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Chapter 1

Multiscale Bayesian Methods
for Discrete Tomography

Thomas Frese1

Charles A. Bouman2

Ken Sauer3

ABSTRACT Statistical methods of discrete tomographic reconstruction
pose new problems both in stochastic modeling to define an optimal recon-
struction, and in optimization to find that reconstruction. Multiscale models
have succeeded in improving representation of structure of varying scale in
imagery, a chronic problem for common Markov random fields. This chap-
ter shows that associated multiscale methods of optimization also avoid local
minima of the log a posteriori probability better than single-resolution tech-
niques. These methods are applied here to both segmentation/reconstruction
of the unknown cross-sections, and estimation of unknown parameters rep-
resented by the discrete levels.

1.1 Introduction

The reconstruction of images from projections is important in a variety of
problems including tasks in medical imaging and non-destructive testing.
Perhaps, the reconstruction technique most frequently used in commercial
applications is convolution backprojection (CBP) [1]. While CBP works
well for reconstruction problems with a complete set of projections having
high signal-to-noise ratio (SNR), special cases benefit from alternative al-
gorithms which can better model the imaging geometry and measurement
process. These cases arise, for example, in low dosage medical imaging [2],
non-destructive testing of materials with widely varying densities [3] and
applications with limited angle projections [4] or hollow projections [5]. In
such cases, statistical and discrete-valued methods can substantially im-
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prove the reconstruction quality by incorporating important prior informa-
tion about both the imaging system and the object being imaged. Discrete
reconstruction methods are based on the assumption that the object be-
ing imaged is composed of a discrete set of materials each with uniform
properties. Therefore, an ideal reconstruction should only contain pixel or
voxel values from a corresponding set of discrete levels. In this case, the
problem of reconstruction reduces to one of determining the specific lev-
els present in a reconstruction and then classifying each pixel to one of
these discrete levels. Discrete reconstruction methods impose a very strong
constraint on the reconstruction process, and therefore can substantially
improve reconstruction quality.

Early methods for discrete-valued reconstruction focused on reconstruc-
tions of binary arrays from only the horizontal and vertical projections [6].
The deterministic projections were treated as a system of linear equations.
Attention was particularly paid to the ambiguity of reconstructions which
was formulated in the context of switching components [6, 7]. Algorithms
for unambiguous reconstruction were developed by assuming object con-
straints such as connectedness in 2-D [8] or convexity in 3-D [9]. In addition,
these concepts were extended to four or more projection angles including
the analysis of the ambiguity problem [7, 10]. However, all of these tech-
niques assume deterministic projection measurements and do not perform
optimally under high noise conditions.

A second approach to discrete-valued reconstruction detects parameter-
ized objects directly in the projection domain. This strategy is applicable
when the objective is to detect specific objects or regions such as tumors in
medical imaging or material defects in non-destructive testing. Rossi and
Willsky [11] introduced this approach by performing maximum likelihood
(ML) estimation of the location of a single object in the imaging plane. This
concept was extended to a three-dimensional parameterization supporting
multiple objects per plane [12]. Here, constrained objects in 3-D are formed
as a combination of basic cylinders whose parameters are estimated as part
of the reconstruction. A review of object parameterization methods as well
as a new algorithm for the approximate reconstruction of compact objects
modeled by polyhedral shapes is given in the chapter by A. Mohammad-
Djafari and C. Soussen in this book. Parameterized object reconstruction
methods are specifically designed for low SNR conditions. However, they
rely on a priori knowledge about shape characteristics of the objects in the
cross-section. These methods are therefore not applicable in cases where
such information is unavailable or the objects in the cross-section cannot
easily be parameterized.

In this work, we focus on discrete-valued reconstruction from noisy pro-
jections using statistical methods. Statistical methods model the random
nature of the physical data collection process, then seek the solution that
best matches the probabilistic behavior of the data. Consequently, statis-
tical methods can improve performance considerably in cases of low SNR.
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Statistical approaches also easily incorporate special geometries such as lim-
ited or missing angle projection measurements. Common statistical tech-
niques incorporate implicit information about desired characteristics of the
reconstruction without explicit modeling of objects in the cross-section.

A statistical method that is well suited for tomographic reconstruction
is Bayesian maximum a posteriori (MAP) estimation. Bayesian methods
in general have been shown to improve performance in many emission and
transmission tomography problems [13, 14, 15, 16] as well as in image
restoration tasks [17, 18]. Bayesian MAP estimation reconstructs the image
as a tradeoff between matching the projection data and regularizing the
solution by a prior probability distribution. The regularization imposed by
the prior reflects assumed characteristics of feasible reconstructions. Due to
this regularization, the MAP estimation problem is well-posed and avoids
the high noise sensitivity frequently encountered in maximum likelihood
(ML) estimation.

