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Optical diffusion tomography is a method for reconstructing three-dimensional

optical properties from light that passes through a highly scattering medium.

Computing reconstructions from such data requires the solution of a nonlinear

inverse problem. The situation is further complicated by the fact that while recon-

struction algorithms typically assume exact knowledge of the optical source and

detector coupling coefficients, these coupling coefficients are generally not available

in practical measurement systems. A new method for estimating these unknown

coupling coefficients in the three-dimensional reconstruction process is described.

The joint problem of coefficient estimation and three-dimensional reconstruction

is formulated in a Bayesian framework, and the resulting estimates are computed

using a variation of iterative coordinate descent optimization that is adapted for

this problem. Simulations show that this approach is an accurate and efficient

method for simultaneous reconstruction of absorption and diffusion coefficients,

as well as the coupling coefficients. A simple experimental result validates the

approach. c©2002 Optical Society of America

OCIS codes: 100.3010, 100.3190, 100.6890, 170.5280

1. Introduction

Optical diffusion tomography (ODT) is an imaging modality that has potential in applications

such as medical imaging, environmental sensing, and non-destructive testing.1 In this technique,

measurements of the light that propagates through a highly scattering medium are used to recon-
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struct the absorption and/or the scattering properties of the medium as a function of position. In

highly scattering media such as tissue, the diffusion approximation to the transport equations is

sufficiently accurate and provides a computationally tractable forward model. However, the inverse

problem of reconstructing the absorption and/or scattering coefficients from measurements of the

scattered light is highly nonlinear. This nonlinear inverse problem can be very computationally

expensive, so methods that reduce the computational burden are of critical importance.2–6

Another important issue for practical ODT imaging, that is addressed in this paper, is accurate

modeling of the source and detector coupling coefficients.7 These coupling coefficients determine

weights for sources and detectors in a diffusion equation model for the scattering domain. The

physical source of the source/detector coupling variability is associated with the optical components

external to the scattering domain, for example, the placement of fibers, the variability in switches,

etc. Variations in the coupling coefficients can result in severe, systematic reconstruction distortions.

In spite of its practical importance, this issue has received little attention.

Two preprocessing methods have been investigated to correct for source/detector coupling er-

rors before inversion. Jiang et al.8,9 calibrated coupling coefficients and a boundary coefficient by

comparing prior measurements of photon flux density for a homogeneous medium with the corre-

sponding computed values. This scheme has been applied in clinical studies.10–12 This method of

calibration requires a set of reference measurements from a homogeneous sample, in addition to

the measurements used to reconstruct the inhomogeneous image. Iftimia et al.13 proposed a pre-

processing scheme that involved minimization of the mean square error between the measurements

for the given inhomogeneous phantom and the computed values with an assumed homogeneous

medium. However, although this approach does not require prior homogeneous reference measure-

ments, it neglects the influence of an inhomogeneous domain when determining the source and

detector weights.
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In order to reconstruct the image from a single set of measurements from the domain to

be imaged, it is necessary to estimate the coupling coefficients as the image is reconstructed. For

example, Boas et al.7 proposed a scheme for estimating individual coupling coefficients as part of the

reconstruction process. They simultaneously estimated both absorption and coupling coefficients

by formulating a linear system which consisted of the perturbations of the measurements in a

Rytov approximation and the logarithms of the source and detector coupling coefficients. No results

have been reported for nonlinear reconstruction of both absorption and diffusion images, and the

individual coupling coefficients.

In this paper, we describe an efficient algorithm for estimating individual source and detector

coupling coefficients as part of the reconstruction process for both absorption and diffusion images.

This approach is based on the formulation of our problem in a unified Bayesian regularization

framework containing terms for both the unknown 3-D optical properties and the coupling coef-

ficients. The resulting cost function is then jointly minimized to both reconstruct the image and

estimate the needed coefficients. To perform this minimization, we adapt our iterative coordinate

decent optimization method2 to include closed form steps for the update of the coupling coefficient

estimates. This unified optimization approach results in an algorithm which can reconstruct images

and estimate the coupling coefficients without the need for prior calibration. In a previous experi-

ment, we used the algorithm to effectively estimate a single coefficient from a measured 3-D data

set.14 Simulation results show that our method can substantially improve reconstruction quality

even when there are a large number of severely non-uniform coupling coefficients. Our approach is

applied to a simple phantom experiment.

