BAYESIAN TOMOGRAPHIC RECONSTRUCTION FOR HIGH ANGLE ANNULAR DARK
FIELD (HAADF) SCANNING TRANSMISSION ELECTRON MICROSCOPY (STEM)

Singanallur Venkatakrishnan', Lawrence Drummy?, Michael Jackson®, Marc De Graef *, Jeff Smmons?, and Charles Bouman®

! Purdue University, School of Electrical and Computer Enejiitgy, West Lafayette, IN
2 Air Force Research Lab, Wright-Patterson Air Force Base, Daydi
3 BlueQuartz Software, Springboro, OH
4 Carnegie Mellon University, Department of Material Scieacd Engineering, Pittsburgh, PA

ABSTRACT of transmitted electrons and a tilt specific offset added by the micro-

L . . . . . scope. While complex models for HAADF-STEM image formation
HAADF-STEM data is increasingly being used in the physical sci- 6] have been developed, the wide spread use of FBP and SIRT in
ences to study materials in 3D because it is free from the diffractio%

: ) ; - - producing reconstructions at medium resolutions 1 nm), indi-
effects seen in Bright Field STEM data and satisfies the projectio ates that a simple linear model for the image formation, implicit

requirement for t°m°9“’?‘ph¥- Typically, reconstruction i_s performeqn those algorithms, is also useful. Next, we model the noise as a
using Filtered Back Projection (FBP) or the SIRT algorithm. In th'SGaussian with variance proportional to the mean value of the mea-

g?_F)Ee“r/i we develoE a Bﬁyi&an(;e(l:onstrgctlon aflgorlthm fOr:]-I’A‘AD,F'suremen’[ to capture the Poisson characteristics of the signal [7]. We
h tor_nqgrapf %W ich models the |(rjne;]ge_ ?]rmatlon, t ehno'seuse a Generalized Gaussian Markov Random Field (GGMRF) [8]

characteristics of the measurement, and the inherent Smoothness i, o the scattering coefficients as it has been shown to have good

the object. Reconstructions of polystyrene functionalized Titaniu dge preserving characteristics and hence is suitable for materials

dioxide nano particle assemblies show results that are qualitativelézontaimng strongly scattering grains embedded in a weakly scat-
superior to FBP and SIRT reconstructions, significantly suppressm%ring support material. Finally, we formulate the MAP estimation

artifacts and enhancing contrast. problem and develop an algorithm to minimize the corresponding
Index Terms— Electron tomography, dark-field, Bayesian costfunction. Experimental results show that the Bayesian approach
methods helps to effectively suppress artifacts and reduce noise compared to
SIRT and FBP.

1. INTRODUCTION

L . 2. MEASUREMENT MODEL
The last decade has seen a growing interest in the use of HAADF-

STEM tomography to study materials (e.g. [1, 2]). A typical ac-

quisition involves focusing an electron probe on the material and Electron beam wy
measuring the electrons scattered into an annular range-ef300 y [ T g
mrad as show in Fig. 1(a). The electron beam is raster scanned and Z/<‘ %“ ’ e
at each point a measurement is made, to eventually obtain a projec- y z W

tion image of the object. The object is then tilted and the process
is repeated. Thus, at the end of the acquisition a set of projection
images is obtained corresponding to each tilt of the object. In most
cases, due to mechanical constraints the object can only be tilted Scateres:
in the range of approximatel70°. In summary, HAADF-STEM Flecrons
tomography can be classified as a parallel beam, limited angle to-

mography modality. In practice, the object shifts during tilting and Annular
this is compensated by aligning the acquired images. More details of

HAADF-STEM acquisition and pre-processing can be found in [3].

Most efforts reported in the literature use FBP or SIRT [4] to
perform the inversion of the aligned projection images. However,
due to the limited and noisy nature of the data, the resulting recon- (@) (b)
structed volumes can show significant artifacts. Furthermore, algo-. .
rithms such as SIRT require the selection of an ad-hoc stopping crfFi9- 1. (@) HAADF-STEM measurement setup (b) Equivalent
terion; otherwise the reconstructed image will typically diverge ormodel.
become excessively noisy.