Priors for Bayesian reconstruction methods are often chosen to impose
smoothness constraints on the reconstruction to eliminate high frequency
noise. A prior model that has generally proven to be useful in the tomo-
graphic setting is the Markov random field (MRF) image model [13, 19,
14, 15, 20]. The chapter by M. T. Chan, G. T. Herman and E. Levitan
in this book presents a new MRF for modeling image prior distributions
and methods for estimating the parameters of this model. This allows the
model to be adapted to the specific characteristics of an ensemble of im-
ages. Importantly, the Bayesian estimate is then computed directly from
the convolution backprojection reconstruction, rather than from the origi-
nal projection data. This approach has the advantage of reducing compu-
tation.

In contrast, we use a simple discrete MRF model [21, 22, 23], and in-
stead focus on the computational difficulties resulting from direct Bayesian
reconstruction from the tomographic data. In order to solve this difficult op-
timization problem, we employ multiscale algorithms to both reduce com-
putation and improve convergence to the global minimum. In addition,
we introduce a method for estimating the densities of the discrete regions
as part of the reconstruction process. This is important because precise
knowledge of these discrete densities is required for accurate Bayesian re-
construction.

The MAP reconstruction itself can be formulated as an optimization
problem which can be solved using a number of different techniques. The
expectation-maximization (EM) algorithm, suitable for ML reconstruction
[24], has been adopted for MAP estimation with Gaussian priors [25, 26, 27,
28]. Extensions of these models to more general MRF priors were proposed
in [14, 29, 15, 30]. However, application of the EM algorithm for MAP
estimation is difficult and usually suffers from slow convergence.

Instead of using EM techniques, we focus on the direct optimization
of the MAP equation. We adopt a pixel-wise update method known as
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iterative coordinate descent (ICD) [16, 31] which maximizes the MAP cri-
terion by iteratively updating each pixel of the image. The discrete version
of ICD used here essentially implements the iterated conditional modes
(ICM) technique introduced by Besag [22]. However, while ICM was de-
signed for image restoration tasks, the ICD algorithm is specifically de-
signed for the tomographic reconstruction problem resulting in dramati-
cally improved computational efficiency.

In addition to solving the optimization problem, the discrete-valued re-
construction requires knowledge of the density or emission rate levels in
the cross-section. In practice, exact information about these discrete levels
is often unavailable. In such cases it is desirable to estimate the densities
or emission rates as part of the reconstruction. In Section 1.5, we discuss
our method to estimate these discrete classes concurrently with the recon-
struction process. We show how the class estimation can be formulated as
a continuous-valued tomographic reconstruction problem with the number
of points equal to the number of classes.

Finally, we extend our reconstruction method to a multiresolution algo-
rithm. Multiresolution techniques achieve performance improvements in a
variety of imaging problems [32, 33] including image segmentation [34, 35]
and continuous-valued tomographic reconstruction [36]. Multiresolution al-
gorithms reconstruct the image at different resolutions, typically progress-
ing from coarse to fine scale. The coarse scale solutions serve as initial-
ization or prior information for reconstructions at finer scales. Due to the
improved initialization and the higher SNR at coarse scale, multiresolu-
tion algorithms are typically more robust with respect to local minima.
In addition, local pixel interactions at coarse scale are equivalent to large
scale interactions at fine scale. This combined with the low computational
complexity at coarse scale makes multiscale algorithms very efficient.

The multiscale algorithm presented here is a straightforward extension
of our fixed scale algorithm. The reconstruction is performed in a coarse-
to-fine fashion by initializing each resolution level with the interpolated
reconstruction of the next coarser level. The reconstructions at each level
are computed using the fixed resolution method. Our experimental results
demonstrate that this multiscale algorithm is less prone to being trapped
in local minima and in many cases, computationally more efficient than the
fixed resolution version.

1.2 Stochastic data models for tomography

In this section, we will develop the statistical framework for MAP recon-
struction in computed tomography. Our framework is applicable to both
transmission and emission measurements and supports general imaging
geometries. The models presented here are based on the exact Poisson
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Emitter

Detector  i

y  - detected events i

yT - dosage

x  - absorption of pixel jj

(a) Transmission setup

Detector  i

Detector  i

x  - detection rate jPij

x  - emission ratej

(b) PET emission setup

FIGURE 1.1. Physical setup for transmission and positron emission
tomography (PET). In transmission tomography (a), photons are in-
duced into the cross-section. After attenuation by the absorptive ma-
terial, detectors measure the remaining photon rates. In positron emis-
sion tomography (b), the cross-section contains a radioisotope and is
surrounded by a ring of detectors. If two detectors register photons
at the same time, a pixel emission is assumed to have occurred on the
projection line between them.

statistics of the photon measurements. Computationally more efficient but
approximate models can be obtained by using a Taylor expansion of the
likelihood function [16, 31].