2. Problem Formulation

In a highly scattering medium with low absorption, such as soft tissue in the 650-1300 nm wave-

length range, the photon flux density is accurately modeled by the diffusion equation.15,16 In
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frequency domain optical diffusion imaging, the light source is amplitude modulated at angular

frequency ω, and the complex modulation envelope of the optical flux density is measured at the

detectors. The complex amplitude φk(r) of the modulation envelope due to a point source at posi-

tion ak satisfies the frequency domain diffusion equation

∇ · [D(r)∇φk(r)] + [−µa(r)− jω/c]φk(r) = −δ(r − ak), (1)

where r is position, c is the speed of light in the medium, D(r) is the diffusion coefficient, and

µa(r) is the absorption coefficient. We consider a region to be imaged that is surrounded by K

point sources at positions ak, for 1 ≤ k ≤ K, and M detectors at positions bm, for 1 ≤ m ≤ M .

The 3-D domain is discretized into N grid points, denoted by r1, · · · , rN . The unknown image is

then represented by a 2N dimensional column vector x containing the absorption and diffusion

coefficients at each discrete grid point

x = [µa(r1), . . . , µa(rN ), D(r1), . . . , D(rN )]t . (2)

We will use the notation φk(r;x) in place of φk(r), in order to emphasize the dependence of the

solution to (1) on the unknown material properties x.

Let ykm be the complex measurement at detector location bm and using a source at location

ak. This measurement is a sample of a random variable Ykm, which we will model as a sum of the

true signal and Gaussian noise. The datum mean value of Ykm is given by

E[Ykm|x, sk, dm] = skdmφk(bm;x) , (3)

where φk(bm;x) is the solution of (1) evaluated at position bm; sk and dm are complex constants

representing the unknown source and detector distortions; and E[·|x, sk, dm] denotes the conditional

expectation given x, sk, and dm.
1

1We assume that the physical sources and detectors provide an adequate measure of φ, that they do not perturb

the diffusion equation solution, and that they have an equivalent point representation.
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Our objective is to simultaneously estimate the unknown image x together with the unknown

source and detector coupling coefficient vectors s = [s1, s2, . . . , sK ]t and d = [d1, d2, . . . , dM ]t. The

coupling coefficients are different for different sources and detectors, and are not known a priori. In

general, the values of sk and dm will vary in both amplitude and phase for real physical systems.

Typically, amplitude variations can be caused by different excitation intensities for the sources

and different collection efficiencies for the detectors, and phase variation can be caused by the

different effective positions of the sources and detectors. Without these parameter vectors, accurate

reconstruction of x is not possible.

The measurement vector y is formed by raster ordering the measurements ykm in the form

y = [y11, . . . , y1M , y21, . . . , y2M , . . . , yKM ]t . (4)

The conditional expectation of Y = [Y11, . . . , Y1M , Y21, . . . , Y2M , . . . , YKM ]t is then given by

E[Y |x, s, d] = diag(s⊗ d)Φ(x) , (5)

where s⊗d is the Kronecker product of s and d, diag(w) is a diagonal matrix whose (i,i)-th element

is equal to the i-th element of the vector w, and Φ(x) is the corresponding raster order of the values

φk(bm;x) given by

Φ(x) = [ φ1(b1;x), φ1(b2;x), . . . , φ1(bM ;x), φ2(b1;x), . . . , φK(bM ;x) ]t . (6)

In order to simplify notation, we define the forward model vector f(x, s, d) as

f(x, s, d) = diag(s⊗ d)Φ(x) . (7)

We use a shot noise model for the detector noise.2,17 The shot noise model assumes independent

noise measurements that are Gaussian with variance proportional to the signal amplitude. This

results in the following expression for the conditional density of Y

p(y|x, s, d, α) =
1

(πα)P |Λ|−1
exp

[

−
||y − f(x, s, d)||2Λ

α

]

, (8)
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where P = KM is the number of measurements, α is an unknown parameter that scales the noise

variance, Λ = diag([1/|y11|, . . . , 1/|y1M |, 1/|y21|, . . . , 1/|yKM |]
t), and ||w||2Λ = wHΛw.

We determine x, s, d, and α from the measurements y. Because this is an ill-posed inverse

problem, we employ a Bayesian framework to incorporate a prior model for x, the image.2 We

then maximize the posterior probability of x jointly with respect to y, s, d, and α. This yields the

estimators

(x̂MAP , ŝ, d̂, α̂) = arg max
(x≥0,s,d,α)

{ log p(x|y, s, d, α) }

= arg max
(x≥0,s,d,α)

{ log p(y|x, s, d, α) + log p(x) } , (9)

where p(y|x, s, d, α) is the data likelihood, and p(x) is the prior model for the image. The estimate

x̂MAP is essentially the maximum a posteriori (MAP) estimate of the image, but it is computed by

simultaneously optimizing with respect to the unknown parameters s, d, and α. Quantities such as

s, d, and α are sometimes known as nuisance parameters, because they are not of direct interest,

but are required for accurate estimation of the desired quantity x. A variety of methods have been

proposed for estimating such parameters. These methods range from true maximum likelihood

estimation using Monte Carlo Markov chain (MCMC) techniques,18–20 to joint MAP estimation of

the unknown image and parameters.21,22 Our method is a form of joint MAP estimation, but with

a uniform (i.e., improper) prior distribution for s, d, and α. It is worth noting that such estimators

can behave poorly in certain cases.23 However, when the number of measurements is large compared

to the dimensionality of the unknowns, as in our case for s, d, and α, these estimators generally

work well.

