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Abstract—Synchrotron based X-ray tomography is widely
used for three dimensional imaging of materials at the micron
scale. Tomographic data collected from a synchrotron is often
affected by non-idealities in the measurement system and sudden
“blinding” of detector pixels during the acquisition. Typically, re-
constructions are done using analytical reconstruction techniques
combined with pre/post-processing steps to correct for the non-
idealities, resulting in loss of detail while still producing noisy
reconstructions with some artifacts.

In this paper, we present a model-based iterative reconstruc-
tion (MBIR) algorithm for synchrotron X-ray tomography that
can automatically handle the non-idealities as a part of the
reconstruction. First, we develop a forward model that accounts
for the non-idealities in the measurement system and for the
occurrence of outliers in the measurement. Next, we combine
the forward model with a prior model of the object to formulate
the MBIR cost function and propose an algorithm to minimize
the cost. Results on a real data set show that the MBIR
reconstructions are superior to the analytical reconstructions
effectively suppressing noise as well as other artifacts.

I. INTRODUCTION

Synchrotron based X-rays are used for fast 3D imaging

of a wide range of specimens in applications ranging from

biology [1] to material science [2]. Due to the high intensity

and strong collimation of synchrotron radiation, it is possible

to select the optimal photon energy using monochromators

thereby enabling a variety of samples to be imaged [3].

For tomography, the sample is mounted on a rotating stage,

radiated with a parallel beam of X-rays and repeatedly imaged

at different views, typically using a scintillator and CCD de-

tector. However, tomographic reconstructions of the acquired

data is challenging because of impurities in the scintillator

crystal, dust in the scintillator screens and imperfections in

the detector elements which introduce differences in gain

at different positions along the detector array [3], [4]. Fur-

thermore, detector pixels get occasionally saturated by high

energy photons (often called zingers), making it difficult to

directly use the measurements for reconstruction. Thus, while

synchrotron microtomography is widely used, tomographic
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inversion is challenging due to the nature of the detectors and

the varying imaging conditions.

In synchrotron based microtomography, analytical recon-

struction algorithms such as filtered back projection (FBP) or

related methods like gridrec [5] are the dominant choice for

tomographic reconstruction [2], [6]. These algorithms typically

require data to be acquired at a large number of views

[7] for an accurate reconstruction. Furthermore, when these

algorithms are directly applied to the data, the zingers result

in streaks in the reconstruction while the imperfections in the

detector and scintillator manifest as rings of varying size and

intensity. In the literature, several works have addressed the

problem of removal of ring artifacts and zingers either as a

pre-processing step on the sinogram [8], [9] or as a post-

processing step on the reconstructions [4]. However, these

require manual intervention and can result in loss of detail in

the reconstruction. Thus, the typical tomographic inversion for

synchrotron microtomography involves a few steps of pre/post-

processing along with an analytical reconstruction technique.

In this paper, we present a model-based iterative recon-

struction (MBIR) [10]–[12] algorithm which can handle the

anomalies in the data as a part of the tomographic reconstruc-

tion. First, we develop a forward model (likelihood function)

that accounts for the non-uniformities in the measurement

system as well as the presence of outliers (zingers) in the mea-

surement. Modeling the measurement non-uniformities and

presence of outliers, requires certain calibration parameters

that are typically not measured. Hence we treat them as

“nuisance” parameters and include their estimation as a part

of the reconstruction. Next, we combine the forward model

with a prior model for the object to formulate the MBIR cost

function and develop a computationally efficient algorithm

based on functional substitution [13], [14] to minimize it.

Reconstructions on a real data set suggest that the proposed

MBIR algorithm can significantly improve the quality of

reconstruction even with reduced view data sets, effectively

suppressing noise as well as streaks and ring artifacts.

II. FORMULATION OF MBIR COST FUNCTION

In MBIR, the reconstruction is typically formulated as the

maximum a posteriori (MAP) estimate of the unknowns given

the data. If y represents the data, x represents the unknown

voxels and φ represents the unknown calibration parameters

associated with the measurement, then the reconstruction is
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Fig. 1. Plot of the generalized Huber function βT,δ used in the likelihood

term with T = 3 and δ =
1

2
. Projections with large data mismatch error are

penalized thereby reducing their influence in the overall cost function.

given by

(x̂, φ̂) = argmin
x,φ

{− log p(y|x, φ)− log p(x)} (1)

where we have assumed a uniform prior for the unknown

calibration parameters.

