients for each node. Specifically, the conditional

likelihood of the AR coefficient vector given the node’s class is modeled as multi-

variate Gaussian. This model is then used to perform ML classification of the AR

coefficients. After segmenting the image, image coding is performed by predicting

each node’s value from its coarse scale ancestors using the AR coefficients for the

node’s class. The prediction errors are further compressed using soft-thresholding

and a wavelet packet basis for transmission of each resolution level of the error image.

[seg/comp, Oct 97]

In [148], LoPresto, Ramchandran and Orchard propose an image coding tech-

nique based on a hierarchical mixture modeling of wavelet coefficients. The wavelet

coefficients are modeled as being drawn from an independent Generalized Gaussian

distribution field with spatially slowly varying variances. The model variance for

each wavelet coefficient is computed as the ML estimate given a neighborhood of

quantized wavelet coefficients of the same orientation. Specifically, the neighbor-

hood can include coefficients at the next coarser scale and the causal coefficients

at the same scale. The image coding is then performed using rate-distortion en-

tropy/quantization coding. The coder for each wavelet coefficient is selected from a

lookup table based on the estimated variance of the wavelet coefficient. The coders
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are optimized off-line for each variance level. [compr, wav, 97]

In [149], Simoncelli and Buccigrossi use a hierarchical wavelet model for image

compression. It is demonstrated, that while neighboring wavelet coefficients are

typically nearly uncorrelated, their magnitudes can be strongly correlated. Based

on this result, the authors propose a coding strategy based on linear prediction of

wavelet coefficients from coefficients that are adjacent in scale, space and orientation.

The neighborhood of wavelet coefficients is selected off-line, using a greedy algorithm

to maximize compression. [compr,lin-mod, Oct. 97]

A.6.5 Other

In [150], Graffigne, Heitz, Perez, Preteux, Sigelle and Zerubia provide a review

and a classification scheme for hierarchical MRF models. Models are classified into

explicit hierarchical based and induced hierarchical based. In explicit hierarchical

models the hierarchy is integrated in the model definition, examples are quadtree-

models with parent-child interaction or families of stochastic processes defined on

various sets of sites. In induced hierarchical models such as renormalization tech-

niques and sequences of constrained configuration spaces, the hierarchy is implied by

a transformation of the original MRF. The two main categories, explicit and induced,

are divided into subclasses based on the nature of the space on which the order re-

lationship operates. A review of the existing work in each category is presented.

Several models are compared experimentally based on a binary image segmentation

task. [other, 95]

In [151], Lucke investigates the graph structures necessary to allow for Baum-

Welch training and Viterbi algorithm optimization for HMM’s. The author proves

that an algorithm similar to Baum’s exists whenever the graph structure is chordal,

i.e. all cycles of length greater than 3 have an edge that joins two non-consecutive

vertices of that cycle. [other, 96]
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A.7 Proof of Theorem

First note that X(n)
s is a circularly stationary random process for each resolution

0 ≤ n ≤ L. This results from the assumption that X(0)
s is circularly stationary

together with the form of the recursions (2.1) and (2.2). Next, notice that


 X

(n+1)
∂s

Z(n+1)
s


 = Q




X
(n)
(−p+2(s−w))mod2N

X
(n)
(−p+2(s−w)+1)mod2N

...

X
(n)
(p+2(s+w))mod2N




where Q is a fixed matrix, where p is such that the support of the kernels h and g

in (2.1) and (2.2) is within [−p, p] and the centered window ∂s is of length 2w + 1.

Based on the equation above and the fact that X(n)
s is a circularly stationary process,

the distribution of [X
(n+1)
∂s

, Z(n+1)
s ] does not depend on s. Using the assumption that

ν∗ = arg maxν E[log pz(Z)] exists and is unique, we write

max
ν

E[log pz(Z)] = max
ν

E


 ∑

(s,n)∈S

log p
z
(n)
s |x(n)

∂s

(Z(n)
s |X(n)

∂s ) + const




= max
ν

∑
(s,n)∈S

E
[
log p

z
(n)
s |x(n)

∂s

(Z(n)
s |X(n)

∂s )
]

+ const

=
∑

(s,n)∈S

max
ν
(n)
s

E
[
log p

z
(n)
s |x(n)

∂s

(Z(n)
s |X(n)

∂s )
]

+ const

=
∑

(s,n)∈S

max
ν
(n)
s

E[fn(Z(n)
s , X

(n)
∂s , ν(n)

s )] + const .

Since neither the fn nor the distribution of [X
(n+1)
∂s

, Z(n+1)
s ] depend on s,

(ν(n)
s )∗ = arg max

ν
(n)
s

E[fn(Z(n)
s , X

(n)
∂s , ν(n)

s )]

is not a function of s. This proves the theorem.

