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ABSTRACT

HAADF-STEM data is increasingly being used in the physical sci-
ences to study materials in 3D because it is free from the diffraction
effects seen in Bright Field STEM data and satisfies the projection
requirement for tomography. Typically, reconstruction is performed
using Filtered Back Projection (FBP) or the SIRT algorithm. In this
paper, we develop a Bayesian reconstruction algorithm for HAADF-
STEM tomography which models the image formation, the noise
characteristics of the measurement, and the inherent smoothness in
the object. Reconstructions of polystyrene functionalized Titanium
dioxide nano particle assemblies show results that are qualitatively
superior to FBP and SIRT reconstructions, significantly suppressing
artifacts and enhancing contrast.

Index Terms— Electron tomography, dark-field, Bayesian
methods

1. INTRODUCTION

The last decade has seen a growing interest in the use of HAADF-
STEM tomography to study materials (e.g. [1, 2]). A typical ac-
quisition involves focusing an electron probe on the material and
measuring the electrons scattered into an annular range of50− 300
mrad as show in Fig. 1(a). The electron beam is raster scanned and
at each point a measurement is made, to eventually obtain a projec-
tion image of the object. The object is then tilted and the process
is repeated. Thus, at the end of the acquisition a set of projection
images is obtained corresponding to each tilt of the object. In most
cases, due to mechanical constraints the object can only be tilted
in the range of approximately±70◦. In summary, HAADF-STEM
tomography can be classified as a parallel beam, limited angle to-
mography modality. In practice, the object shifts during tilting and
this is compensated by aligning the acquired images. More details of
HAADF-STEM acquisition and pre-processing can be found in [3].

Most efforts reported in the literature use FBP or SIRT [4] to
perform the inversion of the aligned projection images. However,
due to the limited and noisy nature of the data, the resulting recon-
structed volumes can show significant artifacts. Furthermore, algo-
rithms such as SIRT require the selection of an ad-hoc stopping cri-
terion; otherwise the reconstructed image will typically diverge or
become excessively noisy.

Bayesian reconstruction algorithms have enabled significant
qualitative and quantitative improvements in other tomographic
modalities like X-Ray CT [5] motivating the extension to HAADF-
STEM tomography. We begin by developing a forward model for
the image formation in terms of the scatter coefficients, the number

of transmitted electrons and a tilt specific offset added by the micro-
scope. While complex models for HAADF-STEM image formation
[6] have been developed, the wide spread use of FBP and SIRT in
producing reconstructions at medium resolutions (≈ 1 nm), indi-
cates that a simple linear model for the image formation, implicit
in those algorithms, is also useful. Next, we model the noise as a
Gaussian with variance proportional to the mean value of the mea-
surement to capture the Poisson characteristics of the signal [7]. We
use a Generalized Gaussian Markov Random Field (GGMRF) [8]
prior for the scattering coefficients as it has been shown to have good
edge preserving characteristics and hence is suitable for materials
containing strongly scattering grains embedded in a weakly scat-
tering support material. Finally, we formulate the MAP estimation
problem and develop an algorithm to minimize the corresponding
cost function. Experimental results show that the Bayesian approach
helps to effectively suppress artifacts and reduce noise compared to
SIRT and FBP.

2. MEASUREMENT MODEL

(a) (b)

Fig. 1. (a) HAADF-STEM measurement setup (b) Equivalent
model.

The goal of HAADF-STEM tomography is to reconstruct the
HAADF scatter coefficients (units of nm−1) denoted byf(x, y, z)
at every point in space. If(x, y, z) is the reference frame of the
object and(u, v, w) is the reference frame for the electron source
(See Fig. 1), then any function of space can be reparameterized



so thatfk(u, v, w) = f([u, v, w]Rθk ) whereRθk is an orthonor-
mal rotation of the spatial coordinates by an angleθk. For tomo-
graphic reconstruction we require measurements of the projection
integral

∫ +∞

−∞
fk(u, v, w)dw through the object for every tiltθk and

every point(u, v). We begin by describing how this measurement
can be obtained from the HAADF-STEM signal. LetI0 be the
source electron flux in units of electrons per nm2. Letµk(u, v, w) =
µ([u, v, w]Rθk ) be the electron attenuation coefficient in units of
nm−1 at (u, v, w). If we consider a beam which travels along a path
given by(u, v, w) for w ∈ [wmin, wmax] for thekth tilt angleθk
as shown in Fig. 1(b), then the electron flux transmitted through the
object along this line can be modeled using Beer’s Law and is given
by