We use the generalized Gaussian Markov random field (GGMRF) prior model24 for the image

x,

p(x) = p([µa(r1), µa(r2), . . . , µa(rN )]T ) · p([D(r1), D(r2), . . . , D(rN )]T )
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









=
1
∏
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



1

σuNz(pu)
exp







−
1

puσupu

∑

{i,j}∈N
bu,i−j |xuN+i − xuN+j |

pu









 , (10)

where σ0 and σ1 are normalization parameters for µa and D, respectively, and 1 ≤ p0 ≤ 2 and

1 ≤ p1 ≤ 2 control the degree of edge smoothness for µa and D, respectively. The set N consists of

all pairs of adjacent grid points, z(p0) and z(p0) are normalization constants, and b0,i−j and b1,i−j

represent the coefficients assigned to neighbors i and j for µa and D, respectively. This prior model

enforces smoothness in the solution while preserving sharp edge transitions, and its effectiveness

for this kind of problem has been shown previously.2

3. Optimization

Let c(x, s, d, α) denote the cost function to be minimized in (9). Then using the models of (8) and

(10) and removing constant terms results in

c(x, s, d, α) =
1

α
||y − f(x, s, d)||2Λ + P logα+

1
∑

u=0

1

puσupu

∑

{i,j}∈N
bu,i−j |xuN+i − xuN+j |

pu . (11)

The objective is then to compute

(x̂MAP , ŝ, d̂, α̂) = arg min
(x≥0,s,d,α)

c(x, s, d, α) . (12)

To solve this problem, we adapt the iterative coordinate decent (ICD) method.2 The ICD method

works by sequentially updating parameters of the optimization, so that each update monotonically

reduces the cost function. Previous implementations of ICD sequentially updated pixels in the

vector x. Here we generalize the ICD method so that the parameters s, d, and α are also included

in the sequence of updates. More specifically, in each iteration of the ICD algorithm, s, d, α, and
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x are updated sequentially using the relations

α̂ ← argmin
α

c(x̂, ŝ, d̂, α) (13)

ŝ ← argmin
s

c(x̂, s, d̂, α̂) (14)

d̂ ← argmin
d

c(x̂, ŝ, d, α̂) (15)

x̂ ← ICD updatex
{

c(x, ŝ, d̂, α̂), x̂
}

(16)

where the ICD updatex operation performs one iteration of ICD optimization to reduce the cost

function c(·, ŝ, d̂, α̂) starting at the initial value x̂. The result of ICD updatex is then used to update

the value of x̂. Iterative application of these update equations produces a convergent sequence of

deceasing costs.

The updates of (13), (14), and (15) can be calculated in closed form by setting the partial

derivative with respect to each variable to zero and solving the resulting equations to yield

α̂ ←
1

P
|| y − f(x̂, ŝ, d̂) ||2Λ (17)

ŝk ←
[ diag(d̂) Φ

(s)
k (x̂) ]HΛ

(s)
k y

|| diag(d̂) Φ
(s)
k (x̂) ||2

Λ
(s)
k

k = 1, 2, . . . ,K (18)

d̂m ←
[ diag(ŝ) Φ

(d)
m (x̂) ]HΛ

(d)
m y

|| diag(ŝ) Φ
(d)
m (x̂) ||2

Λ
(d)
m

m = 1, 2, . . . ,M, (19)

where H denotes the Hermitian transpose, Λ
(s)
k = diag( [ 1/|yk1|, 1/|yk2|, . . . , 1/|ykM | ]

t ) and Λ
(d)
m =

diag( [ 1/|y1m|, 1/|y2m|, . . . , 1/|yKm| ]
t ) are the inverse diagonal covariance matrices associated

with source k and detector m, respectively, and Φ
(s)
k (x̂) = [ φk(b1; x̂), φk(b2; x̂), . . . , φk(bM ; x̂) ]t and

Φ
(d)
m (x̂) = [ φ1(bm; x̂), φ2(bm; x̂), . . . , φK(bm; x̂) ]

t are the complex amplitude vectors associated with

source k and detector m, respectively.

