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ABSTRACT

Bayesian estimation of transmission tomographic images presents formidable optimization tasks. Numerical
solutions of this problem are limited in speed of convergence by the number of iterations required for the propagation
of information across the grid. Edge-preserving prior models for tomographic images inject a nonlinear element
into the Bayesian cost function, which limits the effectiveness of algorithms such as conjugate gradient, intended
for linear problems. In this paper, we apply nonlinear multigrid optimization to Bayesian reconstruction of a two-
dimensional function from integral projections. At each resolution, we apply Gauss-Seidel type iterations, which
optimize locally with respect to individual pixel values. If the cost function is differentiable, the algorithm speeds
convergence; if it is nonconvex and/or nondifferentiable, multigrid can yield improved estimates.

1. INTRODUCTION

Statistical methods of tomographic image reconstruction seek the solution which best matches the probabilistic
behavior of the data. Maximum-likelihood (ML) estimation selects the reconstruction which most closely matches
the data available, but may yield solutions which do not have many of the properties expected in the original
function[l]. Maximum a posteriori (MAP) estimation allows the introduction of a prior distribution which reflects
knowledge or beliefs concerning the types of images acceptable as estimates of the original cross-section. The
Markov random field (MRF) has proven a useful image model in the tomographic setting, with relatively simple
parameterization. Many variations from the common Gaussian MRF model have been proposed[2, 3, 4], with the
aim of avoiding the excessive penalties extracted by the Gaussian’s quadratic potential function, which tends to
blur edges due to the high cost of abrupt transitions.

The generalized Gaussian MRF (GGMRF)[5] uses a potential function similar to the log of the generalized
Gaussian noise density. It renders edges accurately without prior knowledge of their size, and it results in a
convex optimization problem with no local minima. The application of these new MRFs as priors, however, poses
difficult nonlinear optimization problems for MAP reconstruction. Instances of the GGMRF with local inter-pixel
differences penalized by approximately the absolute value function appear to produce superior reconstructions, but
at the cost of computational difficulty in finding optimal solutions. When applied to the transmission tomography
problem, the absolute value potential function yields a nondifferentiable cost function for optimization.

The high computational cost of iterative reconstruction algorithms has limited their application to common
tomographic reconstruction problems. Speeding convergence is essential in making statistical methods viable prac-
tical alternatives to deterministically-hased algarithms We have faund that Ganss-Seidel(GS) type iterations move

efficiently toward the MAP estimate by sequentially updating individual pixels[6]. But the convergence of GS is
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best at high spatial frequencies. Also, for the non-differentiable problem, the GS iterations may become “stuck”
at non-differentiable points of the cost function. These problems can be addressed by including treatment of lower
frequency information explicitly on lower resolution versions of the reconstruction. On coarser grids, spatial fre-
quencies are effectively shifted upward, where they respond more favorably to the convergence patterns of GS
iterations. Below, we explore the application of non-linear multigrid methods to the transmission tomographic
estimation problem, in conjunction with GS iterations at each resolution. The multigrid allows much of the low
frequency portion of the solution to be estimated on coarse grids, at reduced computational cost. For differentiable
cost functions, this reduces numbers of iterations to convergence, while the improved initial condition for fine grid
iterations produces qualitative and quantitative improvements in the non-differentiable case. In simulations, we
apply multigrid optimization to a data set from a realistic synthetic tomographic phantom.

2. Nonlinear Multigrid

Solutions of physical problems commonly take the form
N(f) =0.

where f is a function of one or more dimensions, and N is a nonlinear (or linear) functional. For example, all
differential and integral equations have this form.

Such problems must be discretized to be solved numerically. To accomplish this the domain of f (normally
IR™) is approximated by a discrete grid of points. We will assume that this grid has spacing h, and the discrete
approximation to f and N are denoted by f*) and N(*) respectively. The discrete problem is then

Ny = .

In practice, such discrete problems are often computationally difficult to solve when the grid spacing h is small.
This is a result of the large number of points in the grid and the large amount of time required for information to
propagate across the grid.

Multigrid techniques have been developed to address this difficulty since they combine the advantages of both
fine and coarse grid spacings. The multigrid approach may be best understood by first considering the two grid
problem. Imagine that a computationally efficient method exists to get a solution to the discrete problem with
twice the grid spacing

NCR(p(R)y = g,

We can then use this coarse grid solution to more efficiently compute an exact fine grid solution. To do this we
must first define linear matrices I((;":;’) and I((g,z) for interpolating and decimating between different grid spacings.