Ik(u, v) = I0 exp

{

−

∫ wmax

wmin

µk(u, v, w)dw

}

whereµk(u, v, w) accounts for all mechanisms that cause attenu-
ation including HAADF scatter. If we consider a specific point
(u, v, wo) along the path of the transmitted electron beam, the at-
tenuation can be broken into two components, the component before
the point is reached and the component after the point is past. More
specifically let us define the following three functions,

αk(u, v, wo) = exp

{

−

∫ wo

wmin

µk(u, v, w)dw

}

βk(u, v, wo) = exp

{

−

∫ wmax

wo

µk(u, v, w)dw

}

γk(u, v) = αk(u, v, wo)βk(u, v, wo) (1)

= exp

{

−

∫ wmax

wmin

µk(u, v, w)dw

}

. (2)

Then the transmitted flux is given by

Ik(u, v) = I0γk(u, v) . (3)

At a given point(u, v, w0) ( w0 ∈ [wmin, wmax]) along the line we
assume that a fraction of the incident attenuated beam is scattered
and this scattered beam then propagates to the detector. Since the
electrons are only scattered by small angles in the range of50− 300
mrad we approximate the path of the HAADF scattered electrons to
be along the line(u, v, w) for w ∈ [wo, wmax]. Therefore the total
HAADF scatter can be derived as

Gk(u, v) =

∫ wmax

wmin

I0 αk(u, v, w0)fk(u, v, wo)βk(u, v, w0) dwo

Using (1), we get

Gk(u, v) = I0 γk(u, v)

∫ wmax

wmin

fk(u, v, w)dw . (4)

Putting equation (3) and (4) together, we obtain the following rela-
tionship

Gk(u, v)

Ik(u, v)
=

∫ wmax

wmin

f([u, v, w]Rθk )dw. (5)

So the normalized quantityGk(u, v)/Ik(u, v) is an estimate of the
tomographic projection of the HAADF scatter coefficients at angle
θk and at position(u, v). We note that this process of normalizing
the measured signal by the attenuated beam is conceptually simi-
lar to the attenuation correction in Positron Emission Tomography.

Further we note that Bright Field electron tomography is similar to
transmission tomography and Dark Field tomography is similar to
emission tomography. Since this normalization valueIk(u, v) is not
measured at present we assume that it is a constant for each tilt. That
is

Ik(u, v) = Ik (6)

This will occur whenµ(x, y, z) is a constant and the material is of
constant thickness. We also observe that the HAADF-STEM signal
at each tilt is offset by a value,dk (counts) . We model theith

measurement (corresponding to the electron source at(ui, vi)) at tilt
k by a Gaussian random variablegk,i, with mean

E[gk,i] =

∫ ∫

Gk(u, v)hi(u, v) dudv + dk

wherehi(u, v) is a kernel which averages the electron flux over the
area of theith pixel. If f is a discretized version off(x, y, z) orga-
nized as aM ×1 vector, whereM is the total number of voxels and,
Ak is aP ×M projection matrix for tiltk, whereP is the number
of measurements per tilt then using (4) and (6)

E[gk,i] = Ik

∫ ∫
(
∫ wmax

wmin

fk(u, v, w)dw

)

hi(u, v)dudv + dk

= Ik (Akf)i + dk

where(Akf)i is theith entry of the vectorAkf . The variance of
each measurement is given by

Var[gk,i] = σ2
kE[gk,i]

whereσ2
k is a parameter used to model the noise variance at tilt

k andE[gk,i] accounts for the Poisson characteristics of the mea-
surement. We assume that all the measurements are conditionally

independent. IfE[gk,i] ≈ gk,i, Λk = diag
(

1
gk,1

, · · · , 1
gk,P

)

,

gk = [gk,1, · · · , gk,P ]
t, g = [gt1 · · · g

t
N ]t , I = [I1, · · · , IN ],

d = [d1, · · · , dN ] andσ2 = [σ2
1 , · · ·σ

2
N ] then

p(g|f, I, d, σ2) =

(

N
∏

k=1

1

(2πσ2
k)

P
2 |Λk|

− 1

2

)

(7)

exp

{

−
1

2

N
∑

k=1

1

σ2
k

‖gk − IkAkf − dk1‖
2
Λk

}

whereN is the total number of tilts.

