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ABSTRACT

The popularity of Bayesian methods in image processing ap-
plications has generated great interest in image modeling. A
good image model needs to be non-homogeneous to be able
to adapt to the local characteristics of the different regions
in an image. In the past however, such a formulation was
difficult since it was not clear as to how to choose the param-
eters of the non-homogeneous model. But now motivated
by recent results in ML parameter estimation of MRF mod-
els, we formulate in this paper a non-homogeneous MRF
image model in the multiresolution framework. The advan-
tage of the multiresolution framework is two fold: First, it
makes it possible to estimate the parameters of the non-
homogeneous MRF at any resolution by using the image
at the coarser resolution. Second, it yields multiresolution
algorithms which are computationally efficient and more ro-
bust than their single resolution counterparts. Experimen-
tal results in tomographic image reconstruction and opti-
cal flow computation problems verify the superior modeling
provided by the new model.

1. INTRODUCTION

In the past decade, Bayesian methods have gained popu-
larity in image processing applications such as computer-
ized tomography [1], image restoration [2] and the com-
putation of optical flow [3] to name a few. Consequently
image modeling has become increasingly important. Since
natural images often have regions with different local char-
acteristics, it is imperative for a good image model to be
non-homogeneous to adapt to the local behavior of the im-
age. Past approaches to solve this modeling problem have
resulted in Markov random field (MRF) models with line
processes [2] and doubly stochastic MRFs [4]. However ex-
plicitly using line elements adds to the complexity of the
problem considerably by increasing the dimensionality of
the required optimization. In addition, optimal parameter
estimation of these models is also difficult.

On the other hand, homogeneous MRF image mod-
els have been widely used because of their relatively sim-
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ple parametrization. These models are usually specified in
terms of a potential function that assigns cost to the differ-
ences between neighboring pixels. The form of this poten-
tial function is crucial to the preservation of edges in the
estimated image. A host of edge-preserving potential func-
tions have been proposed in the literature [5]. In particular,
we will be using the generalized Gaussian MRF (GGMRF)
as the basis of our new model since it has been shown to
yield good edge-preservation [6]. Recent results on the ML
parameter estimation of the GGMRF model [7] has moti-
vated us to formulate a non-homogeneous GGMRF model
in the multiresolution framework. The key to the formula-
tion of the new model lies in two important factors: First,
the form of the ML estimate of the scale parameter of the
homogeneous GGMRF model gives us a clue to choose the
scale parameters adaptively in the new model. Second, the
multiresolution framework allows us to estimate these scale
parameters at each pixel by using the image at the previous
coarser resolution.

The new image model automatically gives rise to mul-
tiresolution algorithms that estimate the image at progres-
sively finer resolutions. This is very desirable since mul-
tiresolution algorithms have generated a lot of interest in
image processing applications due to their faster conver-
gence and better image modeling [8, 9]. Multiresolution
methods are also particularly well suited to problems such
as the optical flow computation, since they can more ef-
fectively avoid being trapped in some local minima than
their single resolution counterparts. In this paper, we ap-
ply our new model to the optical flow computation and the
tomographic reconstruction problems to evaluate the effec-
tiveness of the model. Experimental results suggest that
the new non-homogeneous GGMRF model yields improved
performance over the corresponding homogeneous GGMRF
model.

2. NEW IMAGE MODEL

We will denote the image at scale k by the random field
X® and the set of lattice points by S . Let L be the
coarsest resolution. Then at resolution L we define X&) to
be a homogeneous GGMRF [6] given as
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where Tr is the temperature parameter at resolution L
and N denotes the neighborhood. For all finer resolutions,
k=0,...,L —1, we define X% 0 be a non-homogeneous
GGMRF given as
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where o;; (z**1)) is the scale parameter estimated from the
coarser resolution image z**% for the link between pixels
¢ and j and T} is the overall temperature parameter. Note
that the MRF now is non-homogeneous since the scale pa-
rameter, o;;(+), is varying spatially. Let
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where IF 11 is the interpolating matrix from scale k + 1 to
k. Then motivated by the form of the ML estimate of the
scale parameter for a GGMRF [7] we define o;;(z* 1) as
follows
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Here o;(-) is the scale parameter estimated at pixel ¢ by
using only neighboring pixels. The scale parameter for the
link between i and j is then just the average of the corre-
sponding scale parameters for pixels ¢ and j.

