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ABSTRACT

Statistical tomographic reconstruction algorithms
generally require the efficient optimization of a func-
tional. A recent algorithm known as iterative coordi-
nate descent with Newton-Raphson updates (ICD/NR)
has been shown to be much more computationally ef-
ficient than indirect optimization approaches based on
the EM algorithm. However, while the ICD/NR algo-
rithm has experimentally been shown to converge sta-
bly, no theoretical proof of convergence is known.

In this paper, we prove that a modified algorithm,
which we call ICD functional substitution (ICD/FS),
has guaranteed global convergence in addition to the
computational efficiency of ICD/NR. The ICD/FS
method works by approximating the log likelihood at
each pixel by an alternative quadratic functional. Ex-
perimental results show that the convergence speed of
the globally convergent algorithm is nearly identical to
that of ICD/NR.

1. INTRODUCTION

Statistical tomographic reconstruction methods such as
maximum-likelihood (ML) and maximum a posteriori
probability (MAP) estimation seek the solution that
best matches the probabilistic behavior of the data.
But these estimates may require excessive computa-
tion for the resulting large-scale, iterative optimiza-
tions. The expectation-maximization (EM) algorithm
has been widely applied for finding ML estimation in
the emission tomography problem [1]. Several other
algorithms take an indirect approach based on EM to
solve the MAP optimization problem[2, 3]. But these
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algorithms retain one main problem of EM, i.e. its slow
convergence speed for tomographic reconstructions.

Recently, we have proposed an iterative coordinate
descent (ICD) algorithm [4] for statistical image re-
construction based on the direct optimization of the
MAP criterion. This algorithm is based on the sequen-
tial greedy optimization of pixel values in the recon-
struction. It applies a truncated Taylor series expan-
sion to derive a local quadratic approximation to the
exact log likelihood function. We use the term iter-
ative coordinate descent/Newton Raphson (ICD/NR)
for this computationally advantageous version of the
coordinate descent algorithm. It has been experimen-
tally demonstrated to converge very rapidly compared
to EM algorithms, but is thus far not guaranteed the-
oretically to converge to the unique global MAP solu-
tion.

In this paper, we present a modified ICD algorithm
which we call ICD functional substitution (ICD/FS).
The ICD/FS algorithm locally approximates the exact
log likelihood function with an alternative quadratic
function. We prove that the ICD/FS algorithm is glob-
ally convergent for both the emission and transmis-
sion reconstruction problem when the log prior distri-
bution is convex. As with ICD/NR, the new method
easily incorporates non-negativity constraints and non-
Gaussian prior distributions. We also note that as a
functional substitution approach, the new algorithm is
mathematically similar to optimization methods allow-
ing parallel updates of arbitrary sets of pixels within
the sequential framework [5, 6].

We include experimental results on synthetic phan-
toms, using both ICD/NR and ICD/FS algorithms for
the comparison under the emission and transmission re-
construction cases. These results indicate that ICD/FS
retains the rapid convergence properties of ICD/NR,
but with the desirable global convergence properties.



 

2. MODELING ASSUMPTIONS
The MAP tomographic reconstruction problem results
in the numerical optimization problem of

xMAP = arg max
x
{logP (Y = y|X = x)+logP (X = dx)}

where x is the unknown image and y is the projection
data. We refer to logP (Y = y|X = x) as the data
term, and the density function log P (X = dx) as the
prior term. The approach we propose is based on the
ICD algorithm. In this work, we will assume that the
function logP (X = x) is strictly concave with continu-
ous derivatives on the set IRN+ = {x ∈ IRN : xj ≥ 0}.
For the emission case, we have

logP (Y = y|X = x) (1)

=
M∑
i=1

(−Ai∗x− ri + yi log{Ai∗x+ ri} − log(yi!))

whereM is the number of projections, Ai∗ is the ith row
of the projection matrix A, yi are the observed photon
counts for projection i, and ri are additive terms usu-
ally due to background noise or random coincidences
in the case of PET. For the transmission case, we have

logP (Y = y|X = x) (2)

=
M∑
i=1

(
−yT exp−Ai∗x +yi(log yT −Ai∗x)− log(yi!)