A.8 Computational Complexity

The number of multiplications for optimizing the wavelet graph model with

respect to a single scaling coefficient x
(l)
i is proportional to the size of the set

S̃i
4
=

⋃
n>l S̃

(n)
i , where the S̃

(n)
i are as defined in (2.40). For a general wavelet trans-

form, the size |S(n)
i | of the sets S

(n)
i as defined in (2.39) is proportional to n − l.
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Define Si
4
=

⋃
n>l S

(n)
i , then

|Si| =
L∑

n=l+1

|S(n)
i | ∝

L∑
n=l+1

(n − l) (A.7)

∝ (L − l)2 ≤ (log N (l))2 . (A.8)

Based on (2.41), the size of the set S̃i is upper bounded by |Si||∂s| where |∂s|
denotes the fixed size of the prediction window. Therefore, |S̃i| ∝ (log N (l))2 and

consequently steps (2.42)-(2.45) can be executed in order (log N (l))2 multiplications.

Thus, the complexity for a full update of x̂(l) is order N (l)(log N (l))2. For a Haar

wavelet decomposition, this reduces to N (l) log N (l) since S
(n)
i contains only a single

node at each scale n. The complexities for the 1-D and the 2-D case are the same.

A.9 Tree-structured Nonlinear Classifier

In this section, we describe the agglomerative clustering method used to obtain

the classifiers K(n)[·] and the parameter vectors θ
(n)
k for class k. For the classifier at

scale n, we assume a training set {x(n)
∂s /σn, z(n)

s /σn}. We then define a normalized

training set {vs, ws} with samples vs = V (x
(n)
∂s − x(n)

s )/σn and ws = z(n)
s /σn where

V is the matrix that eliminates the zero center component of x
(n)
∂s − x(n)

s and is the

identity otherwise. Thus, vs has one fewer component than x
(n)
∂s . Since the training

is performed separately for each scale n, we simplify the notation by omitting the

dependence on n. Our objective is to form a classification tree for vs such that each

tree node is associated with a MMSE linear predictor to predict ws from vs. We

first perform a vector quantization (VQ) of {vs} with a pre-specified, fixed number

of clusters K, currently K = 150, 100, 100, 50, 50 for scales n = 0 through n = 4.

The distance metric for the VQ is the Euclidean distance. The number of iterations

M for the VQ is set to a constant value, currently M = 5. The next step is to

compute the MMSE linear predictors for the VQ clusters. Let c1, . . . , cK denote

the K clusters. Define µck,v and µck,w as the means and Cck,vv and Cck,ww as the

covariance matrices of the samples in cluster ck with respect to v and w. Let Cck,vw

denote the cross-covariance of the samples in cluster ck. We then compute a MMSE
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linear predictor [Ack
, bck

] for cluster ck as

Ãck
= Ct

ck,vwC−1
ck,vv (A.9)

bck
= µck,w − Ãck

µck,v (A.10)

Ack
= Ãck

V . (A.11)

Further, the total prediction error εck
of cluster ck over the training set is obtained

as

εck
= trace(Cck,ww − 2Ãck

Cck,vw + Ãck
Cck,vvÃ

t
ck

) . (A.12)

Our objective is now to successively merge pairs of clusters in a greedy fashion

to obtain a binary tree. Consider merging two clusters ck and cl into a new cluster

cm = ck ∪ cl. Based on the statistics of the merged cluster cm, we can compute

the linear predictor [Acm , bcm ] and prediction error εcm using (A.9)-(A.12). The

increase in total prediction error on the training set due to the merging is then

∆εck,cl
= εcm − (εck

+ εcl
). Merging clusters strictly based on minimum increase in

prediction error is not very sensible for small clusters whose linear predictor may be

over-parameterized such that εck
= 0. To merge small clusters in a meaningful way,

we introduce a regularization term based on the distance between clusters ck, cl and

the merged cluster cm

ρck,cl
= α(|ck||µck,v − µcm,v|2 + |cl||µcl,v − µcm,v|2) (A.13)

where α is a small regularization constant and |ck| denotes the number of samples

in cluster k. We then define the cost function Mck,cl
for the merging of ck and cl as

Mck,cl
= ∆εck,cl

+ ρck,cl
. (A.14)

Starting with the initial VQ partitioning, we now merge the clusters into a binary

tree. At any given stage, we combine the two clusters ck, cl whose merging results

in the smallest Mck,cl
. This results in a binary tree where each node is associated

with its optimal linear prediction filter for ws. The leaves of the tree are the VQ

clusters. In order to not overfit the classification model, we perform optimal tree
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pruning[43, 44] using a second data set for cross-validation. The pruning set {ṽs, w̃s}
is classified into the tree by assigning each data sample to the closest VQ cluster and

to all of its parents in the tree. The pruning is performed based on the prediction

error only. The pruned nodes are marked as such but are not removed from the tree.