I((Q)f('%) = f(h)

(2h) ¢(h)y _ p(2h
I f) = f(2h)
T'he two grid solution i1s then computed in three steps:

1. Compute an approximate solution, f(h), to
N(h)(f(h)) = 0.
2. Compute the coarse grid solution, f("”’), to

2h) 7 A ;
N@R)(f(2h)) N(2h)(1((h) ) )y = _[((:) I NBI(fh)y,




3. Compute an improved fine grid solution solution, f(*
2 7 B) (7 2h) 7
f® = f) 4 I((ZIZ)(f(zh) - I((h))f(h))
4. Improve f(®) using fine grid iterations

Notice that if the initial fine grid solution is correct, then the coarse grid corrections will be zero. This is important
since solutions at coarser grids will be progressively worse approximations to the original problem. Therefore, coarse
grid corrections should not perturb fine grid calculations when the initial answer is correct. This same strategy can
also be used to compule the solution at the coarse grid spacing, 2h. This forms a recursive algorithm which solves
the fine grid problem by moving up and down through grid spacings.

3. Application to Transmission Tomographic Reconstruction

3.1. Formulation of Optimization Problem

Our objective is to apply the nonlinear multigrid techniques to the solution of the discrete tomographic recon-
struction problem, where the discretized model for integral projections is expressed as

p=Af.

The vector p contains data from the forward projection of the image f, modeled by the operator A. The cost
function resulting from formulating the problem as a MAP estimation, using the GGMRF as prior, and a quadratic
approximation of the log conditional data density as a function of pixel values{6] is

CUy=(p—-AN'Dp-Af)+ D a,Mf,—fl" (1)

{s,r}eU

The diagonal matrix D contains photon counts for each projection measurement, weighting more heavily those
projections resulting from higher counts and therefore lower integral densities and lower noise. U is the sct of all
neighboring pairs of pixels. The GGMRF is modeled after the generalized Gaussian noise distribution, common in
robust detection[7]. The parameters A and ¢ specify the weighting and character of the GGMRF prior, respectively.
For ¢ = 2, we have a Gaussian prior, which discourages sharp edges, while values of g nearer 1 do not. The value A
is inversely related to variance in the prior model, and corresponds to weighting of regularization. For the sake of
compact notation and generality in the multigrid formulation, we temporarily replace the log prior density above
with the function p() of differences among neighboring pixels. We describe the case of a 4-pixel neighborhood,
which can easily be generalized.

The problem we wish to solve can then be written as

n}in{zp([Azf]s)er([Ayf]s) + IIP—AfH%} )

where A, and A, are the forward difference operators

[Azfl, = fo41,02) = For.2)
[Ayf],, f(51,52+1) - f(-‘h-‘?)

and p(-) is some twice differentiable function. By differentiating (2) we find that the solution must also meet the
following condition for all points s = (s, s2)

0= pl([As fliss-1,02)) = PI[B2 flis1,02)) + PIHAY flss05-1) = PI([Ay flias 22)) + 5%”!’ - Afllp



where pI(-} is the derivative of p(:). The first part of this equation suggests a discrete approximation to a nonlinear
differential operator. Since this operator is on a grid size with unit spacing, we denote it by R(})(.), and define it
by the equivalent expression
RO(f) = ~ALp(As f) = Aypi(Ay f) (3)
where A7 and Ay are the backward difference operators
[A:‘f]s = f(6|,31) - f(.n-l.s))
[A;f], = f(-’x,n) —f(sl,ag—l) .
If we further define the linear operator and constant
LWf = 24'DAf
PN = 24'Dp,

this results 1n the vector equation

RO(fy+ LWf = p) (4)

Note that this equation uniquely defines the solution if the functions p(-) are strictly convex. We will use both
the optimization formulation of (2), and the equation formulation of (4) to solve the tomographic reconstruction
problem. The optimization view is often useful when performing computation since it lends to algorithms which
have guaranteed convergence properties. llowever, the equation formulation is more suitable to analysis using the
tools of differential equations (i.e. frequency analysis and multigrid methods).

The MAP estimation problem is intrinsically discrete. However, multigrid techniques are based on the as-
sumption that the discrete operators can be scaled at different resolutions. The basic assumption used in scaling
differential operators is that the function is sufficiently smooth so that

[0 % 581G 1 (%)

Using this approximation, we have that

R®(f) = —%A;p/(lA f) L (%Ayf)

= 3R () )

The discrete sum and constant terms scale somewhat differently.

LONf) = 2A{{)A'DAIL)f
P® = 21(1)A' Dp
where
k-
0 = T
1_1
1((13 = H I((:-?H)

i=k—1

A critical step in the multigrid approach is the solution of the coarse grid problem. Without loss of generality
we assume that the grid spacings are 1 and 2. The basic equation for the coarse grid solution, f(2) is then

NO(f2)) — N@ (1(2 Fy = I(O)N(’)( F), (7



where
NO(fy= RO(f) + LOf - pD .

