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ABSTRACT

A certain class of Markov Random Fields (MRF) known as
generalized Gaussian MRFs (GGMRF) have been shown
to yield good performance in modeling the a priori infor-
mation in Bayesian image reconstruction and restoration
problems. Though the ML estimate of temperature T of a
GGMRF has a closed form solution, the optimal estimation
of the shape parameter p is a di�cult problem due to the
intractable nature of the partition function. In this paper,
we present a tractable scheme for ML estimation of p by an
o�-line numerical computation of the log of the partition
function. In image reconstruction or restoration problems,
the image itself is not known. To address this problem, we
use the EM algorithm to compute the estimates directly
from the data. For e�cient computation of the expectation
step, we propose a fast simulation technique and a method
to extrapolate the estimates when the simulations are ter-
minated prematurely prior to convergence. Experimental
results show that the proposed methods result in substan-
tial savings in computation and superior quality images.

1. INTRODUCTION

Bayesian estimation methods have become popular in re-
cent times for image reconstruction and restoration prob-
lems. Markov random �elds (MRF) have proven useful in
modeling the a priori information in these methods. The
MRF model is equivalent to a Gibbs distribution and is of-
ten speci�ed in terms of a potential function which assigns
a cost to di�erences between neighboring pixels. The pre-
ponderance of the previous work has focused primarily on
the quadratic choice for the potential function or Gaussian
MRF. Although this particular choice has many analytical
advantages, the edges in the reconstruction are blurred due
to the excessive cost assigned to abrupt transitions. Many
alternative potential functions have been proposed in the
literature which help to alleviate this problem [1, 2, 3, 4].
In particular, the generalized Gaussian MRF (GGMRF) [4]
uses a potential function similar to the log of the gener-
alized Gaussian noise density found commonly in robust
detection and estimation. It renders edges accurately with-
out prior knowledge of their size, and it results in a convex
optimization problem with a unique global minimum [4].

The GGMRF has two parameters associated with it -
temperature T and shape parameter p. Bouman and Sauer
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[5] have shown that the ML estimate of temperature T has a
very simple closed form for the GGMRF case. However, the
ML estimation of the shape parameter p remains a di�cult
problem due to the intractable nature of the partition func-
tion. To circumvent this di�culty, Pun and Je�s [6] have
suggested an alternate method to estimate the shape pa-
rameter by computing the kurtosis of di�erences between
neighboring pixels. However, in this paper, we solve the
optimal ML estimation problem by an o�-line numerical
computation of the log of the partition function.

In the context of image reconstruction or restoration
problem, the di�culty of the ML estimation problem is
compounded by the fact that the estimates depend on the
unknown image. Geman and McClure [7] and later Bouman
and Sauer [5] solved the incomplete data problem by us-
ing the EM algorithm. Since the expectation involved in
the EM algorithm is intractable, a stochastic simulation
method is used to generate samples of the unknown image
from the posterior distribution. A commonly used simula-
tion method, the Metropolis algorithm tends to su�er from
slow convergence to the equilibrium distribution. In this pa-
per, we derive a fast simulation technique to facilitate the
expectation step. We also propose a method to extrapolate
the estimates when the simulations are terminated prema-
turely prior to convergence. Experimental results show that
the proposed methods result in substantial savings in com-
putation and superior quality images.

2. ML ESTIMATE OF P FOR GGMRF

Let upper case letters denote random variables and let lower
case letters denote realizations of random variables. Let x
be the image. The normalized log likelihood of x modeled
as a GGMRF is given as
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where N is the set of all neighboring pixel pairs.
Using the normalized log likelihood of x, the joint ML

estimation of T and p can be expressed as a two dimensional
optimization problem
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It was recently shown by Bouman and Sauer [5] that zp(T )
can be expressed as

zp(T ) = T
N=p

zp(1): (4)

They used the above result to obtain the ML estimate of T
as

T̂ (p; x) =
pup(x)

N
(5)

Using (4) and (5), we can reduce (3) to a one dimensional
optimization to obtain the ML estimate of p as

p̂(x) = arg min
p
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where
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log zp(1)
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Note that the T̂ (p; x) is a su�cient statistic to determine
the ML estimate of p.

Direct computation of f(p) would require the numerical
evaluation of an N dimensional integral which is not feasi-
ble. Instead a more elegant method of computing f(p) is
through its derivative.

f
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Note the normalization by N of f 0(p) is essential for the
function to be useful for any image size. The function f 0(p)
is computed o�-line prior to the estimation procedure. A
second order spline is �tted to f 0(p) and integrated to ob-
tain f(p). Fig. 1 shows the log partition function and its
derivative for a second order neighborhood using periodic
boundary conditions.

