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Abstract—In many applications, it is critical to be able to
sample the most informative pixels of an image first; and then
once these pixels are sampled, the highest fidelity image can be
reconstructed. Optimized sampling strategies generally fall into
two categories: static and dynamic. In dynamic sampling, each
new sample is chosen by using information obtained from previ-
ous samples. In this way, dynamic sampling offers the potential
of much greater fidelity, but at the cost of greater complexity.
Existing methods for dynamic non-uniform sampling of images
are based on the intuition that sampling rates should be greatest
in locations of greatest variation, but recent developments in
the theory of optimal experimental design offer a theoretical
framework for optimal sampling based on the use of a formal
Bayesian prior model.

In this paper, we introduce a fast dynamic image sampling
framework based on Bayesian experimental design (BED). The
method, which we call model-based dynamic sampling (MBDS)
allows for the use of a general prior distribution for the image,
and it incorporates a pixel-wise sampling constraint in the BED
framework. The MBDS works by first generating L stochastic
samples (ie., images) from the posterior distribution given the
current measurements, and then selecting the pixel with the
greatest posterior variance. We also introduce a computationally
efficient method for computing the stochastic samples through a
local updating technique.

I. INTRODUCTION

Many applications can benefit from image sampling strate-

gies that can select a relatively small set of measurements

to accurately reconstruct the image. Scanning electron mi-

croscopy (SEM) and computed tomography (CT) are examples

of such applications in which a large number of measurements

can have adverse effects [1].

Optimized sampling strategies fall into two categories: static

and dynamic. Static sampling methods can be used to pre-

select the measurements to achieve the best image fidelity.

These methods include random sampling strategies such as in

[2], methods based on an a prior knowledge of the object ge-

ometry as in [3], and methods based on optimal experimental

design (OED) [4].

Alternatively, dynamic sampling methods use all previous

samples to determine each new measurement. Therefore, dy-

namic sampling offers the potential for greater fidelity of the

reconstructed image, but at the cost of greater complexity.

In [5], [6] Kovačević et al. proposed methods for dynamic

sampling of image pixels designed to speed acquisition for

fluorescence microscopy applications. This work was designed
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to track features of a time-varying image with the use of a par-

ticle filter. In [7], initially different sets of pixels are measured

and further measurements are made where the estimated signal

is non-zero. Additionally, application specific dynamic sensing

methods have been proposed in [8] for selecting optimal K-

space spiral and line measurements for magnetic resonance

imaging (MRI), and for binary CT in [9]. Apart from these

methods, dynamic compressive sensing (DCS) methods have

been proposed in [10], [11] and [12]. However, DCS is

based on the assumption that the measurement is formed by

the projection of the signal in an unconstrained direction.

This differs fundamentally from the constrained problem of

sampling a single pixel at a time. Also, even though DCS

methods are based on Bayesian statistics, they are limited in

the selection of the prior distribution.

In this paper, we propose a general framework for model-

based dynamic image sampling (MBDS) based on Bayesian

experimental design (BED). Our algorithm allows the use of

a broad class of posterior distributions so that an application

specific model can be selected. It also allows for the incorpo-

ration of a general class of constraints in the measurement

projection, which is essential in many applications. So for

example, in conventional spatial sampling, each measurement

must be enforced to be the projection of a single pixel; or

in tomographic projection, each view must be enforced to be

the integration of the image along projection lines. In practice,

this constraint changes the BED problem substantially because

with each new measurement, the eigenvector structure of the

posterior distribution must be re-estimated.

In order to work with a general prior and projection

constraints, our MBDS method is based on direct stochastic

sampling of the posterior distribution. In particular, it works

by maintaining L stochastic samples, or images, generated

from the posterior distribution, and then uses these to compute

an empirical covariance, from which the optimal sample is

determined. In [13], a similar approach is proposed to design

measurements for a biochemical network with relatively low

dimension. However, for a high-dimensional image, direct

Monte Carlo sampling of the posterior would require too much

computation for most applications. So in order to make our ap-

proach computationally practical, we introduce a technique for

locally updating the stochastic sample in the neighborhood of

each new measurement. This technique dramatically reduces

computation as compared to brute-force posterior sampling.



II. BAYESIAN EXPERIMENTAL DESIGN (BED) OVERVIEW

The objective of BED is to obtain a relatively small set

of measurements that allow for accurate reconstruction of an

unknown signal x. Let y(k) denote the vector composed of the

first k measurements, and let x denote the unknown signal.