We begin by developing a likelihood function p(y|x, φ) for

the synchrotron data that models the measurement variations

and the presence of zingers. A widely used model for X-ray

transmission measurements is based on Beer’s law along with

Poisson counting statistics for the measurement [15]. Using

this model, if λn,i is the photon count at the ith detector

element and nth view and λD,i is the photon count measured

in the absence of the sample, then an estimate of the projection

integral is given by yn,i = log
(

λD,i

λn,i

)

. If we denote y to be the

vector of projections yn,i and x to be the vector of attenuation

coefficients, then it has been shown [16] that using a Taylor

series approximation to the Poisson log-likelihood function,

− log p (y|x) ≈
1

2

N
∑

n=1

M
∑

i=1

(

(yn,i −An,i,∗x)

√

Λn,i,i

σ

)2

+f(y)

(2)

where An,i,∗ is the ith row of the forward projection matrix

An, Λn is a diagonal matrix such that
Λn,i,i

σ2 is the inverse

variance of the projection measurement yn,i, σ
2 is a propor-

tionality constant, N is the total number of views, M is the

total number of detector elements and f(y) is a constant which

is ignored in the subsequent optimization. The variance of

projection measurement is inversely proportional to the mean

photon counts and hence we can set Λn,i,i = λn,i [15].

While this model is useful in several applications, it does

not take into account the non-uniformities in the measurement

system (that typically result in rings in the reconstruction)

and presence of zingers in the synchrotron microtomography

measurements. The log-likelihood term in (2) corresponds

to a quadratic penalty on the weighted data mismatch error

and does not account for the occurrence of anomalies in the

measurement [11]. The occurrence of zingers corresponds to

a distribution with heavier tails than those corresponding to

(2). Hence we change the quadratic penalty to a generalized

Huber penalty (see Fig. 1) of the form

βT,δ(z) =

{

z2 |z| < T

2δT |z|+ T 2(1− 2δ) |z| ≥ T

The function βT,δ reduces to the Huber function [17] when

δ = 1 and to the weak-spring potential [18] when δ = 0.

Intuitively, this penalty implies that if the ratio of the data

mismatch error to the noise standard deviation is greater

than a threshold T then the measured projection corresponds

to a zinger. Next, we model the influence of non-idealities

in the measurement system. It has been shown [19] that

the non-idealities that cause ring artifacts can be modeled

via an additive detector dependent offset to the projection

measurements. Hence we assume a detector dependent offset

di in all the projections measured by detector i. This value

is typically not known from the measurements and hence we

jointly estimate it as a part of the reconstruction. Combining

the new penalty term along with the detector dependent offset

gives us a new log-likelihood function,

− log p(y|x, d, σ) =

1

2

N
∑

n=1

M
∑

i=1

βT,δ

(

(yn,i −An,i,∗x− di)

√

Λn,i,i

σ

)

+MN log(σ) + f̃(y) (3)

where d = [d1 · · · dM ], and f̃(y) is a constant which is ignored

in the subsequent optimization. We note that when δ = 0,

p(y|x, d, σ) is not a density function since it does not integrate

to 1 and hence we assume δ > 0 in the rest of the paper.

We use a special case of the q-generalized Gaussian Markov

Random Field (qGGMRF) [20] as a prior model for the voxels.

The density function corresponding to this prior is given by

p(x) =
1

Z
exp







−
∑

{j,k}∈N

wjkρ(xj − xk)







(4)

ρ(xj − xk) =
∆3

s

∣

∣

∣
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∣

∣

∣

2

c+
∣

∣

∣

xj−xk

∆sσs

∣

∣

∣

2−p

where Z is a normalizing constant, ∆s is the side length

of a voxel, N is the set of all pairwise cliques (all pairs

of neighbors in a 26 point neighborhood system), p, c and

σs are qGGMRF parameters. The weights wjk are set to be

inversely proportional to the distance between voxels j and k,

normalized to 1. The term ∆s in the model ensures invariance

of the prior to changing voxel sizes [21].

Substituting (3) and (4) into (1), the reconstruction is

obtained by jointly minimizing the following cost function

with respect to x, d and σ,

c(x, d, σ) =
1

2

N
∑

n=1

M
∑

i=1

βT,δ

(

(yn,i −An,i,∗x− di)

√

Λn,i,i

σ

)

+MN log(σ) +
∑

{j,k}∈N

wjkρ(xj − xk) (5)

III. OPTIMIZATION ALGORITHM

The cost function (5) is in general non-convex in x, d and

σ. Thus, the optimization algorithm developed in this paper

converges to a local minimum of (5). Minimizing the current

form of the cost function given by (5) is computationally

expensive. So, instead we use the functional substitution



approach [13], [14] to efficiently minimize (5). Our method

also ensures monotonic decrease of the cost function (5). A

substitute function csub(x, d, σ;x
′, d′, σ′) to the cost function

c(x, d, σ) at the point (x′, d′, σ′) is a function which upper

bounds the cost function such that minimizing the substitute

function results in a lower value of the original cost function.