The update of the variable x in (16) is of course more difficult since x is a high dimensional

vector, particularly in the 3-D case. To update the image, we use one scan of the ICD algorithm

as an ICD updatex operation. One ICD scan involves sequentially updating each element of x
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with random ordering, and incorporation of the updated elements as the scan progresses. During

this scan each element of x is updated only once. At the beginning of an ICD scan, the nonlinear

functional f(x, s, d) is first expressed using a Taylor expansion as

||y − f(x, s, d)||2Λ ' ||y − f(x̂, ŝ, d̂)− f ′(x̂, ŝ, d̂)∆x||2Λ , (20)

where ∆x = x − x̂, and f ′(x̂, ŝ, d̂) represents the Fréchet derivative of f(x, ŝ, d̂) with respect to x

at x = x̂. Using (20), an approximate cost function for the original problem is

c(x, ŝ, d̂, α̂) '
1

α̂
||z − f ′(x̂, ŝ, d̂)x||2Λ +

1
∑

u=0

1

puσupu

∑

{i,j}∈N
bu,i−j |xuN+i − xuN+j |

pu , (21)

where

z = y − f(x̂, ŝ, d̂) + f ′(x̂, ŝ, d̂)x̂ . (22)

Then, with the other image elements fixed, the ICD update for x̂uN+i is given by

x̂uN+i ← arg min
xuN+i≥0

{

1

α̂

∣

∣

∣

∣

∣

∣

∣

∣

y − f(x̂, ŝ, d̂)−
[

f ′(x̂, ŝ, d̂)
]

∗(uN+i)
(xuN+i − x̂uN+i)

∣

∣

∣

∣

∣

∣

∣

∣

2

Λ

+
1

puσpu

∑

j∈Ni

bu,i−j |xuN+i − x̂uN+j |
pu

}

, (23)

where [f ′(x̂, ŝ, d̂)]∗(uN+i) is the (uN + i)-th column of Fréchet matrix, and Ni is the set of grid

points neighboring grid point i. To compute the solution to (23), we express the first term as a

quadratic function of xuN+i and then perform a one-dimensional minimization that is solved by a

half-interval search for the root of the analytical derivative.2
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The Fréchet derivative f ′(x̂, ŝ, d̂) is a P × 2N complex matrix given by

f ′(x̂, ŝ, d̂) =























































∂f11(x̂,ŝ1,d̂1)
∂µa(r1)

· · · ∂f11(x̂,ŝ1,d̂1)
∂µa(rN )

∂f11(x̂,ŝ1,d̂1)
∂D(r1)

· · · ∂f11(x̂,ŝ1,d̂1)
∂D(rN )

∂f12(x̂,ŝ1,d̂2)
∂µa(r1)

· · · ∂f12(x̂,ŝ1,d̂2)
∂µa(rN )

∂f12(x̂,ŝ1,d̂2)
∂D(r1)

· · · ∂f12(x̂,ŝ1,d̂2)
∂D(rN )

...
. . .

...
...

. . .
...

∂f1M (x̂,ŝ1,d̂M )
∂µa(r1)

· · · ∂f1M (x̂,ŝ1,d̂M )
∂µa(rN )

∂f1M (x̂,ŝ1,d̂M )
∂D(r1)

· · · ∂f1M (x̂,ŝ1,d̂M )
∂D(rN )

∂f21(x̂,ŝ2,d̂1)
∂µa(r1)

· · · ∂f21(x̂,ŝ2,d̂1)
∂µa(rN )

∂f21(x̂,ŝ2,d̂1)
∂D(r1)

· · · ∂f21(x̂,ŝ2,d̂1)
∂D(rN )

...
. . .

...
...

. . .
...

∂fKM (x̂,ŝK ,d̂M )
∂µa(r1)

· · · ∂fKM (x̂,ŝK ,d̂M )
∂µa(rN )

∂fKM (x̂,ŝK ,d̂M )
∂D(r1)

· · · ∂fKM (x̂,ŝK ,d̂M )
∂D(rN )























































,

(24)

where the first N columns correspond to the µa components of x and the remaining N columns

correspond to the D components. In a similar manner to the Fréchet derivative commonly used for

unity coupling coefficients,25 it can be shown that each element of the matrix is given by

∂fkm(x̂, ŝk, d̂m)

∂µa(ri)
= −ŝkd̂mg(bm, ri; x̂)φk(ri; x̂)A (25)

∂fkm(x̂, ŝk, d̂m)