Then on the kth measurement, the entire vector of past and

present measurements is given by

y(k) = A(k)x+ w(k), (1)

where A(k) is the projection matrix, and w(k) is Gaussian

measurement noise that is assumed to be independent of both

x and have independent components, with variance σ2
noise.

Each row of A(k) is assumed to be a vector m of unit length

so that ‖m‖ = 1. This restriction to unit length vectors is

assumed so that the signal-to-noise of a single measurement

is fixed.

Our objective is to then select each new measurement vector,

m(k), to be in the direction of maximum variation of the

posterior distribution. More specifically, if the posterior mean

and variance is denoted by

µ
(k)
x|y , E

[

x|y(k)
]

, (2)

R
(k)
x|y , E

[

(

x− µ
(k)
x|y

)(

x− µ
(k)
x|y

)T ∣
∣

∣
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, (3)

then the measurement projection in the direction of maximum

variation, m(k), is given by

m(k) = arg max
m∈D

(

mtR
(k)
x|ym

)

, (4)

where D = {m ∈ RN : ||m||2 = 1} constrains each measure-

ment vector to be of unit length. The solution to equation (4)

is then given by the normalized principal eigenvector of R
(k)
x|y .

Once m(k) is found it is appended to A(k) to form A(k+1):

A(k+1) =

(

A(k)

m(k)t

)

. (5)

In the next iteration x is measured using the measurement

projection m(k) to form y(k+1).

We will primarily be interested in the case when D incorpo-

rates additional constraints. We define the set of measurements

that incorporate constraints as M⊂ D.

III. UNCONSTRAINED DYNAMIC SAMPLING WITH A

GAUSSIAN PRIOR

From equation (4), it is clear that selecting a model for the

posterior distribution is critical. If we assume that x is a zero

mean Gaussian random vector with covariance matrix B−1,

then we know that its distribution must have the form

pk(x) =
|B| 12√
2πN

exp
{

xTBx
}

, (6)

and therefore that the posterior distribution must have the form

pk(x|y(k)) =
1

z
exp

{

−1

2
‖y(k) −A(k)x‖2Λ(k) −

1

2
xTBx

}

,

(7)

where z is a normalizing constant, and Λ(k) is the noise

covariance matrix.

Then R
(k)
x|y =

[

(A(k))TΛ(k)(A(k)) +B
]−1

. Notice that in

this case, the posterior covariance R
(k)
x|y is not a function of

the data y(k), and therefore the recursion in equations (3), (4),

and (5) is independent of the measurements. Therefore, with a

Gaussian prior, the measurement projections can be computed

in advance. It should also be mentioned that in this case, each

new measurement is D-optimal, and therefore results in a D-

optimal sequential experimental design [4].

For the case when the measurements are unconstrained,

mk ∈ D, the eigen-structure of the covariance does not change

after measurement selection. Then the K best measurements

are the K principal eigen-vectors of the covariance matrix,

Rx|y, [11].

However, we are interested in the case when the measure-

ments are constrained, m(k) ∈M, whereM⊂ D, since many

applications require constraints on the measurements. For this

case, the covariance matrix must be re-estimated after each

iteration. Then equation (4) becomes,

m(k) = arg max
m∈M

(

mtR
(k)
x|ym

)

, (8)

Furthermore, we require a framework that can incorporate any

posterior distribution, so that an application specific distribu-

tion can be used.

IV. MODEL-BASED DYNAMIC SAMPLING (MBDS)

The MBDS methods is designed to work with a wide

range of priors and sampling constraints by directly generating

stochastic samples from the posterior distribution. Figure 1

specifies the MBDS method in pseudo-code. For each new

sample, L images are generated from the posterior distribution

using Monte Carlo (MC) methods, and then these L images

are used to compute an estimated covariance of the posterior

distribution.

The estimated sample covariance is given by,

R̂
(k)
x|y =

1

L− 1

L
∑

i=1

(

x(k,i) − µ̂
)(

x(k,i) − µ̂
)T

, (9)

where x(k,i) is the ith image out of L that are generated

before the kth sample is taken. With this covariance, the

measurement vector is then selected with the constraint that

m ∈ M. In our examples, we constrain each measurement

to be of a single pixel; however, other choices are possible.