The covariance parameter Rk for each tree node is computed as a linear combina-

tion of the conditional covariance of the pruning samples in class k and the expected

conditional covariance over the entire pruning set. Let R1,k be the conditional co-

variance matrix of the pruning samples in class k

R1,k =
1

|ck|
∑

{s:ṽs∈ck}
(w̃s − Ack

ṽs − bck
)(w̃s − Ack

ṽs − bck
)t (A.15)

where |ck| is the number of pruning samples that fall into node k. Further, let

use define R2 as the expected conditional covariance over the entire pruning set

R2 = 1
Np

∑
{k:ck∈L} |ck|R1,k where L is the set of tree leaves after discarding the

pruned nodes and Np is the total number of samples in the pruning set. We then

compute the covariance parameter Rk for node k as

Rk = (1 − δ)R1,k + δR2 (A.16)

where δ is a small constant. The term δR2 is added to impose a lower limit on the

Rk. For our experimentation, we use a fixed value δ = 0.001 except for one case

where the training set of discrete images requires a larger value of δ = 0.3.

In order to perform the classification (2.46) at runtime, we first find the VQ

cluster with minimum Euclidean distance to V (x̂
(n)
∂s − x̂(n)

s )/σn. We then follow the

tree upwards until we reach the first node that is not marked pruned. This node

corresponds to the class kn,s and contains the associated parameter vector θ
(n)
kn,s

.

A.10 Precise Estimation of Line Source Position

An accurate estimate of the initial line source position s0 is obtained as follows.

We first obtain an approximate estimate ŝ0 based on the projection data. Specifically,

since the data is taken at the zero gantry rotation, we have good horizontal resolution

allowing us to estimate the horizontal position quite accurately from the sinogram
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(a) before calibration
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(b) after calibration

Fig. A.10. Circular blurring effect before and after calibration. Plotted are the
reconstructed coordinates of a point source for reconstructions of single frames at

different gantry angles. Shown in (a) is a result for an initial, inaccurate estimate of s0.
The dashed lines indicate the fitted circle. Shown in (b) is the result after correcting the

estimate of the initial position of the line source based on the fitted circle in (a).

data. To obtain an estimate for the vertical position, we calculate the average vertical

position from the frame image reconstructions for each source position. Based on

the initial estimate ŝ0, we compute a first empirical system kernel h(θ, ∆t). We then

use this kernel to reconstruct a second data set of a point source taken for a full set

of F frames with gantry angles αf = f ∗ 180/F , 0 ≤ f ≤ F − 1. We separately

compute reconstruction images xf for each frame using the model h(θ−αf , ∆t) and

then estimate the reconstructed source position in each frame as the center of gravity

in xf computed over a window around the expected position. Let ξf = (ξf,1, ξf,2),
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0 ≤ f ≤ F − 1 denote the sequence of estimated source positions which should lie

on a circle.

To estimate the radius and phase of the circle, we fit two sine waves ξ̄f,1 and ξ̄f,2

of equal amplitude and different phase to the sequences ξf,1 and ξf,2

ξ̄f,1 = α sin(fπ/F + φ1) + β1 (A.17)

ξ̄f,2 = α sin(fπ/F + φ2) + β2 (A.18)

where α, φ1, φ2, β1 and β2 are determined to obtain a least squares fit to ξf,1 and ξf,2.

Figure A.10(a) shows an example of the sequences ξf,1 and ξf,2 and the corresponding

fits. Based on the fit, we directly obtain the offset εs as the first point on sine waves

εs,1 = ξ̄0,1 = α sin(φ1) (A.19)

εs,2 = ξ̄0,2 = α sin(φ2) (A.20)

Thus, we obtain a corrected estimate ŝ′0 as

ŝ′0 = ŝ0 − εs. (A.21)

This more accurate estimate is then be used to re-compute a more precise h(θ, ∆t).

The new system kernel h(θ, ∆t) is then used to repeat the frame reconstructions of

the second data set. By estimating the new radius and phase of the resulting circle

we can evaluate the accuracy of the model. If necessary, the calibration procedure

can be repeated iteratively, until the estimated radius of the circle is below a specified

threshold. Figure A.10(b) shows the position estimates as a function of frame after

calibration initialized with the offset shown in Fig. A.10(a).
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