A. Construction of Substitute Function

To derive a substitute function to the overall cost we find a

substitute function to each term of the cost (5) and sum them

together to derive an overall substitute function. In particular,

we will use quadratic substitute functions, as they make the

subsequent optimization computationally simple. A sufficient

condition for a function q(z; z′) to be a substitute function to

g(z) at the point z′ is that ∀z,

q(z; z′) ≥ g(z)

q(z′; z′) = g(z′)

We can then show that

QT,δ(z; z
′) =

{

z2 |z′| < T

δT
|z′|z

2 + δT |z′|+ T 2(1− 2δ) |z′| ≥ T

is a substitute function to βT,δ(z) by showing that it satisfies

the sufficiency condition. If the error sinogram is defined as

en,i = yn,i−An,i,∗x−di and e′n,i = yn,i−An,i,∗x
′−d′i is the

error sinogram at the current values of (x′, d′, σ′), then a sub-

stitute function to the term βT,δ

(

en,i
√

Λn,i,i/σ
)

in the origi-

nal cost is given by QT,δ

(

en,i
√

Λn,i,i/σ; e
′
n,i

√

Λn,i,i/σ
′
)

by

Property 7.9 in [22].

A quadratic substitute function for the prior term ρ(xj−xk)
can be shown to be [10]

ρ(xj − xk;x
′
j − x′

k) =
ajk
2

(xj − xk)
2 + bjk. (6)

where ajk =







ρ′(x′

j−x′

k)

(x′

j
−x′

k)
x′
j 6= x′

k

ρ′′(0) x′
j = x′

k

(7)

bjk = ρ(x′
j − x′

k)−
ajk
2

(x′
j − x′

k)
2 (8)

Thus, a substitute function to (5) is given by

csub(x, d, σ;x
′, d′, σ′) =

1

2

N
∑

n=1

M
∑

i=1

QT,δ

(

en,i

√

Λn,i,i

σ
; e′n,i

√

Λn,i,i

σ′

)

+MN log(σ) +
∑

{j,k}∈N

wjkρ(xj − xk;x
′
j − x′

k) (9)

B. Parameter Updates used in Optimization

To minimize the cost function given by (5), we repeatedly

construct and minimize (9) w.r.t. each voxel, the offset error

parameters and the variance parameter σ.

To simplify the updates, we define b′n,i to be a indicator

variable which classifies measurements as anomalous based

on the current error, e′n,i, and σ′, as shown below,

b′n,i =

{

1
∣

∣e′n,i
√

Λn,i,i/σ
′
∣

∣ < T

0
∣

∣e′n,i
√

Λn,i,i/σ
′
∣

∣ ≥ T
(10)

1) Voxel Update: In order to minimize (9) with respect to

a voxel j, we take derivative of (9) with respect to xj and set

it to 0. This gives the optimal update for pixel j as

x̂j =

∑

k∈Nj

wjkajkx
′
k + θ̃2x

′
j + θ̃1

∑

k∈Nj

wjkajk + θ̃2
,

where Nj is the set of all neighbors of voxel j and θ̃1 =
N
∑

n=1

M
∑

i=1

An,i,j

√

Λn,i,i

σ′

[

b′n,ie
′
n,i

√

Λn,i,i

σ′
+(1−b′n,i)δT sgn(e′n,i)

]

θ̃2 =

N
∑

n=1

M
∑

i=1

A2
n,i,j

√

Λn,i,i

σ′

[

b′n,i

√

Λn,i,i

σ′
+ (1− b′n,i)

δT
∣

∣e′n,i
∣

∣

]

and sgn is the signum function.

2) Offset Error and Variance Parameter Update: In order

to minimize (9) with respect to the offset error parameter d,

we take the gradient of the substitute function (9) with respect

to d and set it to zero. This gives the optimal update for di as

d̂i = d′i +

N
∑

n=1

[

e′n,ib
′
n,i

√

Λn,i,i

σ′
+ δT sgn(e′n,i)(1− b′n,i)

]

N
∑

n=1

[

b′n,i

√

Λn,i,i

σ′
+

δT
∣

∣e′n,i
∣

∣

(1− b′n,i)

]

The update for the variance parameter, σ2, is obtained by

taking the derivative of (9) with respect to σ2 and setting it to

zero. The update is then given by,

σ̂2 =
1

NM

N
∑

n=1

M
∑

i=1

[

e′2n,iΛn,i,ib
′
n,i

+(1− b′n,i)δT
∣

∣e′n,i
∣

∣σ′
√

Λn,i,i

]

Finally, to improve convergence, we implemented Non-

Homogeneous Iterative Coordinate Descent (NHICD) [10]

which works by more frequently updating those voxels which

have a greater need for updates. Furthermore, we use a multi-

resolution initialization [23] which performs reconstructions at

coarser resolutions and uses that to initialize the reconstruction

at a finer resolution. We also parallelize the voxel updates

across slices (along axis parallel to axis of rotation) using

multi-threaded shared memory parallelization similar to [24].