Then, M =
{

ei ∈ R
N : ei(i) = 1; ei(j) = 0 ∀j 6= i

}

Generating sample vectors from the posterior distribution

pk(x|y(k)) can be computationally expensive, particularly

when x is a high-dimensional image. To counter this problem,

we introduce a strategy of localized stochastic sample updates

in which we only update a block surrounding the measured

pixel.

Instead of performing computationally expensive (MC)

sampling for the entire image x ∈ R
N , we only perform it for a

window zs ∈ R
b from x, where b << N . Here, zs includes the



function M∗ ← MBDS

Generate samples from p(x)
{

x(0,1), x(0,2), . . . x(0,L)
}

%Outputs: M∗ - Selected set of measurements

for (k = 1,k ≤ K, k ++) do

for (i = 1,i ≤ N , i++) do

Estimate R̂
(k)
x|y using equation (9)

end for

m(k) = arg max
m∈M

(

mtR
(k)
x|ym

)

ỹ(k) = m(k)x+ w(k)

y(k) =

(

y(k−1)

ỹ(k)

)

Generate L samples from pk(x|y(k))
{

x(k,1), x(k,2), . . . x(k,L)
}

end for

end function

Fig. 1. Pseudo-code for MBDS. Here, K is the number of total measurements
to be taken; L is the number of sample vectors generated from the posterior;

M is a constrained subset of all possible measurements; x(k,j) refers to the
jth sample vector drawn from pk(x|y

(k)). We initialize the algorithm with

samples drawn from the prior distribution p(x). Note that y(0) refers to the
case when no measurements have been made.

measured pixel location and a block surrounding it. Therefore,

we maintain L stochastic samples from the posterior distribu-

tion and update them locally once a measurement is made. The

block-posterior distribution is then, pk(zs|y(k), z∼s), where

z∼s are the pixel locations outside of the window zs.

Consider that the samples from the previous iteration are
{

x(k−1,1), x(k−1,2), . . . x(k−1,L)
}

. We stochastically sample

for the block surrounding the measured pixel to generate

sample vectors,
{

z
(k,1)
s , z

(k,2)
s , . . . z

(k,L)
s

}

, from the block-

posterior. We then replace the corresponding locations of
{

x(k−1,1), x(k−1,2), . . . x(k−1,L)
}

by the block-posterior sam-

ple vectors to form
{

x(k,1), x(k,2), . . . x(k,L)
}

. This procedure

is illustrated in Figure 2.

A. Generating Samples form a Block-Posterior Distribution

Given the block posterior distribution has the form of a

Gibbs distribution, well known methods such as the Metropolis

algorithm [14] or the Metropolis-Hastings (MH) algorithm

[15], [16] can be used to draw samples from it. In our im-

plementation we use the MH algorithm, where a multivariate

Gaussian distribution is used as the proposal distribution.

The proposal distribution we use is a second order Taylor

series approximation to log pk(zs|y(k), z∼s). In particular, a

Gaussian proposal distribution, qk(zs|y(k), z∼s), is selected so

that its mean and covariance can be fit using a Taylor series

expansion of the log posterior distribution.

V. EXPERIMENTS CONDUCTED

In this section, we compare results from MBDS with two

sampling strategies - uniformly spaced sampling (US) and

Fig. 2. Method for localized posterior sample updates. Here we consider that
only 3 samples of the posterior distribution are maintained (L = 3).

random sampling (RS). We begin by presenting details of the

posterior distribution and reconstruction algorithm used.

A. Posterior Distribution and Image Reconstruction

Given the need for an accurate non-Gaussian prior, we

model the distribution of the unknown x using a q-GGMRF

[17], which has the form

pk(x) =
1

z
exp







−
∑

{i,j}∈P

1

2

(

|xi−xj

σx
|q

c+ |xi−xj

σx
|q−p

)







. (10)

Here, p, q, ci and σx are parameters of the distribution, P is the

set of all unique pairs defined according to the neighborhood,

and z is the normalizing partition function of the distribution.

The resulting posterior is then,

pk(x|y(k)) =
1

z
exp

{

−1

2
‖y(k) −A(k)x‖2Λ(k)

−
∑

{i,j}∈P

1

2

(

|xi−xj

σx
|q

c+ |xi−xj

σx
|q−p

)







. (11)

We define the neighborhood as the 8 pixels surrounding the

pixel considered.

