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Abstract—X-ray computed tomography (CT) currently has
widespread application in air travel security systems for the
purpose of baggage screening. This work presents an imple-
mentation of a fully 3D model-based iterative reconstruction
(MBIR) algorithm mapped to a multi-slice helical CT security
scanner. We introduce innovations in the data model that are
designed to enhance image quality for typical scenes encountered
in the security setting. In particular, we explore alternatives
in the weighting of the measurements in order to more accu-
rately reconstruct uniform regions and suppress metal artifacts.
We compare images from the model-based approach to direct
analytical reconstructions, indicating that the MBIR produces
higher resolution and lower-noise reconstructions with suppressed
metal streaking. The image improvements afforded by MBIR can
provide for better operator experience and potentially enable
enhanced performance of automatic threat detection (ATD).

I. INTRODUCTION

X-ray computed tomography (CT) has become an integral
component of air travel security systems for clearing containers
placed in the hold of commercial aircraft. These CT systems
are tasked with producing a three dimensional image (or a
series of 2D images) of the contents of a suitcase or cargo
container that is suitable for both visual inspection and for
analysis by automatic threat detection (ATD) algorithms. The
quality of the CT images is a key factor in the performance of a
screening system because any container that cannot be cleared
from the images alone must undergo additional screening
which requires significantly more time and resources.

CT image quality is governed not only by the engineer-
ing of the physical system itself, but also by the image
reconstruction methods employed which transform the raw X-
ray projection measurements into meaningful images [1], [2].
Generally speaking, the choice of the reconstruction approach
involves a trade-off between the resilience to image noise
and distortion, and the time and computing power required
to perform the reconstruction. Direct analytical reconstruction
such as filtered back-projection (FBP) and the direct Fourier
method (DFM) have remained attractive due to their relatively
light computational burden, as well as their long history of use
in medical CT. However, deviations from the theoretical for-
ward projection model are in many cases not easily overcome,
and can result in significant image distortion. Dense materials

such as metal, for example, can be particularly problematic in
this respect; and while it is rarely encountered in significant
quantities in medical scans, metal is usually found to some
extent in nearly all checked luggage.

Model-based iterative reconstruction (MBIR) is a frame-
work that incorporates detailed scanner geometry and measure-
ment noise characteristics along with a statistical model for the
image itself, combined into a single cost optimization problem
[3], [4]. This framework allows a great deal of flexibility to
tune the algorithm to a particular scanner and application.
Recent investigations studied the implementation of MBIR in
security CT systems having a limited-view geometry [5], and
a helical scan geometry [6]. For multi-slice helical scan CT
in particular, modeling the 3D geometry explicitly accounts
for the trajectory of the X-ray source, the cone angle of
the detector array, and the detector point-spread function.
The model also accounts for measurement degradation due to
photon quantum noise and electronic noise in the detectors.
Incorporating this information directly into the reconstruc-
tion allows less reliance on pre-correction and reformatting
(interpolation) of the data to a standard set of tomographic
measurements, which is required for most direct reconstruction
methods.

This work presents an implementation of fully 3D MBIR
reconstruction for a multi-slice helical CT system designed
for security screening. We introduce innovations to the MBIR
model to enhance image quality specifically for the security
application. We first demonstrate that the traditional MBIR
noise weighting can substantially reduce metal artifacts, but
under certain conditions can also contribute to irregular tex-
tures in uniform materials. We then introduce a novel weight-
ing function that adaptively combines the traditional weights
with a power-law scaling, resulting in reconstructions with
greatly improved texture and reduced metal streaking. We also
show substantial improvements afforded by detector afterglow
correction [7] and calibration for fan beam offset.

For assessment we compare the MBIR reconstructions
to the resident DFM based reconstructions employed in the
system. The MBIR results with the adapted noise weighting
demonstrate higher resolution and lower noise images, with
greater suppression of metal-induced artifacts.
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Fig. 1. Illustration of the key components of a multi-slice helical scan CT
system. The X-ray source and detector array are affixed to a rotating gantry,
and the scan target is translated through the plane of rotation as measurements
are sampled from the array. As indicated here, it is usually convenient to
consider the target as fixed and the gantry as translating past the imaging
volume.

II. BACKGROUND

A. Multi-slice Helical Scan CT

The CT system of interest in this study is a third generation
CT scanner in which the X-ray source and detectors rotate
about a fixed axis, and the target objects are continuously fed
through on a conveyer belt. It is common to define a coordinate
system as fixed with respect to the image volume, with the
source and detectors translating to produce a helical trajectory,
as illustrated in Fig. 1. A multi-slice system has a detector
array consisting of many rows (slices) and typically hundreds
of columns of detector cells arranged in an arc, providing a
sufficient number of projections to recover a 3D image of the
scan target.

Our data model assumes a linear forward projection in
which the object density image, x ∈ R

M , and the projections,
y ∈ R

N , in the absence of noise are related by a sparse matrix
operator A,

y = Ax . (1)

The matrix coefficient Aij represents the contribution of voxel
j in forming projection i. In our case the elements of A are
calculated using a distance-driven projector [3], [8].