3. DATA MODEL

Let y be the measured data. In the tomography problem, y
denotes the photon counts recorded at the detectors and is
Poisson distributed. In the optical flow problem, y(¢) is the
intensity image recorded by the camera at time instance ¢.

3.1. Tomography

Let A be the projection matrix of the tomographic system
and AES) denote the i*" row of A, Then the log likelihood
at scale 0 has a similar form for emission and transmission
tomography and is given as

log P( y|m(0) Zfz A(O)

where M is the number of projections and f;(-) are convex
functions. For scales k > 0, the form of the log likelihood
is given as [9]
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3.2. Optical Flow

In this case, = denotes the field of vector displacements
that represents the optical flow. Let ¢ = 0,1,2 be three
time instances at which we have the intensity image y(¢).
Let the interpolated displacement field at scale 0 from any
scale k be denoted as

I2®) = 192

Then the particular form of the log likelihood we use is
given by

log P(y|z")) = max {log Py (y|z'*)),log P, (y=™) }
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Note that by using the forward and backward prediction of
the displacement field we can explicitly account for occluded
and revealed points in the image sequence. The data model
assumes that the intensity image is corrupted with additive
Gaussian noise of variance o2.

4. PARAMETER ESTIMATION

The ML estimate of T}, for the proposed model can be ob-
tained easily at each resolution by using the result of [7]
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for k # L. Here N}, is the number of pixels at resolution k.
However, for an unsupervised scheme, we need to estimate
Ty, directly from the data y. The EM algorithm is em-
ployed in this case to address the incomplete data problem
and compute the estimates. This results in an iterative pro-
cedure where the parameter is updated with each iteration
t in the following fashion

t

fL i =F [TL(X(L)”Y = y,TLt}

7o E [fk(X(k)7m(k+1))|Y =y, XD x(k+1)7ffkt}
for k # L. The involved expectation required in the EM
update is numerically computed by using the fast stochastic
simulation technique proposed in [7].

5. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed model
we apply it to the tomographic image reconstruction and
the optical flow computation problem. The sequential MAP
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Figure 1: Estimated temperature T} for £ =0, ..., 4 for the
PET data using the EM algorithm.

(SMAP) [9] estimator is used to compute the reconstruc-
tions. At each resolution, the iterative coordinate descent
algorithm is used for solving the optimization problem.

The 3-D PET data that we use for the tomography
problem was obtained from cardiac perfusion imaging us-
ing Tc-99m sestamibi. For each slice, 128 projections were
taken at 120 uniformly spaced angles between 0 and 2.
Fig. 2 shows the convolution back projected (CBP) image
of one of the slices for a male patient. The total photon
count for this slice was 148761.

Fig. 1 shows the temperature 7T} that was estimated at
each resolution using the EM algorithm for the PET data.
Fig. 2 shows the reconstruction using a single resolution
homogeneous GGMRF (p = 1.1) and the reconstruction at
the finest resolution using the non-homogeneous GGMRF
(p = 1.1). For the homogeneous GGMRF the temperature
parameter was manually chosen to yield the most visually
appealing result. On the other hand, the temperature pa-
rameter for the non-homogeneous GGMRF was automati-
cally estimated at each resolution. Note that the multires-
olution image appears to be clean and sharp. However, fur-
ther testing needs to be done in cases where ground truth is
known to validate the performance of the non-homogeneous
GGMRF model.

Fig. 3 shows the first and the third frames of the syn-
thetic image sequence used to compute the optical flow.
Two dimensional separable sine waves with additive white
Gaussian noise were used to generate the images. The ob-
ject is moving one pixel per frame diagonally upwards to the
left and the background is moving 1.5 pixels per frame diag-
onally downwards to the right. The variance of the additive
Gaussian noise is assumed to be unknown and is directly
estimated from the data along with the scale parameters
for the image model.

Fig. 3 shows the true optical flow in comparison to the
flow obtained using a homogeneous GGMRF (p = 1.0) and
the proposed non-homogeneous GGMRF (p = 1.0). Note

that in both cases the estimation was done in the mul-
tiresolution framework. The coarse resolution optical flow
was used to initialize the flow at the next finer resolution.
A single scale parameter was used for the homogeneous
case while the scale parameter was space varying in the
non-homogeneous case. Clearly the non-homogeneous field
model preserves the discontinuity in the flow field much
better than the homogeneous field model.
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