For image reconstruction, any method that can reconstruct

the image from a sparse set of measurements can be used.

For our experiments we use maximum a posteriori (MAP)

estimation. Since we use the distribution in equation (11)

as our posterior, the resulting cost function is non-quadratic,

and a closed form solution for the maximum of this function

cannot be analytically calculated. Therefore, we convert this

problem into an iterative quadratic optimization problem by

using Majorization techniques [18]–[20]. In conjunction with

Majorization, we use the Iterative Coordinate Descent (ICD)

optimization method [21], [22] to solve the optimization

problem.
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Fig. 3. Dynamic sampling simulation on Geometric Shapes (100×100). (b),
(c) and (d): reconstructed images when 15% of image is sampled, using RS,
US and MBDS. (e): RMSE comparisons for the 3 methods. (f): first 15% of
samples selected (red) using MBDS.
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image Fluocel.pgm.

(f) 17% measurement locations

(red) chosen by MBDS

(g) Original (h) RS (i) US (j) MBDS (k) Samples

(MBDS)

Fig. 4. Dynamic sampling simulation on Fluocel.pgm (256 × 256). (b), (c)
and (d): reconstructed images when 17% of image is sampled, using RS,
US and MBDS. (e): RMSE comparisons for the 3 methods. (f): first 17% of
samples selected (red) using MBDS. (g): Extracted feature from the orgirinal
image (a). (h), (i) and (j): reconstructed feature, using RS, US and MBDS to
sample. (k) the samples selected by MBDS for feature

Since we assume that a measurement only affects a block of

pixels surrounding the measured pixel, we only perform MAP

estimation for the window zs. Then, after each measurement

is made, we estimate ẑ
(k)
s and insert it into x̂(k−1), to form

x̂(k).

B. Experimental Setup and Evaluation of Results

The measurement noise for each pixel was simulated to

be independent and Gaussian with a variance of σ2
noise = 9.

The resolutions of the two images used were 100 × 100 and

256 × 256. The block-size we used for localized stochastic

sampling is 16 × 16. The parameters we used for the prior

distribution were, p = 1.2, q = 2, σx = 6 and c = 1.

For both cases we used L = 20 samples from the posterior

distribution to estimate the sample variance. In both these

experiments, by using MBDS, we select a new measurement in

approximately 0.6 seconds. In the experiments, the first 1.5%
of samples chosen for MBDS were uniformly spaced apart,

and the remaining samples were selected using our algorithm.

In the first experiment, the image shown in Figures 3(a) was

sampled using RS, US and MBDS. This image, Geometric

Shapes (GS), was a simulated image we created. Figures 3(b),

3(c) and 3(d) show the reconstructions performed after 15% of

the image was sampled using the three methods. From Figure

3(d) we observe that the edges are better preserved when

MBDS was used for measurement selection. Furthermore,

from Figure 3(e) where the root mean squared error (RMSE)

versus the percentage of measurements is plotted, we observe

that MBDS outperforms US and RS quantitatively as well.

Figure 3(f) shows the first 15% of samples selected by MBDS

in red, overlaid on the features shown in green. Here we

observe that our algorithm concentrates measurements on the

most informative pixels, the feature edges, while sparsely

measuring other regions of the image.

For the second experiment we used a real image

(Figure 4(a)) provided by the University of Granada

(http://decsai.ugr.es/cvg/dbimagenes/). Figures 4(b), 4(c) and

4(d) show the reconstructions performed after 17% of the

image was sampled, using the three methods. From the recon-

structed images, and from Figure 4(f) we observe that using

MBDS for measurement selection allows for reconstructions

with better edge details as compared to US and RS. Figures

4(h), 4(i) and 4(j) are patches extracted from the reconstruc-

tions, corresponding to the patch shown in Figure 4(g). Here

we observe that by using MBDS for measurement selection,

the edges of the feature as well as the details within the feature,

are preserved in the reconstructed patch. Figure 4(k) further

illustrates this by showing the samples selected by MBDS.

VI. CONCLUSION

In this paper we presented a general framework for con-

strained dynamic sampling, which can incorporate a broad

class of posterior models. The method is based on stochastic

sampling of the posterior distribution using a computationally

efficient algorithm; and experimental results show that it can

substantially improve reconstruction quality given a fixed

number of measurements.
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