3. PRIOR MODEL

We use a GGMRF [8] model for the probability density off . If χ
is the set of all neighboring voxels (26 point neighborhood),wij is
a weighting kernel which is inversely proportional to the distance
between voxeli and voxelj, normalized so that

∑

j∈∂i

wij = 1 , ∂i is

the set of all neighbors of voxeli, then

p(f) =
1

Z
exp







−
1

pσp
f

∑

{i,j}∈χ

wij |fi − fj |
p







(8)

whereZ is a normalizing constant andp andσf are GGMRF pa-
rameters. Typically1 < p ≤ 2 is used to ensure convexity of the
subsequent MAP cost function. Whenp is close to1 it corresponds
to strong edge preserving reconstructions whilep = 2 corresponds
to smooth reconstructions.



4. MAP ESTIMATION

The posterior probability of the parameters(f, I, d, σ2) given the
datag is

p(f, I, d, σ2|g) =
p(g|f, I, d, σ2)p(f)p(I, d, σ2)

p(g)
(9)

where the parameterf is assumed to be independent of
(

I, d, σ2
)

.
Further we constrainf ≥ 0 and the arithmetic mean ofI to be
equal toĪ. The constraint onI is present to prevent the subsequent
optimization algorithm from diverging to unreasonable values of the
scatter coefficients.̄I is arbitrary but affects the scaling off and
therefore the choice ofσf . The MAP estimate is given by

(f̂ , Î, d̂, σ̂2) = argmin
f≥0,I∈Ω,d,σ2

{

− log p(g|f, I, d, σ2)− log p(f)
}

whereΩ =

{

I ∈ R
N :

1

N

N
∑

k=1

Ik = Ī

}

and we have assumed uni-

form priors for thep(I, d, σ2). Using (7), and (8) we obtain

(f̂ , Î, d̂, σ̂2) = argmin
f≥0,I∈Ω,d,σ2

c(f, I, d, σ2)

where

c(f, I, d, σ2) =
1

2

N
∑

k=1

1

σ2
k

‖gk − IkAkf − dk1‖
2
Λk

(10)

+
1

2

N
∑

k=1

log
(

(

2πσ2
k

)P
|Λk|

−1
)

+
1

pσp
f

∑

{i,j}∈χ

wij |fi − fj |
p

5. OPTIMIZATION ALGORITHM

While the cost function c(f, I, d, σ2) is convex inf (when1 < p ≤
2) it is not jointly convex in(f, I, d, σ2). We adapt the ICD algo-
rithm [9] to minimize the cost function. The basic structure of the
optimization routine is to repeatedly perform the following 3 steps
until convergence is achieved.

1. f̂ ← argmin
f1≥0,··· ,fM≥0

c(f, I, d, σ2)

2. (Î , d̂)← argmin
I∈Ω,d

c(f̂ , I, d, σ2)

3. σ̂2 ← argmin
σ2

c(f̂ , Î, d̂, σ2)

The algorithm is terminated if the relative change in the magnitude
of the reconstruction is less than a preset threshold. While each of
the above steps reduces the cost function there is no guarantee it will
converge to a global minimum. Therefore, it is important to have
reasonable initial estimates for the parameters. For Step 1 we use
the update equations as in [5] to find the minimum of the cost func-
tion with respect to each voxel. For Step 2 we turn the constrained
optimization problem into an unconstrained one by using Lagrange
multiplier λ. Rewriting the first summation of the cost function in
(10) as a sum of quadratics in[Ik, dk] and dropping terms which do
not involveIk, dk gives us a new cost function corresponding to the
unconstrained optimization problem,

c̃(I, d, λ) =
1

2

N
∑

k=1

(

[Ik dk]Qk

[

Ik
dk

]

− 2 [Ik dk] bk + ck

)

+λ

(

1

N

N
∑

k=1

Ik − Ī

)

whereQk =

[

(Akf̂)
tΛ̃k(Akf̂) (Akf̂)

tΛ̃k1

(Akf̂)
tΛ̃k1 1tΛ̃k1

]

, bk =

[

bk,1
bk,2

]

=

[

gtkΛ̃kAkf̂

gtkΛ̃k1

]

, ck = gtkΛ̃kgk andΛ̃k = 1
σ2

k

Λk. c̃(I, d, λ) can be

minimized with respect to(I, d, λ) by taking the gradient and setting

it to zero. IfQ−1
k = Q̃k =

[

q̃k,11 q̃k,12
q̃k,21 q̃k,22

]

, we obtain

λ̂ =

N
∑

k=1

(q̃k,11bk,1 + q̃k,12bk,2)−NĪ

1
N

N
∑

k=1

q̃k,11

[

Îk
d̂k

]

= Q−1
k

(

bk −
1

N

[

λ̂
0

])

. (11)

For Step 3 we can take the gradient of (10) with respect toσ2 and
set it to zero. This gives us the optimal update for eachσ2

k as

σ̂2
k =

‖ek‖
2
Λk

P
(12)

whereek = gk−ÎkAkf̂−d̂k1 andP is the number of measurements
for each tilt.