)
where yT is the photon dosage per ray [4].

We will prove global convergence by verifying that
ICD/FS meets the conditions of the theorem presented
by Fessler and Hero in [7] for convergence of space-
alternating generalized EM. Since this proof requires
continuity of the log likelihood on IRN+, we must as-
sume that the background noise is greater than zero,
i.e. ri > 0. We discuss alternative methods for the case
ri = 0 later in the paper.

3. THE FUNCTIONAL SUBSTITUTION
APPROACH TO ICD

In this section, we will develop the ICD/FS algorithm.

3.1. ICD/FS Algorithm
The ICD method sequentially optimizes with respect to
each pixel (i.e. coordinate of x). Let xn be the image
at the nth iteration. Then the ICD update of the pixel
xj is computed by solving the equation

xn+1
j = arg min

xj≥0
{Fj(xj) + Pj(xj)} (3)

where Fj(xj) and Pj(xj) represent the contribution of
the data and prior terms, respectively, to the objec-
tive function expressed in terms of xj . The particular

form of Fj(xj) varies for the emission and transmis-
sion tomography cases of equations (1) and (2). But in
both cases Fj(xj) is a convex function on IRN+ and its
derivative fj(xj) = dFj(xj)

dxj
is strictly concave.

Unfortunately, direct optimization of (3) is not de-
sirable because evaluation of the data term, Fj(xj), is
computationally expensive. ICD/NR solves this prob-
lem by approximating the function with its second or-
der Taylor series, replacing Fj(xj) with

F
(nr)
j (xj) = θ

(nr)
1 (xj − xnj ) +

1
2
θ
(nr)
2 (xj − xnj )2,

where θ(nr)1 = fj(xnj ), θ
(nr)
2 = dfj(x

n
j )

dxj
. Although this

approximation has been shown experimentally to be
quite good, a theoretical proof of convergence for the
resulting iterations has not been found.

The new algorithm ICD/FS results from using a
slightly different value for θ2. This new choice of θ2 is
slightly more conservative and will allow us to prove
the desired global convergence property. The update
equations for ICD/FS are given as follows.

θ
(fs)
1 = fj(xnj ), (4)

θ
(fs)
2 =


fj(x

n
j )−fj(0)
xn
j

if xnj > 0
dfj(0)
dxj

if xnj = 0
(5)

F
(fs)
j (xj) = θ

(fs)
1 (xj − xnj ) +

1
2
θ
(fs)
2 (xj − xnj )2 (6)

xn+1
j = arg min

xj≥0

{
F

(fs)
j (xj) + Pj(xj)

}
(7)

The ICD/FS algorithm can be applied in both emis-
sion and transmission tomography problems. The only
difference between these two cases is the specific com-
putation of the values for fj(xnj ), fj(0), and dfj(0)

dxj
in

(4) and (5). For the emission case, these values are
given by

fj(xnj ) =
M∑
i=1

Aij

(
1− yi

pni

)
(8)

fj(0) =
M∑
i=1

Aij

(
1− yi

pni −Aijxnj

)
(9)

dfj(0)
dxnj

=
M∑
i=1

yi

(
Aij
pni

)2

(10)

where Aij is the contribution of the jth pixel to the ith

projection, and pni = Ai∗x
n + ri is the ith projection

of the reconstruction at iteration n. Note that pni may
be efficiently updated by pn+1

i = pni +Aij(xn+1
j − xnj ),



 

with computation reduced by the sparse structure of
A.

For the transmission case, the update values are
given by

fj(xnj ) =
M∑
i=1

Aij

(
yi − yT e−p

n
i

)
(11)

fj(0) =
M∑
i=1

Aij

(
yi − yT e−p

n
i eAijx

n
j

)
(12)

dfj(0)
dxnj

=
M∑
i=1

A2
ijyT e

−pni (13)

where pni = Ai∗x
n.