∂D(ri)
= −ŝkd̂m∇g(bm, ri; x̂) · ∇φk(ri; x̂)A , (26)

where A is the voxel volume, the Green’s function g(bm, ri; x̂) is the solution of (1) for a point source

located at bm (i.e., by setting ak ← bm in (1), using reciprocity to reduce computation25) and a

given image x̂, ∇ is the gradient operator with respect to ri, and domain discretization errors are

ignored. Note that the Fréchet derivative is the product of the coupling coefficient terms ŝkd̂m and

the derivative of φk(bm; x̂) with respect to the optical parameter at that grid point. Thus, if the

coupling coefficients are not accurately estimated, the formulas (25) and (26) do not yield accurate

Fréchet derivatives, and thus the computed gradient direction of the cost function in (12) is not

accurate. Therefore, accurate estimation of the coupling coefficients is essential for the ICD-Born

iteration scheme.
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The dimensions of the Fréchet derivative matrix are very large for practical 3-D imaging.

For example, (KM × 2N × 8) = 790 MBytes of memory are needed to store the Fréchet derivative

matrix for 30 sources, 48 detectors and a 33× 33× 33 grid point image, if 4 bytes are used for a

real number. However, the storage can be reduced by exploiting two facts. First, only the (uN + i)-

th column of the Fréchet derivative matrix is needed to update xuN+i, as seen in (23). Second,

the Fréchet derivative in (25) and (26) is separable into the φk(ri; x̂) term and the g(bm, ri; x̂)

term. Thus, we compute only φk( · ; x̂) for k = 1, 2, . . . ,K and g(bm, · ; x̂) for m = 1, 2, . . . ,M

before the ICD update of the whole image, and then when xi is updated the i-th column of the

Fréchet derivative is computed using these vectors. This method, which involves storing the forward

solutions for all sources, the Green’s function for all detectors, and only one column of the Fréchet

derivative matrix, reduces the required memory to (KN +MN +KM)×8 bytes without requiring

additional computation. In the above example, the required memory is then only 22 MBytes. Note

that this implementation differs from the work of Ye, et al.,2,3 where they did not need consider

this storage issue because they dealt with a two-dimensional problem. The whole optimization

procedure is summarized in the pseudo-code of Fig. 1.

4. Results

A. Simulation

The performance of the algorithm described above was investigated by simulation using cubic

tissue phantoms of dimension 8 × 8 × 8 cm on an edge and with background D = 0.03 cm and

µa = 0.02 cm−1. Two phantoms were used. Phantom A has two spherical µa inhomogeneities with

diameters of 2.25 cm and 2.75 cm and central values of 0.070 cm−1 that decay smoothly as a fourth

order polynomial to the background value, and two spherical D inhomogeneities with diameters of

2.25 cm and a central value of 0.01 cm that increase smoothly to the background value as a fourth

order polynomial. Phantom A is shown as an isosurface plot in Fig. 2(a,b), and as gray scale plots
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of cross-sections in Fig. 3(a,b). Phantom B has a high absorption inhomogeneity with a peak value

of µa = 0.07 cm−1 near one face of the cube and a low diffusion inhomogeneity near the center

with a diameter of 2.75 cm and a central value of 0.01 cm that increases smoothly as a fourth order

polynomial to the background value, as shown in Fig. 4(a,b) and Fig. 5(a,b). Phantom B was used to

assess whether an absorber close to a set of sources and detectors is difficult to reconstruct, since its

effect might be compensated for by reduced source and detector coupling coefficients. Five sources,

with a modulation frequency of 100 MHz, and eight detectors are located on each face (Fig. 6a),

yielding K = 30 and M = 48. Shot noise was added to the data, and the average signal-to-noise

ratio for sources and detectors on opposite faces was 33 dB. The complex source/detector coupling

coefficients (a total of 78 parameters) were generated with a Gaussian distribution centered at

1 + 0i and having a standard deviation of σcoeff√
2
(1 + i), with σcoeff = 0.5 (Fig. 7a). The domain was

discretized onto 33× 33× 33 grid points, and the forward model (1) solved using finite differences.

Referring to Fig. 6(b), a zero-flux (φ = 0) boundary condition on the outer boundary provides

the approximate boundary condition on the physical boundary.2,17 The sources and detectors were

placed 0.6 grid points in from the zero-flux boundary, achieved through appropriate weighting of

the nearest grid points. Only nodes within the imaging boundary were updated, which excludes

the three outermost layers of grid points, to avoid singularities near the sources and detectors. The

optimization was initialized using the homogeneous values D = 0.03 cm and µa = 0.02 cm−1. The

image prior model used p0 = 2.0, σ0 = 0.01 cm−1, p1 = 2.0, and σ1 = 0.004 cm.