The ML estimate of p is obtained by computing (6) for
a �nely spaced set of values for 0:8 � p � 2 and �nding
the minimum with respect to p 1. The lower limit of 0:8
was set arbitrarily considering that we are only interested
in p � 1 ( since the GGMRF prior is non-convex for p < 1
and hence not desirable for MAP estimation).

In image reconstruction or restoration problems, x is
unknown. We use the EM algorithm in this case to com-
pute the estimates. The EM algorithm results in an itera-
tive procedure where the parameters are updated with each
iteration k in the following fashion

p
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Refer to [8] for the derivation. The required conditional
expectation can be computed by generating samples from
the posterior distribution of the cross-section x given y and
[T k; pk].

1We could also reduce this computation by employing a fast
rootingmethod such as the half interval search to root the deriva-
tive of logP(x) with respect to p.
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Figure 1: The solid line shows f 0(p) and the dashed line
shows f(p) for a second order neighborhood using periodic
boundary conditions.
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Figure 2: ML estimation of p for natural images. The plot
below each image shows the corresponding negative log like-
lihood as a function of p. The ML estimate is the value of
p that minimizes the plotted function.



3. FAST SIMULATION TECHNIQUE

The Metropolis algorithm is a commonly used simulation
method for generating samples from a given distribution.
However, this algorithm tends to su�er from slow conver-
gence to the equilibrium distribution because the transition
probability distribution is required to be symmetric.

Hastings [9] and Peskun [10] developed a generalization
of the Metropolis algorithm which compensates for asym-
metric transition probabilities through the proper choice
of the associated acceptance probability. Green and Han
[11] have argued that convergence is fastest if the transi-
tion probability is chosen to be close to that of the Gibbs
sampler. This can be done by approximating each pixel's
marginal distribution by a Gaussian distribution.

In the context of the emission or transmission tomog-
raphy, a Gaussian transition probability is not always ef-
fective because of the positivity constraint. Therefore, we
�rst compute the MAP update (�) at a pixel. If the � is
positive, then we use a truncated Gaussian transition prob-
ability with mean � and appropriate variance. If the � is
negative, then we use a strictly positive exponential distri-
bution with appropriate mean. Refer to [8] for the details
of the algorithm.

When the simulations are terminated prematurely, we
need to extrapolate the parameters to obtain estimates closer
to the true value. Towards this end, we derive in [8] the gra-
dient of the log likelihood with respect to T and p as
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Note that these gradients can be computed easily at the
current value of the parameters when the EM updates are
computed. We then do a least squares �t of the gradient(s)
to a line (plane) using the past n samples of the gradient(s)
when we update T (p and T ). The zero crossing of the �t
then determines the extrapolated estimates of the parame-
ters.

4. EXPERIMENTAL RESULTS

We computed the ML estimate of p for a host of natural im-
ages. Fig. 2 shows the negative log likelihood with respect
to p of one such image. For the original image, the estimate
hits the constraint of 0:8. In fact, this was the case for most
of the images that we tried. Consequently natural images
appear more Laplacian than Gaussian. The second image
in Fig. 2 is obtained by adding Gaussian noise to the origi-
nal image. In this case we observe that the ML estimate of
p rises to 1:4.

Fig. 4 shows the emission phantom used in our experi-
ments. Poisson random variables were generated from 128
projections taken at 128 uniformly spaced angles to obtain
the noisy projection data. The generalized Hamming �lter

Accelerated Metropolis

Metropolis            

Extrapolated T           

0 5 10 15 20 25 30
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

No. of iterations −−−>

T
 −

−
−

>

Figure 3: EM updates of T using the Metropolis and the
accelerated Metropolis algorithm for the emission phantom.
p = 1:1 is assumed known. 5 samples from the past are used
for the least squares �t to obtain the extrapolated estimate.

was used in the Convolution Back Projection (CBP) algo-
rithm to reconstruct the phantom at a 128 by 128 pixel
resolution.

Fig. 3 compares the fast simulation method and the ex-
trapolated estimates with the conventional Metropolis algo-
rithm when p is assumed known and T is estimated using
the EM algorithm. Note the extrapolated estimate is close
to the true value after just 5 iterations. Fig. 4 shows the
reconstructed phantom using the estimated value of T .

Fig. 5 shows the transmission phantom. The attenua-
tion map is a 128 by 64 array of 4.5mm pixels; it repre-
sents a human thorax with linear attenuation coe�cients
0.0165/mm, 0.0096/mm, and 0.0025/mm, for bone, soft
tissue, and lungs respectively. Poisson random variables
were generated from 192 projections taken at 256 uniformly
spaced angles to obtain the noisy projection data. Fig. 5
also shows the CBP image and the MAP reconstruction us-
ing a GGMRF prior with p = 1:1 and the ML estimate of
T .
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