6. EXPERIMENTAL RESULTS

In order to evaluate our approach, we compare our algorithm with
FBP and SIRT from a popular electron microscopy software pack-
age, IMOD [10]. The data acquired is of a≈ 150 nm thick sample
of polystyrene functionalized Titanium dioxide nano particle assem-
bly [11]. The sample is tilted in steps of1◦ from±50◦ to±70◦ and
in steps of2◦ from−50◦ to +50◦ to acquire87 images with pixels
of size0.343 nm× 0.343 nm. The data is aligned post acquisition
using a cross correlation method. We use a≈ 350 nm ×350 nm
section of the projection images for reconstruction.

The FBP and SIRT reconstructions are performed with voxels
of size0.343 nm× 0.343 nm× 0.343 nm. The filter parameters
for FBP are chosen to produce the most visually appealing results.
The particles of interest in this data set are approximately cylindrical
with diameter18 nm and height40 nm [11]. Thus in order to reduce
computation, Bayesian reconstruction is performed with voxels of
size(3×0.343) nm×(3×0.343) nm×(3×0.343) nm. The param-
eterσf in the Bayesian method is chosen for the best visual quality
of reconstruction with the GGMRF shape parameterp = 1.2. The
algorithm is initialized using a 4 stage multi-resolution approach. At
the coarsest resolution the offset parameter vectord is initialized by
a least squares fit of the average count in each viewk to 1

cos(θk)
. We

choose 1
cos(θk)

because it is proportional to the measured counts of
a homogeneous material of constant thickness at tiltk. More specif-
ically, if G is aN × 1 vector containing the average counts of the

data at each tilt, andD =

[

1
cos(θ1)

.. 1
cos(θN )

1 .. 1

]t

then the least

squares estimate is given by[φ1 φ2]
t = (DtD)−1(DtG) and the

initial value of d is set toφ21. The initial value ofI is set toĪ1,
σ2 = 1 andf = 0 at the coarsest resolution. At the very first itera-
tion at the coarsest scale we perform a fixed number (10) of iterations
overf to prevent the algorithm from converging to an unreasonable
result. In this experiment we setĪ = 20000 counts. The value ofσf



set for the finest resolution is adapted for coarse resolutions as given
in [12]. The stopping threshold for the algorithm is set to0.9%. The
dimensions of the reconstructed volume are set so as to account for
all the voxels contributing to the projection data. In presenting the
results we only show voxels that can be reliably reconstructed from
the projection data i.e. at every tilt there is a projection measurement
corresponding to those voxels.

Fig. 2 shows a singlex− z andx− y slice from FBP, SIRT and
the Bayesian method. Fig. 3 shows the initial values and final esti-
mates of the parameters. We observe that in SIRT and FBP there are
streaking artifacts in thex−z plane of reconstruction. The Bayesian
approach significantly suppresses these artifacts. The presence of
material towards the top and bottom of the slice indicates model mis-
match, which we believe may be possible to eliminate if we incor-
porate the transmission measurement. In thex− y plane the effects
of noise are effectively suppressed in the Bayesian technique clearly
showing the Titanium dioxide nano particles against the background
support material. This demonstrates the effectiveness of the method
even for this particularly noisy data set. Finally we note that further
work needs to be done to compare the reconstructions with ground
truth data, and to test the algorithm using phantoms.
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Fig. 2. Left panel shows ax − z reconstructed slice and the right
panel shows ax − y reconstructed slice. (a) and (b) FBP recon-
struction, (c) and (d) SIRT with 20 iterations, (e) and (f) Bayesian
reconstruction withp = 1.2.

7. CONCLUSIONS

We developed a model for the image formation process in HAADF-
STEM tomography and pointed out the need to normalize the mea-
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Fig. 3. Initial value and final estimates for (a) Transmitted electrons,
I (b) Offsets,d and (c) Variance parameter,σ2

sured signal by the transmitted beam. We combine our forward
model with a prior model of the 3D volume and formulate an algo-
rithm for quantitative Bayesian reconstruction of the local HAADF
scatter rate per unit distance. The method also accounts for some
unknown calibration parameters such as number of transmitted elec-
trons, offset, and noise variance. Reconstructions on real data show
significant qualitative improvement over FBP and SIRT from IMOD
[10].
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