Reconstructions of µa and D after 30 iterations are shown in Fig. 2(c,d) and Fig. 4(c,d), for

Phantom A, and in Fig. 3(c,d) and Fig. 5(c,d) for Phantom B. The corresponding images recon-

structed with the correct values of coupling coefficients are shown for comparison in Fig. 2(e,f),

Fig. 4(e,f), Fig. 3(e,f), and Fig. 5(e,f). Our algorithm reconstructs images quite similar to those

reconstructed when the true values of the coupling coefficients are used. The corresponding im-

13



ages reconstructed with all coupling coefficients set to 1 + 0i are shown in Fig. 2(g,h), Fig. 4(g,h),

Fig. 3(g,h) and Fig. 5(g,h). These show that poor reconstructions are obtained if the source and

detector coupling is not accounted for in the reconstruction process. This is due to the effectively

incorrect forward model and hence incorrect Fréchet derivatives. In fact, for the large range of

source and detector coupling coefficients used in these examples, the images reconstructed without

calibration differ little from the initial starting point of the optimization, when the coupling coef-

ficients are fixed at 1 + 0i. The convergence of the normalized root mean square error (NRMSE)

between the phantoms and the reconstructed images is shown in Fig. 8. The NRMSE is defined by

NRMSE =

[

1

2

1
∑

u=0

∑

ri∈R |x̂uN+i − xuN+i|
2

∑

ri∈R |xuN+i|2

]1/2

, (27)

where R is the set of the updated grid points within the imaging boundary (shown in Fig. 6(b)),

x̂uN+i is the reconstructed value of (uN + i)-th image element, and xuN+i is the correct value.

The NRMSE obtained with the reconstruction incorporating calibration is similar to that obtained

when the correct coupling coefficients are used. However, if calibration is not used, there is little

decrease in the NRMSE from the starting value.

The accuracy of the estimated coupling coefficients is shown in Fig. 7(b,c), where the differences

between the true coupling coefficients and those estimated after 30 iterations is given. The NRMSE

error after 30 iterations is 0.011 for Phantom A and 0.017 for Phantom B, which are only 2%

and 3% of the standard deviation of the coupling coefficients, respectively, indicating accurate

recovery. Figure 9 shows the variation of the NRMSE error between the estimated and true coupling

coefficients versus iteration, showing good convergence in only a few iterations. The results therefore

indicate that our algorithm reconstructs accurate images without prior calibration by the estimation

of the coupling coefficients in an efficient optimization scheme.

For Phantom B, the absorber close to one source-detector plane is reconstructed quite accu-

rately and is not distorted by the variable coupling coefficients of the sources and detectors. Some
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small spikes of low µa appear in the neighborhood of some of the sources and detectors (Fig. 5(b)),

as noted previously,7 but the effect is quite small. However, the final NRMSE is somewhat larger

for Phantom B than for Phantom A (Fig. 8), and the real part of some of the coupling coefficients

is underestimated (Fig. 7(c)). We categorize the sources and detectors on the side nearest the ab-

sorber as Group 1, and the remainder as Group 2. Most of the underestimated coefficients are those

for sources and detectors on the face close to the absorber. The estimation error for these coupling

coefficients (Group 1) is larger than the remaining sources and detectors (Fig. 9(b)). Therefore, be-

cause the light transmitted through the absorber is highly attenuated, it is partially compensated

for by reduced estimated coupling coefficients. As noted above, however, the effect is quite small.

In order to study the effect of the variability of the coupling coefficients, reconstructions were

performed for Phantom A for different standard deviations of the (real and imaginary parts of the)

coupling coefficients, σcoeff . The coupling coefficients were generated with a Gaussian distribution

centered at 1 + 0i and having
σcoeff√

2
(1 + i), and images are the reconstructed results after 30

iterations of our algorithm. The image NRMSE is compared for various standard derivations in

Fig. 10. Estimating the calibration coefficients reduces the NRMSE, as expected. The error without

calibration did not increase beyond about 0.28 with increasing σcoeff , as this value for the image

NRMSE corresponds to the initial value with the correct background parameters and indicates

that an image is not recovered. To establish the gradual deterioration of the image with source-

detector coupling coefficients that are not accounted for in the reconstruction, Fig. 11(a,b) shows

the image obtained with for σcoeff = 0.02 and Fig. 11(c,d) that for σcoeff = 0.04, as compared

with the true images in Fig. 3(a,b). This result indicates that accurate estimation of the coupling

coefficients is crucial for determining accurate images. The σcoeff will obviously be a function of the

specific experimental arrangement. Figure 10 serves as an illustration of the impact of variations in

the source-detector coupling. While some experimental arrangements may have (approximately) a
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single, scalar source-detector weight,14 it is still important to determine this value.