B. Model-Based Iterative Reconstruction

In the MBIR framework, we consider the image, x, and
the projection measurements, y, as random vectors, and the
reconstructed image is computed as the maximum a posteriori
(MAP) estimate,

x̂ = argmin
x≥0

{− log p(y|x)− log p(x)} . (2)

The likelihood function p(y|x) contains the characterization
of the measurement data, including the projection model
and measurement noise. The prior distribution, p(x), of the
image plays the important role of regularizing the solution,
which mitigates the effects of having a data set that is noisy,
incomplete, or that contains aberrations from the assumed data
model.

The measured photon count, λi, corresponding to projec-
tion i can be modeled as Poisson with mean λ̄i = λ̄T,ie

−Ai∗x,

where λ̄T,i is the input photon rate for projection i, and

Ai∗ denotes the ith row of the projection matrix. From the
Poisson model, a second-order Taylor expansion can be used
to approximate the log likelihood term by the following [9],

log p(y|x) ≈ −
1

2
(y −Ax)TD(y −Ax) + g(y) (3)

where D is a diagonal weighting matrix with entries Dii = λi,
and g(y) combines terms that are constant with respect to x.
Note in this form, the photon count, λi, acts as a weighting
coefficient for the cost term, (yi − Ai∗x)

2, associated with
projection i. This has a simple intuition in that smaller photon
counts are less reliable measurements, and hence are weighted
less in the cost function. An advancement of this result is the
weighting Dii = λ2

i /(λi+σ2
i ), which accounts for both photon

statistics and additive electronic measurement noise [4].

A common class of priors in imaging is a Markov random
field (MRF), which can be specified entirely through local pixel
interactions. In the current study we consider only pairwise
interactions, and so the prior is defined by a Gibbs distribution
of the following form,

p(x) =
1

z
exp







−
∑

{s,r}∈C

bs,rρ(xs − xr)







(4)

where ρ(·) is a positive and symmetric potential function, C
is the set of all pairwise cliques defined by the neighborhood
system, and z is a normalizing constant. For the 3D recon-
structions in this study, the cliques are formed from a 26-
point neighborhood which comes from the nearest neighbors
surrounding a given pixel in all 3 dimensions. Also, in this
study we utilize an absolute value prior, ρ(∆) = |∆|, which is
closely related to total variation (TV) regularizer [10], often
used in imaging problems.

Combining, the reconstruction is obtained by solving the
following optimization,

x̂ = argmin
x≥0







1

2
‖y −Ax‖2D +

∑

{s,r}∈C

bs,rρ(xs − xr)







.

(5)
Here we compute the solution, x̂, with a parallelized imple-
mentation of iterative coordinate descent (ICD) which solves
the global optimization by a series of 1D minimizations with
respect to each voxel [6], [9].

III. METHODS AND RESULTS

A. Preliminary Model Corrections

We first briefly note two model corrections that were
strongly beneficial for all of the reconstructions presented in
this study.

1) Detector Afterglow: X-ray scintillation detectors exhibit
an afterglow property, which is a temporally smoothed re-
sponse due to physical properties of the scintillation crystal.
We corrected for detector afterglow using a recursive filter
described in [7] on the raw scanner measurements. Figure 2
illustrates the effect of afterglow correction on MBIR recon-
structions. The example shows an axial slice with significantly
improved resolution as a result of the correction.



(a)

(b)

Fig. 2. Illustration of the effect of afterglow correction. MBIR reconstructions
on (a) raw, and (b) afterglow corrected measurements.

(a)

(b)

Fig. 3. Accounting for a small displacement in the relative mounting position
of the detector array. (a) Original DFM reconstruction, (b) MBIR accounting
for a fan angle offset. The horizontal axis is in the z-direction (perpendicular
to the plane of gantry rotation).

2) Fan Angle Offset: Image reconstruction algorithms in-
herently assume an exact geometry of the system. A slight
displacement in the mounting position of the detector array
relative to the source, even within manufacturing tolerances,
was found to produce a clear periodic displacement artifact
in the reconstructed target. Figures 3(a) and 3(b) illustrate the
effect of accounting for a small offset in the fan angle of the
detector array.

B. Data Weighting Matrix

From the form of the likelihood in Eq. (3), the diagonal
entries Dii take the role of the approximate inverse variance of

the projections yi. This is true for Dii = λi when considering
photon noise alone, and is the principle behind the result
Dii = λ2

i /(λi+σ2
i ) accounting for both photon and electronic

noise. The inverse variance is a logical choice for the weighting
of the sinogram entries, yi, in contributing to the solution of
(5). However there is motivation for further exploration of
these weights. For one, that Dii represents an inverse variance
presupposes that the projection yi varies about a mean Ai∗x.
Inaccuracy in the linearized and discretized projection model,
as well as other biasing influences (e.g. beam-hardening,
non-linear partial volume effects, scatter) can also affect the
reliability of each data term in forming the solution.

Experimentally, we found an advantage in generalizing
the weighting Dii as a function of the counts f(λi). One in
particular is the family of power law functions of the form

Dii = (λi/λT,i)
r

(6)

where λi is the target scan count, λT,i is the air scan count (a
separate scan with no target present), and 0 ≤ r ≤ 1. The case
r = 1 is equivalent to the original Poisson-induced weighting,
and the effect of decreasing r from 1 is primarily to increase
the relative weights of the lower-count measurements.