Equation (7) may be rewritten as
RA(f2)) 4 L@ f(2) = R(2)([((12))f(1)) + L(Z)]((f))f(l) - [((f))R(l)(f(l)) - ]((f))L(l)f(l) + P®
which yields the final equation
RO(5@) 4 L@(f2)y = p(2) 4 QI((f))A‘Dp(Z)
where p(?) and #(2) are defined by
> = e a (i3 - )
R(z)(I((f))f(”) - 1((12))R<1)(f(1))

p

e

In order to formulate this coarse resolution problem as the solution to an optimization criteria, we will make
one further assumption about the choice of the interpolating/decimating matrices. We will assume that
1(3) - 1(1(1))1
(1) 7 4V (@) -
This is true for most common choices of matrices used on a 2 dimensional grid. We may then define the coarse

grid matrix

(2) — 471
A _AI(Q)

which results in the equation
AR (FP)) 4 2(ADNY DAR) £ = 42 1 9(AD)Y pp(?)

Since this equations has a form very similar to the original fine grid solution, we know it is the dual to the
optimization problem

1
i {Z 4 (-Z-(Azfl,> +4p (%[Aun,) _ 4@ f A“”fll%} ()

This optimization problem can be computed efficiently using the Gauss-Seidel techniques previously developed. We
assess computational costs at cach level of resolution according to the expense of projecting and backprojecting
data. This is because the computation is dominated by operations similar to projection and backprojection used in
the updating of projection errors in the Gauss-Seidel algorithm. When reducing resolution by a factor of 2 in each
variable, the number of pixels to be visited is reduced by a factor of four. But the average pixel will have twice as
many intersecting rays to access, and the computational gain at level k + 1 over level k is 2.

3.2. Recursive Formulation

The multigrid solution may be computed using a recursive subroutine call. In each case the main program has
the form

main()
f=0
r=20

Repeat until converged

MultigridV(f,r,p, k = 1)



We use repeated applications of a modified version of the multigrid V algorithm(8]. This modification causes
optimization to occur only during the coarse-to-fine operations. We iteratively repeat the MultigridV algorithm,
until the solution is sufficiently converged.

MultigridV(f, r, p, k)

1. If k is the coarsest desired grid, return.

2. Compute the following:

fo= fm=Iy"f (9)
PO k (k) (k+1)

po= p+a® (10 1Vs - ) (10)
Po= RSy = IS RO 1) (11)

3. MultigridV(f,# 5,k + 1)

4. Perform coarse grid correction

fef+ L (f = fint)

5. Use the initial condition, f, to approximately solve the optimization

f — argmin {ZW (elaen) 4% (Geldssl) = arf+1ip- A(“fll%}

Other variations are possible(8], and the form of the recursive structure may be adapted to specific optimization
problems, and spatial frequency content in the initial error of the approximation.

4. SIMULATIONS

We have apphied multigrid optimization techniques discussed in this paper to problems of tomographic recon-
struction under limited dosage X-rays. In these cases, high noise levels in rays passing through very dense regions
of the object under study yield artifacts corrupting the entire reconstruction. The data set was taken from the
phantom in Fig. 1(a), which consists of four discs of density 0 48m~! in a circular background of diameter 20
cm and density 0.2cm™!. The simulated dosage was a rate of 2000 photons per ray (Ar). At these dosages, the
rays passing through the most dense regions are essentially blocked, making this reconstruction similar to a hollow
projections problem. The 128 angles were equally spaced, and 128 rays were collected at each angle. Fig. 1(b)
shows the CBP reconstruction from filtered backprojection, using a raised cosine rollofT filter. Though only the
denser areas are too absorptive to render a good reconstruction, the entire image is of poor quality.

Improved reconstructions are possible using Bayesian estimation techniques. The character of the solution and
the rate of convergence of GS iterations in MAP estimation depend heavily upon the prior model used. We apply
the GGRMF as a probability density for the image ensemble, creating an optimization problem of the type given
in (1). For the Gaussian case of the GGMRF (g = 2), we have a linear problem, and the advantage of a great deal
of existing optimization theory and methodology. When ¢ < 2, the solution is a nonlinear function of the data, and
analytical tools are less developed. For the lower limit of the model of ¢ = 1, the prior term is nondifferentiable in
states where neighboring pixels are identically-valued, which leads to peculiar problems in optimization, in spite of
the strict convexity of the cost function. Increasing the amount of regularization applied, by increasing A, tends to
speed convergence for all values of q.



Figure 6: (a) Reconstruction for ¢ = 1.0 after 20 iterations by simple GS(left); (b) after equivalent cost of 20
iterations in multigrid optirmzation (right).

data correction up the pyramid. Though the difference in the objective function value in Fig. 7 is again small,
image quality is significantly improved by multigrid.