IV. EXPERIMENTAL RESULTS

In this section, we will compare MBIR reconstructions with

an analytical reconstruction technique called gridrec (GR)

[5], which is a Fourier domain interpolation based algorithm,

widely used for synchrotron tomography. To illustrate the

removal of ring artifacts and streaks caused by zingers, we

will compare the proposed MBIR algorithm (MBIR-RZ) to

the conventional MBIR algorithm (MBIR-CV) which is based

on the model in (2). We also compare MBIR-RZ with a

pre/post-processed version of gridrec (GR-PP) where zingers

are removed via median filtering in the sinogram domain, after



(a) Conventional gridrec (GR) (b) Conventional MBIR (MBIR-CV)

(c) Corrected gridrec (GR-PP) (d) Proposed MBIR (MBIR-RZ)

Noise = 2.06cm−1 Noise = 1.47cm−1

Fig. 2. A single reconstructed slice showing the quality improvements
of MBIR over gridrec for a data set with 1024 views. (a) Conventional
gridrec reconstruction without any post-processing (GR). (b) Conventional
MBIR reconstruction without modeling the zingers and non-idealities in the
measurement system (MBIR-CV). (c) Gridrec reconstruction with pre/post-
processing to remove zingers and rings (GR-PP). (d) Proposed MBIR (MBIR-
RZ). Reconstruction using MBIR-RZ as shown in (d) has sharper features
and lesser noise than GR-PP as shown in (c). The noise standard deviation is
calculated within the red colored rectangular box shown in (c). By comparing
the images, we can conclude that MBIR-RZ suppresses the ring artifacts while
preserving detail and reducing noise. All images are displayed using the same
viewing window.

which the volume is reconstructed and rings are removed using

[25]. We reconstruct a ceramic composite material [2] imaged

using synchrotron X-ray radiation. During the experiment,

projections were acquired at 1024 different views around the

object. All the reconstructions are of size 2560× 2560 in the

plane perpendicular to the rotation axis and have a voxel size

of 0.65µm3. The parameter p of the qGGMRF prior model

is set to 1.2, and σs is chosen to give the best visual quality

of the reconstructed image. The parameters of the generalized

Huber function are chosen to be δ = 0.05 and T = 3.5. All

figures in this section show a zoomed in portion of the original

reconstructed slice.

First, we reconstruct the volume using the full set of 1024
views. The ring artifacts are prominent in reconstructions

obtained using GR and MBIR-CV as shown in Fig. 2 (a), (b).

We notice that while MBIR-CV better preserves the edges

it also sharpens the ring artifacts, emphasizing the need for

accurate system modeling. However, the proposed MBIR-RZ

(Fig. 2(d)) preserves the edges and reduces the noise when

compared to GR-PP (Fig. 2(c)), while significantly reducing

the ring artifacts.

Next, we reconstruct the volume but only using 128 equally

spaced views. Reducing the views can be beneficial in a

synchrotron setting because it can enable faster acquisitions

and improve the temporal resolution of in-situ experiments

which are increasing in popularity. In this case the gridrec

reconstructions (Fig. 3 (a) and (c)) are very noisy and do not

reconstruct the object with sufficient detail. MBIR-CV (Fig. 3

(b)) preserves most of the details but has ring artifacts and

(a) Conventional gridrec (GR)

(b) Conventional MBIR (MBIR-CV)

(c) Pre/post-processed gridrec (GR-PP)

(d) Proposed MBIR (MBIR-RZ)

Fig. 3. Illustration of the effect on reconstruction quality by using projections
from 128 views. (a) Conventional gridrec (GR). (b) Conventional MBIR
without modeling the zingers and non-idealities in the measurement system
(MBIR-CV). (c) gridrec reconstruction with pre/post-processing to remove
zingers and rings (GR-PP). (d) Proposed MBIR (MBIR-RZ). In (b), we can
clearly see the ring artifacts (shown using green arrows) and streaks caused
by zingers (shown using red arrows). Notice that MBIR-RZ better suppresses
the streaks and ring artifacts compared to other methods.

streaks (these were less pronounced in Fig. 2 due to the large

number of views acquired). However, MBIR-RZ (Fig. 3 (d))

suppresses the streaks due to zingers and also removes the ring

artifacts, while preserving the details in the reconstruction.

V. CONCLUSIONS

In this paper, we presented a MBIR algorithm for syn-

chrotron X-ray tomography which incorporates a model for

the anomalous measurements (zingers) and non-idealities in

the measurement system. Reconstructions on real data shows

the effectiveness of our algorithm in suppressing ring artifacts

and streaks while retaining sharpness and lowering noise even

when using fewer views than is typically acquired.
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