Figures 4(a) and 4(b) show a slice from a DFM re-
construction and an MBIR reconstruction, using Dii = λi

and ρ(·) = | · |, of a large uniform-density cylinder. The
irregular texture in the MBIR result is a behavior we often
observe when using the traditional weightings in reconstructing
relatively large objects that produce highly attenuated X-ray
measurements. Figure 4(c) shows the effect of reducing r to
0.5, resulting in a substantial improvement in the variance and
texture within the uniform object.

A negative side-effect of increasing the relative weights of
the lower-count measurements is to also exacerbate distortion
due to highly dense materials such as metal. This effect
is illustrated in Figure 5(b) and 5(c) for reconstructions of
a smaller cylinder containing tungsten pins. Note the non-
uniform texture for r = 1 is not as apparent compared to
the result in Figure 4(b) due the cylinder’s smaller size.

To retain both improvement in bulk object reconstruction
and resilience to metal artifacts, we produced a mixture of
these weightings that depends on the detected presence of
metal. To this end, we first define a function Ii indicating
the likely presence of metal along projection ray i.

Ii =

{

1 , if for some j, both Aij > 0 and x
(0)
j > T

0 , otherwise
(7)

Here x
(0)
j is the CT number for voxel j from an initial

reconstruction, and T is a threshold CT value for metal. The
weights are then mixed according to

Dii = Ii (λi/λT,i) + (1− Ii) (λi/λT,i)
0.5

(8)

which selects r = 1 or r = 0.5 for a given projection ray
depending on the simple metal indicator. Figures 4(d) and 5(d)
show the corresponding results using the mixed weighting. In
this study we use T = 3000 Hounsfield units (HU) (offset so
that air=0 HU, water=1000 HU).
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Fig. 4. Effect of power law weighting in the data matrix entries. Target is a
large uniform-density acetal cylinder (diam=15cm). (a) DFM; (b) MBIR, r=1;
(c) MBIR, r=1/2; (d) MBIR, r={1,1/2} mixture.

C. Comparison of MBIR and DFM Reconstructions

For further evaluation, model-based reconstructions were
computed for several luggage scans using the new data weight-
ing in Eq. (8), Figures 6, 7, 8, and 9 present select regions from
these results alongside DFM reconstructions for comparison.
Afterglow correction was performed on these scans prior
to both MBIR and DFM reconstruction. Figures 7 and 8
demonstrate a dramatic reduction in metal-induced streaking
while reproducing uniform materials with little noise. Figures 6
and 9 highlight improvements with respect to resolution and
object discrimination.

These image improvements afforded by MBIR provide for
both better operator experience and enhanced performance

(a) (b)

(c) (d)

Fig. 5. Effect of power law weighting in the data matrix entries. Target is
a uniform-density acetal cylinder (diam=8cm) containing tungsten pins. (a)
DFM; (b) MBIR, r=1; (c) MBIR, r=1/2; (d) MBIR, r={1,1/2} mixture.

(a)

(b)

Fig. 6. Comparison of (a) DFM, and (b) MBIR reconstructions for a bag
containing clothing and snacks.

of automatic threat detection (ATD). Operator experience is
beyond the scope of this paper, but it is evident that a cleaner
image will help operators with the fast and effective clearing
of benign luggage.

We evaluated the qualitative impact of the improved image
reconstructions on Morpho Detection’s proprietary ATD algo-
rithms. The cleaner objects in Figure 6 can improve segmen-



(a) DFM (b) MBIR

Fig. 7. Comparison of DFM and MBIR reconstructions on a baggage scan.
The region highlights a bulk uniform material susceptible to distortion from
a nearby object.

(a) DFM (b) MBIR

Fig. 8. Comparison of DFM and MBIR reconstructions on a baggage scan.
The region highlights a bulk uniform material susceptible to distortion from
a nearby object.

tation, leading to better object identification (and consequent
classification). Noise reduction (Figures 7 and 8) also helps
with classification, as well as with distinguishing containers
from their contents. Figure 9 shows how MBIR could allow
ATD to separate adjoining objects for further analysis. Each
image improvement leads to a reduction in false alarms due
to incorrect segmentation, processing, or classification. In turn,
the reduction in false alarms opens an opportunity for increased
detection on challenging configurations or new threats.

IV. CONCLUSION

This work presented an implementation of fully 3D MBIR
reconstruction for a multi-slice helical CT scanner used for
security screening. We introduced a novel data weighting
in the MBIR model to enhance image quality for security
applications. In comparing to DFM, the MBIR reconstructions
demonstrated substantial improvement in resolution, noise

(a) DFM (b) MBIR

Fig. 9. Comparison of DFM and MBIR reconstructions on a baggage scan.
The region highlights the discrimination between two adjacent objects.

reduction, and reduction of metal-induced streaking. These
image improvements can be used to reduce false alarms in
existing ATD algorithms or to reduce the cost of new detection
schemes.
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