5. CONCLUSION

Multigrid optimization offers improved convergence, and in some cases better solutions to Bayesian tomographic
image estimation. In this paper, we have applied the methed with the GGMRF as prior. Because for any ¢ > 1,
the resulting functional is convex and differentiable, most algorithms differ only in their rate of convergence to
the unigue local minimum cost approximation. The multigrid methods are also of interest in nonconvex and
nondifferentiable problems. Efficient solution of M AP estimation with the absolute value potential function requires
further investigation, including alternative correction terms for coarser grids.
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Figure 1: a) Original phantom (left); b) convolution backprejection reconstruction in low photon dosage with 128
projections at each of 128 angles (right); all synthetic phantom images are presented at a resolution of 128 x 128
pixels.

We implement a form of the multigrid which starts computation at the coarsest resclution and used repeated
one-way passes down the multigrid pyramid (from coarse to fine). Note, though, that in returning from the fine
grid to the coarse to commence another descent, we pass correction terms up between each pair of adjacent levels.
Each of the cases pressnted includes 4 levels in the pyramid, an initial condition of f =10, and A = 10. The MAP
estimate for ¢ = 1.5 appears in Fig. 2. GS has essentially completely converged after fewer than 10 iterations at full
resolution in this problem, but gain is available in performing early low frequency estimates at coarser resolutions.
In Fig. 3, we plot the value of the ohjective function, the log a pesteriori density. The plot for multigrid begins at
the point when iterations first reach the finest level. Computational costs of coarse grid iterations are accumulated
between visits to the finest, and registered in iteration counts proportionally to their relation to fine grid costs.
Multigrid here improves convergence by about two iterations for equal values of log a pestertor: density. This
behavior is typical of values of g between approximately 1.3 and 2.0, where the MAP estimate is relatively smooth
for the given parameters,

As ¢ nears 1.0, the derivative of the function g() in the GGMRF approaches a discontinuous function about
the origin. The prior density’s term adds te the cost function an element which increasingly resembles a convex
polytope rather than a smooth function. This causes increasing costs for movement in individual pixel's values when
they are near those of neighbors, with pronounced effects in convergence. In addition to rapidly achieving a first
approximation on the finest grid, multigrid maintains a advantage over simple GS in terms of both objective function
value, and image quality. The objective information appears in Fig. 5 for ¢ = 1.05, while the reconstructions of Fig.
4 show appreciable difference in the solution after 20 iterations. Although on any level of the multigrid pyramid G5
converges monotonically, we cannot guarantee monotonic convergence of the entire scheme. Corrections on coarse
grids can be guaranteed to be zero il the solution is reached, but small perturbations may cause misrepresentation
of the problem at coarse resolution. For these cases, the smoothness assumption used in arriving at (5) does not
held, but multigrid stiil offers improved convergence

At g =1, GS cannot be guaranteed to reach the MAP estimate, since despite the convexity of (1), a non-optimal
solution may be optimal with respect to any single pixel's value relative to the current state. Fig. fi{a) shows the
case of the GS estimate's being “stuck” in a nondifferentiable state. Figure 6(b) illustrates the effects of multigrid
with (3S, achieving a substantial advantage in image quality. Because the cost function is nondifferentiable for this
prior density, we have removed the correction term corresponding to the prior, r, and passed only the projection




Figure 2: Reconstruction for ¢ = 1.5 after 20 iterations by simple G5(left); the multigrid result at this point was
not distinguishable from this image.
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Figure 3: Convergence in terms of log a pesterior: density for g = 1.3
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Figure 4: [a) Reconstruction for ¢ = 1.05 after 20 iterations by simple GS(left); (b) after equivalent cost of 20
iterations in multigrid optimization (right).
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Figure 5: Convergence in terms of log o pesterion density for g = 1.05.




Figure 6: (a) Reconstruction for ¢ = 1.0 after 20 iterations by simple GS(left); (b) after equivalent cost of 20
iterations in multigrid optimization (right).

data correction up the pyramid. Though the difference in the objective function value in Fig. 7 is again small,
image quality is significantly improved by multigrid.

5. CONCLUSION

Multigrid optimization offers impraoved convergence, and in some cases better solutions to Bayesian tomographic
image estimation. In this paper, we have applied the method with the GGMRF as prior. Because for any ¢ > 1,
the resulting functional is convex and differentinble, most algorithms differ only in their rate of convergence to
the unique local minimum cost approximation. The muitigrid methods are also of interest in nonconvex and
nondifferentiable problems. Efficient solution of MAP estimation with the absolute value potential function requires
further investigation, including alternative correction terms for coarser grids.
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