Bayesian reconstruction algorithms have enabled significant The goal of HAADF-STEM tomography is to reconstruct the
qualitative and quantitative improvements in other tomographidtd{AADF scatter coefficients (units of nim) denoted byf(x, y, 2)
modalities like X-Ray CT [5] motivating the extension to HAADF- at every point in space. Ifz,y, z) is the reference frame of the
STEM tomography. We begin by developing a forward model forobject and(u, v, w) is the reference frame for the electron source
the image formation in terms of the scatter coefficients, the numbgSee Fig. 1), then any function of space can be reparameterized
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so thatfx(u,v,w) = f([u,v,w]Re,) Where Ry, is an orthonor-  Further we note that Bright Field electron tomography is similar to
mal rotation of the spatial coordinates by an angjle For tomo-  transmission tomography and Dark Field tomography is similar to
graphic reconstruction we require measurements of the projectiommission tomography. Since this normalization valu@:, v) is not
m’[e(‘:]ralf"'OO fr(u, v, w)dw through the object for every titt, and measured at present we assume that it is a constant for each tilt. That
every point(u,v). We begin by describing how this measurement/S
can be obtained from the HAADF-STEM signal. L& be the .
. . In(u,v) = I (6)
source electron flux in units of electrons pernret iy (u, v, w) =
p([u, v, w]Re, ) be the electron attenuation coefficient in units of This will occur whenu(z, y, ) is a constant and the material is of
nm~* at(u, v, w). If we consider a beam which travels along a pathconstant thickness. We also observe that the HAADF-STEM signal
given by (u, v, w) for w € [Wmin, Wimas| for the k™ tilt angled,  at each tilt is offset by a valuel, (counts) . We model the'"
as shown in Fig. 1(b), then the electron flux transmitted through theneasurement (corresponding to the electron sour@e at;)) at tilt
object along this line can be modeled using Beer’s Law and is givet by a Gaussian random variabjg ;, with mean

by Wmaz Elgr:] = //Gk(u,v)hi(u,'v)dudv—i—d;C
I (u,v) = Ipexp {—/ uk(u7v7w)dw}

Where’uk (u v, U)) accounts for all mechanisms that cause attenuWherE‘h (u U) is a kernel which averages the electron flux over the
ation including HAADF scatter. If we consider a specific point area of the*" pixel. If f is a discretized version of(z, y, z) orga-

(U, v, wo) a|0ng the path of the transmitted electron beam, the atnlzed as af x 1 vector, whereV/ is the total number of voxels and,
tenuation can be broken into two components, the component befordx IS @ P x M projection matrix for tiltk, whereP is the number
the point is reached and the component after the point is past. Mo measurements per tilt then using (4) and (6)

Wmin

specifically let us define the following three functions, Wmaz
Elgr,:] = Ik// fk (u, v, w)dw | hi(u,v)dudv + di
ak(u,v,w,) = exp{f/ /Ak(u,v,w)dw} = L (Anf), + di
. Wmaw where (A f); is theit" entry of the vectord,, f. The variance of
Bi(u, v,w0) - = eXp{ /w P (u, v w)dw} each measurement is given by
e(w,v) = ar(u, v, wo) B (u, v, wo) @ Var(gs.] o2E[gr.i]

= exp {—/ uk(u,v,w)dw} . (2 whereo? is a parameter used to model the noise variance at tilt

k andE[gk,;] accounts for the Poisson characteristics of the mea-
surement. We assume that all the measurements are conditionally

independent. IfE[gr:] ~ gk Ax = dlag(glcl . ,gklp),
gt = gk, 9k.p]",

po = lob o) 1= [0 In)
At a given point(u, v, wo) (wo € [Wimin, Wmas]) along the line we d=ldi, - ,dn] ando” = [o1, -~ o] then
assume that a fraction of the incident attenuated beam is scattered (

N
and this scattered beam then propagates to the detector. Since the p(g|f,1,d, 02) = H }} ) (7)
k=1 (27T0'k 2 |A]C
mrad we approximate the path of the HAADF scattered electrons to { N }
exp

Wmin

Then the transmitted flux is given by

I (u,v) = Ioyk(u,v) . ?3)

I <

electrons are only scattered by small angles in the range 6f300

be along the lindu, v, w) for w € [wo, Wmae). Therefore the total Z Hgk I Acf — di 1|3

HAADF scatter can be derived as 24 iy
Wmawz whereN is the total number of tilts.