ICD/FS has essentially the same computational re-
quirements as ICD/NR since it generally requires the
computation of two first derivatives in place of the first
and second derivatives required for ICD/NR.

3.2. Global Convergence of ICD/FS
In order to prove the global convergence of this new
algorithm, we simply verify that it meets the two as-
sumptions and six conditions of the global convergence
proof presented in [7].

Most of these conditions are either the same as for
[7], or are may be simply verified 1. However, we will
demonstrate the critical Condition 1, which states that
the change in the substitute function is an upper bound
on the change in the true functional to be minimized.

By the construction of function f
(fs)
j (x), we know

that f (fs)
j (0) = fj(0), and f

(fs)
j (xnj ) = fj(xnj ). Since

for both the emission and transmission case, fj(x) is
a concave function and f

(fs)
j (x) is a linear function, it

follows that

fj(x)

{
≥ f (fs)

j (x) 0 ≤ x < xnj
≤ f (fs)

j (x) x > xnj

Integration of fj(x) and f (fs)
j (x) result in the inequality

Fj(x)− Fj(xnj ) ≤ F
(fs)
j (x)− F (fs)

j (xnj ) .

Defining the functions Φj(x) = Fj(x) + Pj(x) and
Φ(fs)
j (x) = F

(fs)
j (x) + Pj(x) then results in the follow-

ing lemma.
Lemma: Let Fj(x) + Pj(x) be convex, and Fj(x)

be continuously differentiable on IRN+. Furthermore,
let fj(x) = dFj(x)

dx be concave and continuous on IRN+,
and let

xn+1
j = arg min

x≥0
{F (fs)

j (x) + P (x)}.

1Continuity of f
(fs)
j (t) as a function of (t, x) on IR(N+1)+

also appears to be necessary in Condition 2.

Then for all x ∈ IRN+

Φj(x)− Φj(xnj ) ≤ Φ(fs)
j (x)− Φ(fs)

j (xnj ) .

Based on this lemma and the conditions proved in [7],
the global convergence of the ICD/FS algorithm fol-
lows.

3.3. ICD/FS with Zero Background Emission
Noise
As mentioned previously, the emission case when ri = 0
is special since in this case the log likelihood term may
tend to −∞ on IRN+. This occurs in the unusual case
in which xj is the only nonzero pixel on a projection
which has a nonzero photon count. In this case, Ai∗x =
Aijxj and the log likelihood functions have terms of the
form log xj which tend to −∞ as xj → 0. There are
a number of possible strategies for handling this case
numerically.

Strategy 1: A very simple method for handling
this case is to set ri to a very small number such as
ri = 1

100M . This guarantees that the expected number
of additional photons due to this adjustment summed
over all projections is much less than 1. In practice,
such a small perturbation to the model should not have
a significant effect on the resulting reconstruction. This
strategy also has the added benefit of making the algo-
rithm more robust to floating point round-off error.

Strategy 2: Modify the algorithm so that in the
case when fj(0) = −∞, the function is recomputed at
fj(ε) where ε is chosen to assure that fj(ε) < 0. One
such choice is ε = minj{ 1

Kj
}, where Kj =

∑M
i=1Aij .

In this case, θ2 is given by

θ
(fs)
2 =

fj(xnj )− fj(ε)
xnj (1− ε)

=
M∑
i=1

A2
ijyi

pni
2 − pni Aij(xnj − ε)

and the update equation is still given by

xn+1
j = arg min

xj≥0
{F (fs)

j (xj) + P (xj)}

We conjecture that this update strategy is globally con-
vergent since it appears that the proof of [7] could be
simply extended to handle this more general case.