We have established that multi-resolution techniques such as multigrid achieve more reli-

able convergence of the cost function while dramatically reducing the computation time in two-

dimensional optical diffusion tomography.3 The approach presented for extracting the source-

detector weights as part of the image reconstruction in a Bayesian framework could be extended to

multi-resolution approaches. We investigated a simple multi-resolution approach by using a coarse

grid solution (17× 17× 17) to initialize a fine grid solution (33× 33× 33). Better convergence was

achieved using this simple two-grid approach with various initial conditions consisting of uniform

D and µa differing from the true background by as much as a factor of three. This performance

improvement occurs both with known and estimated source-detector weights. Also, we noticed

that in some cases with a fixed, fine grid, the cost function with variable source-detector weights

was slightly larger than that with the true weights set. While the images in these cases were still

excellent, the additional degrees of freedom should have resulted in a smaller value of the cost

function. Using the multi-resolution approach, this was indeed the case, providing further evidence

of the robustness of our approach. We emphasize that the algorithm we present for extraction of

the source-detector weights in a Bayesian framework was consistently effective, regardless of the

particular iterative reconstruction approach.

B. Experiment

The effectiveness of our source-detector calibration approach was evaluated for measurements made

on an optically clear culture flask containing a black plastic cylinder embedded in a turbid suspen-

sion (Fig. 12(a)). The plastic cylinder was embedded in a 0.5% concentration of Intralipid solution.

The data was collected with an inexpensive apparatus comprised of an infrared LED operating at

890 nm and a silicon p-i-n photodiode, as schematically depicted in Fig. 12(b). With the source

centrally located, as shown in Fig. 12(b), the detector located on the other side of the flask was
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mechanically scanned in the same plane as the source, and data were taken at 25 symmetrical

locations. The flask was rotated, so that the relative positions of source and detector were reversed,

and another set of data taken. This resulted in a total of two source positions with 25 detector

measurements each. The sources were modulated at 50 MHz.

For this experiment, there are a total of two unknown calibration parameters to be estimated.

Each set of 25 measurements used a single detector; so we modeled all 25 measurements with a single

detector calibration parameter. Without loss of generality, the two source calibration parameters

were assumed to be 1 since, for this experiment, any change in source phase and amplitude can be

equivalently accounted for by the detector calibration parameters.

Inversions were performed for the absorption coefficients and coupling coefficients, assuming

D known. The domain was discretized into 65× 33× 65 grid points. For computational efficiency,

we used a simple multiresolution technique in which 200 coarser grid (33× 17× 33) iterations are

followed by 30 fine grid iterations. We used σ0 = 1.0 cm−1 and p0 = 2.0 for the image prior model.

Figure 13 contains reconstructed images of the absorption coefficient in the measurement plane.

Figure 13(a) shows the reconstruction obtained using two complex valued calibration coefficients;

Figure 13(b) shows the reconstruction obtained when only a single complex calibration coefficient

was used (i.e. the two coefficients were assumed equal); Figure 13(c) shows the reconstruction

obtained with a single real valued calibration coefficient; and finally Figure 13(d) assumed all cal-

ibration coefficients to be 1. The reconstruction of Fig. 13(a) used the most accurate model and

also produced a reconstruction that appears to be more accurate in shape than Fig. 13(b,c). Gen-

erally, the elliptical shape of the reconstruction in Fig. 13(c) appears to be the least accurate. Most

importantly, Fig. 13(d) shows that reconstruction without estimation of the calibration coefficients

was not possible.
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5. Conclusions

We have formulated the Bayesian optical diffusion tomography with the source-detector parameter

estimation problem and proposed an efficient optimization scheme. Our algorithm does not require

any prior calibration, and it estimates coupling coefficients successfully with only a small amount of

additional computation. Simulation and experimental results show that images can be reconstructed

along with the accurate estimation of the coupling coefficients.
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Fig. 1. Pseudo-code specification for (a) the overall optimization procedure and (b) the

image update by one ICD scan.

Fig. 2. Isosurface plots (at 0.04 cm−1 for µa, and 0.02 cm for D) for µa (left column) and

D (right column) for Phantom A: (a,b) original tissue phantom, (c,d) reconstructions with

source-detector calibration, (e,f) reconstructions using the correct weights, (g,h) reconstruc-

tions without calibration.

Fig. 3. Cross-sections through the centers of the inhomogeneities (z=0.5 cm for µa, z=1.5 cm

for D) for µa (left column) and D (right column) of Phantom A: (a,b) original tissue

phantom, (c,d) reconstructions with source-detector calibration, (e,f) reconstructions using

the correct weights, (g,h) reconstructions without calibration.