Gelurw) = [T v, w0) o, 0,100) B, 0, 10) d

3. PRIOR MODEL

Using (1), we get We use a GGMRF [8] model for the probability density fof If x

Winaz is the set of all neighboring voxels (26 point neighborhoed), is
Gr(u,v) = IoVe(u, U)/ fr(u, v, w)dw. (4 a weighting kernel which is inversely proportional to the distance
Wmin between voxel and voxelj, normalized so thay " w,; =1, diis
jEDI
Putting equation (3) and (4) together, we obtain the following relathe set of all neighbors of voxél then
tionship
G (u,v) /“””‘” _ 1 1 P
_—1 = f([u, v, w]Ry, )dw. (5) p(f) = Sexp{——% wij | fi — fil (8)
Iy (u,v) Winin ( o) z O—? {i%:ex

So the normalized quantit . (u, v)/Ix(u, v) is an estimate of the whereZ is a normalizing constant andando; are GGMRF pa-
tomographic projection of the HAADF scatter coefficients at anglerameters. Typicallyi < p < 2 is used to ensure convexity of the
0, and at positionu, v). We note that this process of normalizing subsequent MAP cost function. Wheris close tol it corresponds
the measured signal by the attenuated beam is conceptually simb strong edge preserving reconstructions while 2 corresponds
lar to the attenuation correction in Positron Emission Tomographyto smooth reconstructions.



4. MAP ESTIMATION [ (A Ae(Arf)  (Arf) Axl [ e ]
whereqs { (Arf)t Al VA | T bea
The posterior probability of the parametdrg I, d, %) given the gL AR AR f
datag is { y LA
9k
minimized with respect t¢/, d, \) by taking the gradient and setting

:|,ck = gt Apgr andAy, = %Ak. &(I,d,\) can be

pglf, 1, d,o)p(f)p(1,d,0?)
9 N - -

p(9) itto zero. fFQ; ! = Qp = | IF11 Ir12 },We obtain
where the parametef is assumed to be independent(dt d, 02). 2t k22
Further we constrairf > 0 and the arithmetic mean df to be N
equal tol. The constraint ol is present to prevent the subsequent Z((Ik,nbk,l + Gr,12bk,2) — NT
optimization algorithm from diverging to unreasonable values of the A o= k=l
scatter coefficients.] is arbitrary but affects the scaling g¢f and - N
therefore the choice ofs. The MAP estimate is given by %Z Gk,11

p(f.1,d,0|g)

(f.1,d.6%) = argmin  {logp(glf,1,d,0°) —logp(})} =
£>0,1€Q,d,02 ~
i] - e (-x[o])
whereQ) = {I eRY: % I, = I} and we have assumed uni- { dp * N[O
k=1 . .
form priors for thep(I, d, o). Using (7), and (8) we obtain For Step 3 we can take the gradient of (10) with respeet’tand
o set it to zero. This gives us the optimal update for eaglas
(f,1,d,6*) =  argmin c(f,1,d,0”)
£>0,I€Q,d,02 .2 HekH?\k
where Tk P (12)

N ~ A A
2y _ 1 1 B _ 2 whereey, = gr— I A f —dr 1 andP is the number of measurements
c(f,1,d,07) = 2; o2 g = TeAf = dillly, (300 g5 each i,

1

E Z wiz | fi — fil? 6. EXPERIMENTAL RESULTS
{i

1 ad 2\ P -1
+2;log <(27mk) [ Al ) " irex
' In order to evaluate our approach, we compare our algorithm with
FBP and SIRT from a popular electron microscopy software pack-
age, IMOD [10]. The data acquired is oka 150 nm thick sample
of polystyrene functionalized Titanium dioxide nano particle assem-
bly [11]. The sample is tilted in steps ®f from +50° to £70° and
in steps of2° from —50° to +50° to acquire87 images with pixels
of size0.343 nm x 0.343 nm. The data is aligned post acquisition
using a cross correlation method. We use &850 nm x350 nm

section of the projection images for reconstruction.