4. NUMERICAL RESULTS
Our experimental results consist of trials using syn-
thetic phantoms with functional values similar to hu-
man tissue in low dosage emission and transmission
tomography simulations. The data are 128 × 128 pro-
jections, and the reconstruction is computed at a res-
olution of 128 × 128 pixels. We solve the MAP recon-
structions consisting of two choices of q for the gener-
alized Gaussian Markov random field (GGMRF) prior
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Figure 1: Convergence of likelihood vs. iterations for
the emission case with q = 1.1 and q = 2.0 GGMRF
prior models, employing ICD/FS and ICD/NR algo-
rithms.

model with the prior log density function of P (x) =∑
i,j

bij
q

(
xi−xj
σ

)q
.

The experimental results of Figs. 1 and 2 show the
convergence of the ICD/NR and ICD/FS for the emis-
sion case with a non-Gaussian prior, the emission case
with a Gaussian prior, and the transmission case with a
non-Gaussian prior. All trials employ sequential pixel
updates in raster ordering. We note that with this par-
ticular non-Gaussian prior, the second derivative of the
log likelihood is not bounded, so the technical condi-
tions of the proof are not met. However, we conjecture
that the proof of [7] may also be generalized for this
case.

The plots of Figures 1 and 2 experimentally show
that the convergence properties of ICD/NR and ICD/FS
are virtually identical. This is not surprising, since the
log likelihood function is generally close to quadratic
and the values of θ(nr)2 and θ

(fs)
2 are therefore gener-

ally very close. While a proof for the global convergence
of ICD/NR does not yet exist, its convergence appears
consistently rapid.

5. REFERENCES

[1] L. Shepp and Y. Vardi, “Maximum Likelihood Re-
construction for Emission Tomography,” IEEE Trans.
Med. Im., vol. MI-1, no. 2, Oct. 1982.

[2] T. Hebert and R. Leahy, “A Generalized EM Algo-
rithm for 3-D Bayesian Reconstruction from Poisson
data Using Gibbs Priors,” IEEE Trans. Med. Im., vol.
8, no. 2, pp. 194-202, June 1989.

0 2 4 6 8 10 12 14 16 18 20
−2.75

−2.7

−2.65

−2.6

−2.55

−2.5

−2.45

−2.4

−2.35

−2.3
x 10

4

Iterations N

lik
el

ih
oo

d 
fu

nc
tio

n

Convergence of q=1.1 transmission with ICD/NR & ICD/FS

− : ICD/NR algorithm

* : ICD/FS algorithm

Figure 2: Convergence of likelihood vs. iterations for
the transmission case with q = 1.1 GGMRF prior
model, employing ICD/FS and ICD/NR algorithms.

[3] A.R. De Pierro, “A Modified Expectation Maximiza-
tion Algorithm for Penalized Likelihood Estimation in
Emission Tomography,” IEEE Trans. on Med. Im., vol.
14, no. 1, pp. 132-137, March 1995.

[4] C. Bouman, K. Sauer, “A Unified Approach to Sta-
tistical Tomography Using Coordinate Descent Opti-
mization,” IEEE Trans. Image Proc., vol. 5, no. 3, pp.
480-492, March, 1996.

[5] K. Sauer, S. Borman and C. Bouman, “Parallel Com-
putation of Sequential Pixel Updates in Statistical
Tomographic Reconstruction,” 1995 Proc. IEEE Intl.
Conf. on Image Proc., Washington, DC, Oct. 22-25,
1995.

[6] J. Fessler, E. Ficaro, N. Clinthorne, and K. Lange
“Fast Parallelizable Algorithm for Transmission Image
Reconstruction,” 1995 Proc. IEEE Nucl. Sci. Symp.
& Med. Image Conf., San Francisco, CA. Oct. 21-28,
1995

[7] J. A. Fessler and A. O. Hero, “Penalized Maximum-
Likelihood Image Reconstruction Using Space-
Alternating Generalized EM Algorithms,” IEEE
Trans. on Image Proc., vol. 4, no. 10, pp. 1417-1429,
Oct. 1995.