Fig. 4. Isosurface plots (at 0.04 cm−1 for µa, and 0.02 cm for D) for µa (left column) and

D (right column) for Phantom B: (a,b) original tissue phantom, (c,d) reconstructions with

source-detector calibration, (e,f) reconstructions using the correct weights, (g,h) reconstruc-

tions without calibration.

Fig. 5. Cross-sections through the centers of the inhomogeneities (z=0.0 cm for µa,

z=0.25 cm for D) for µa (left column) and D (right column) of Phantom B: (a,b) original

tissue phantom, (c,d) reconstructions with source-detector calibration, (e,f) reconstructions

using the correct weights, (g,h) reconstructions without calibration.

Fig. 6. (a) Locations of sources and detectors, (b) Several levels of boundaries: zero-flux

boundary, physical boundary, source-detector boundary, and imaging boundary, from the

outer boundary.
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Fig. 7. (a) Source/detector coupling coefficients used in the simulations. The estimation

error of coupling coefficients for (b) Phantom A and (c) Phantom B after 30 iterations.

Note that the scale of (b) and (c) is 10 times of that of (a).

Fig. 8. The normalized root mean square error between the phantom and the reconstructed

images for (a) Phantom A and (b) Phantom B.

Fig. 9. (a) RMS error in the estimated coupling coefficients versus iteration. (b) Convergence

of coupling coefficients for Group 1 (—) and Group 2 (- - -) for Phantom B.

Fig. 10. Image NRMSE comparison between the reconstruction with coupling coefficient

calibration and the reconstruction with coupling coefficients fixed to 1 + 0i, for various

standard deviations of coupling coefficients. Images were obtained after 30 iterations.

Fig. 11. Cross-sections of the reconstructed images through the centers of the inhomo-

geneities (z=0.5 cm for µa, z=1.5 cm for D) : for σcoeff = 0.02 for (a) µa and (b) D, and for

σcoeff = 0.04 for (c) µa and (d) D.

Fig. 12. (a) Culture flask with the absorbing cylinder embedded in a scattering Intralipid

solution. (b) Schematic diagram of the apparatus used to collect data.

Fig. 13. Cross-sections for reconstructed images of an absorbing cylinder with (a) two com-

plex valued calibration coefficients, (b) a single complex calibration coefficient, (c) a single

real calibration coefficient, and (d) all calibration coefficients assumed to be 1.
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main {

1. Initialize x̂ with a background absorption and diffusion coefficient estimate.

2. Repeat until converged: {

(a) α̂←
1

P
|| y − f(x̂, ŝ, d̂) ||2Λ Eq.(17)

(b) ŝk ←
[ diag(d̂) Φ

(s)
k (x̂) ]HΛ

(s)
k y

|| diag(d̂) Φ
(s)
k (x̂) ||2

Λ
(s)

k

k = 1, 2, . . . ,K Eq.(18)

(c) d̂m ←
[ diag(ŝ) Φ

(d)
m (x̂) ]HΛ

(d)
m y

|| diag(ŝ) Φ
(d)
m (x̂) ||2

Λ
(d)
m

m = 1, 2, . . . ,M Eq.(19)

(d) x̂← ICD updatex

{

c(x, ŝ, d̂, α̂), x̂
}

Eq.(16)

}
}

(a)

ICD updatex

{

c(x, ŝ, d̂, α̂), x̂
}

{

1. Compute φk( · ; x̂), k = 1, 2, · · · ,K and g(bm, · ; x̂), m = 1, 2, · · · ,M .

2. For u = 0, 1,

For i = 1, . . . , N (in random order), {

(a) Compute [f ′(x̂, ŝ, d̂)]∗(uN+i) with (24)-(26).

(b) Update xuN+i, as described by Ye, et al.2

x̂uN+i ← arg min
xuN+i≥0

{

1
α̂

∣

∣

∣

∣

∣

∣
y − f(x̂, ŝ, d̂)− [f ′(x̂, ŝ, d̂)]∗(uN+i) (xuN+i − x̂uN+i)

∣

∣

∣

∣

∣

∣

2

Λ

+ 1
puσpu

∑

j∈Ni
bu,i−j |xuN+i − x̂uN+j |pu

}

Eq.(23)

}

3. Return x̂.
}

(b)

Figure 1 (S. Oh. et al.)
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Figure 2 (S. Oh. et al.)
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Figure 3 (S. Oh. et al.)
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Figure 4 (S. Oh. et al.)
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Figure 5 (S. Oh. et al.)
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Figure 8 (S. Oh. et al.)
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Figure 9 (S. Oh. et al.)
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Figure 11 (S. Oh. et al.)
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Figure 13 (S. Oh. et al.)
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