5. OPTIMIZATION ALGORITHM

While the cost function @, I, d, o2) is convex inf (whenl < p <

2) it is not jointly convex in(f, I,d, o). We adapt the ICD algo-
rithm [9] to minimize the cost function. The basic structure of the
optimization routine is to repeatedly perform the following 3 steps
until convergence is achieved.

1. f« argmin c(f,1,d, 0% The FBP and SIRT reconstructions are performed with voxels
o S0 dzo of size0.343 nm x 0.343 nm x 0.343 nm. The filter parameters
2. (I,d) + argminc(f,I,d,o?) for FBP are chosen to produce the most visually appealing results.
IeQd o The particles of interest in this data set are approximately cylindrical
3. 6% « argminc(f, I,d, c?) with diameterl8 nm and heightt0 nm [11]. Thus in order to reduce
o? computation, Bayesian reconstruction is performed with voxels of

The algorithm is terminated if the relative change in the magnitud%ize(g % 0.343) nmx (3% 0.343) nmx (3% 0.343) nm. The param-

of the reconstruction is less than a preset threshold. While each ‘éfteraf in the Bayesian method is chosen for the best visual quality
the above steps reduces the cost function there is no guarantee it Will reconstruction with the GGMRF shape paramete 1.2. The
converge to a global minimum. Therefore, it is important to havea|gorithm is initialized using a 4 stage multi-resolution approach. At
reasonable initial estimates for the parameters. For Step 1 we Uge coarsest resolution the offset parameter vettsiinitialized by

the update equations as in [5] to find the minimum of the cost funcy |east squares fit of the average count in each ¥iéw—2L—. We

tion with respect to each voxel. For Step 2 we turn the constrained 1 L . cos(B) "
N . - ; choose_——-— because it is proportional to the measured counts of
optimization problem into an unconstrained one by using Lagrangé cos(0y)

multiplier . Rewriting the first summation of the cost function in ghomogeneous material of constant thickness at.tiore specif-

(10) as a sum of quadratics ., d] and dropping terms which do 1callys if G'is aN x 1 vector containing the average counts of the

t
not involve I, dj. gives us a new cost function corresponding to the ¢4 at each tilt. and) —= 605%91) - cos(19N) then the least
unconstrained optimization problem, ' 1 . 1
L squares estimate is given By ¢.]" = (D'D)™'(D'G) and the
= I initial value ofd is set tog»1. The initial value of[ is set to/1
eI, d, N\ == I d — 2T dy) bx + ¢ 21 . o
( ) 2 ; <[ e d] Qr [ dr } £ e br k) 0% = 1 andf = 0 at the coarsest resolution. At the very first itera-

N tion at the coarsest scale we perform a fixed numb@rdf iterations
A 1 Z I — 1T over f to prevent the algorithm from converging to an unreasonable
N &~ result. In this experiment we sét= 20000 counts. The value af



set for the finest resolution is adapted for coarse resolutions as giverz*
in [12]. The stopping threshold for the algorithm is sed18%. The :
dimensions of the reconstructed volume are set so as to account f
all the voxels contributing to the projection data. In presenting the :
results we only show voxels that can be reliably reconstructed from "t R
the projection data i.e. at every tilt there is a projection measurement @) (b) ©
corresponding to those voxels.

Fig. 2 shows a single — z andz — y slice from FBP, SIRT and  Fig. 3. Initial value and final estimates for (a) Transmitted electrons,
the Bayesian method. Fig. 3 shows the initial values and final estif (b) Offsets d and (c) Variance parameter’
mates of the parameters. We observe that in SIRT and FBP there are
streaking artifacts in the — = plane of reconstruction. The Bayesian sured signal by the transmitted beam. We combine our forward
approach significantly suppresses these artifacts. The presencerspdel with a prior model of the 3D volume and formulate an algo-
material towards the top and bottom of the slice indicates model migithm for quantitative Bayesian reconstruction of the local HAADF
match, which we believe may be possible to eliminate if we incor-Scatter rate per unit distance. The method also accounts for some
porate the transmission measurement. Iruithey plane the effects  unknown calibration parameters such as number of transmitted elec-
of noise are effectively suppressed in the Bayesian technique clearlfons, offset, and noise variance. Reconstructions on real data show
showing the Titanium dioxide nano particles against the backgroungignificant qualitative improvement over FBP and SIRT from IMOD
support material. This demonstrates the effectiveness of the meth¢0]-
even for this particularly noisy data set. Finally we note that further
work needs to be done to compare the reconstructions with ground 8. REFERENCES
truth data, and to test the algorithm using phantoms.

nts)
8
8

9150|

Offset (col

Variance parameter

9100|

50 100 -100 50 100

) 50 [
it Angle Tilt Angle.

[1] Hanying Li, Huolin L. Xin, David A. Muller, and Lara A. Esbff, “Vi-
sualizing the 3D internal structure of calcite single cajstgrown in
240 agarose hydrogelsScience, vol. 326, no. 5957, pp. 1244-1247, 2009.

220 [2] Peter R. Buseck, Rafal E. Dunin-Borkowski, Bertrand Deard,
Richard B. Frankel, Martha R. McCartney, Paul A. MidgleyhWiPs-
fai, and Matthew Weyland, “Magnetite morphology and life orrsjia

180 180 Proceedings of the National Academy of Sciences, vol. 98, no. 24, pp.
160 13490-13495, 2001.
160 140 [3] P.A. Midgley and M. Weyland, “3D electron microscopy iretphysi-

cal sciences: the development of Z-contrast and EFTEM torpbgra
Ultramicroscopy, vol. 96, no. 34, pp. 413 — 431, 2003.

[4] Avinash C. Kak and Malcolm Slaneyrinciples of Computerized To-
mographic Imaging, Society for Industrial and Applied Mathematics,
1500 Philadephia, PA, 2001.

1000 [5] Zhou Yu, J. Thibault, C.A. Bouman, K.D. Sauer, and J. Hsi¢Rast
model-based X-ray CT reconstruction using spatially nontgeneous
ICD optimization,” Image Processing, | EEE Transactions on, vol. 20,

1500

1000

500

o 0 no. 1, pp. 161 —-175, January 2011.
-500 [6] Stephen J. Pennycook and Peter D Nelliskcanning Transmission
500 -1000 Electron Microscopy, Springer, 223 Spring Street, New York, NY

10013,USA, 2011.
[7] M. Wernick and J. Aarsvold,Emission Tomography, Elsevier Aca-

. © 107 demic Press, 525 B Street, Suite 1900, San Diego, Califor2®D
x10 ‘ £ A 4495,USA, 2004.
8 8 [8] C. Bouman and K. Sauer, “A generalized gaussian image maodel f

edge-preserving map estimationlimage Processing, |EEE Transac-
tionson, vol. 2, no. 3, pp. 296 —310, July 1993.

4 [9] K. Sauer and C. A. Bouman, “A local update strategy foratme
reconstruction from projections,1EEE Trans. on Sgnal Processing,
vol. 41, no. 2, pp. 534-548, February 1993.

[10] Kremer J.R.and D.N. Mastronarde and J.R. MclIntosh, “Catepvi-
sualization of three-dimensional image data using IMOR{irnal Of

(e) Structural Biology, vol. 116, pp. 71 —76, aug 1996.

. . . [11] Maxim N. Tchoul, Scott P. Fillery, Hilmar Koerner, Lawree F.
Fig. 2. Left panel shows & — z reconstructed slice and the right Drummy, Folusho T. Oyerokun, Peter A. Mirau, Michael F. Duckto
panel shows a — y reconstructed slice. (a) and (b) FBP recon- and Richard A. Vaia, “Assemblies of Titanium Dioxide-Polysne
struction, (c) and (d) SIRT with 20 iterations, (e) and (f) Bayesian Hybrid Nanoparticles for Dielectric ApplicationsChemistry of Mate-

[12] Seungseok Oh, A.B. Milstein, C.A. Bouman, and K.J. Wettbgen-
7. CONCLUSIONS eral framework for nonlinear multigrid inversionfmage Processing,

|EEE Transactions on, vol. 14, no. 1, pp. 125 -140, jan. 2005.
We developed a model for the image formation process in HAADF-
STEM tomography and pointed out the need to normalize the mea-