In transmission tomography, the objective is to measure photon atten-
uation for different projections through a cross-section of absorptive ma-
terial. An illustration of the physical setup is shown in Fig. 1.1(a). The
cross-section is surrounded by a ring of photon emitters and detectors. The
emitters induce a calibrated photon rate yT directed along certain angular
and parallel projections. After attenuation by the absorptive material, the
photon rates are measured by the detector opposite the respective emitter.
The photon rates measured by the detectors are not direct measurements
of attenuation. Instead they are noisy photon counts which can be modeled
as Poisson-distributed random variables.

In order to write the probability density for the Poisson measurements,
define X as the N -dimensional vector of attenuation densities of the pixels
in raster order. Let Y denote the vector of photon counts for all M projec-
tions at different angles and parallel offsets. Furthermore, let Pij correspond
to the length of intersection between the jth pixel and the ith projection.
Then P is the matrix of elements Pij and Pi∗ denotes the vector formed
by its ith row. Given these assumptions, the photon count Yi, correspond-
ing to projection i, is Poisson distributed with mean yT exp(−Pi∗x). The
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distribution of the Yi may then be written as

P(Y = y|x) =
M∏
i=1

exp(−yT e−Pi∗x)(yT e−Pi∗x)yi

yi!
. (1.1)

We use upper case letters for random variables and lower case letters for
particular realizations. Taking the logarithm of (1.1), we obtain the log-
likelihood

(transmission) L(y|x) = logP(Y = y|x) =
M∑
i=1

(
−yT e

−Pi∗x + yi(log yT − Pi∗x)− log(yi!)
)
. (1.2)

In emission tomography, no dosage is induced into the cross-section. In-
stead, the image plane contains some photon emitting material. A physical
setup for the specific example of positron emission tomography (PET) is
shown in Fig. 1.1(b). In this case, the cross-section contains a radioactive
isotope. Recombination of positrons in the radioisotope results in emission
of gamma rays in two opposite directions. These gamma rays are detected
by a ring of detectors around the cross-section. If two detectors register
photons at the same time, this is counted as an emission on the projection
line between them. In the following, we will develop the statistical model
for the general emission case.

The objective in emission tomography is to reconstruct the emission
rates of all pixels in the image plane. Again, the photon detections can be
modeled as Poisson distributed random variables. In order to emphasize
the similarity to the transmission problem, we will use the same notation,
but interpret x as the vector of emission rates for all N pixels and Y as the
observed photon counts. We define Pij as the probability that an emission
from pixel j is registered by the ith detector pair. The photon counts Y are
then Poisson distributed with parameter Pi∗x which yields the distribution

P(Y = y|x) =
M∏
i=1

exp(−Pi∗x)(Pi∗x)yi

yi!
. (1.3)

The log-likelihood is therefore given by

(emission) L(y|x) = logP(Y = y|x) =
M∑
i=1

(−Pi∗x + yi log(Pi∗x)− log(yi!)) . (1.4)

The log-likelihood functions for both the transmission and the emission
case have the form

logP(Y = y|x) = −
M∑
i=1

fi(Pi∗x) (1.5)
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where fi(·) are convex and differentiable functions. This common form will
lead to similar methods of solving these two problems. In the following, we
will write all equations for the emission case; however, all methods apply
analogously to the transmission case.

For the emission problem, maximum likelihood (ML) estimation of x
from y yields the optimization problem

x̂ML = arg min
x

M∑
i=1

(Pi∗x − yi log(Pi∗x)) . (1.6)

For low signal-to-noise-ratio medical imaging problems, the ML estimate
has well documented shortcomings [37, 38, 39]. Noise and sampling limita-
tions can produce high frequency noise in the ML reconstruction that is not
present in the original cross-section. It is therefore desirable to regularize
tomographic inversion by some means. Maximum a posteriori probability
(MAP) estimation addresses this problem by treating the original image
as a random field, X, with prior distribution, p(x). Again, we use a lower
case x to denote a particular realization of the random vector X. The prior
distribution regularizes the optimization problem so that a unique solution
always exists [40]. The logarithm of the a posteriori distribution of X given
Y may be computed using Bayes’ formula.

Lp(x|y)
4
= logP(X = x|Y = y)

= L(y|x) + log p(x) − logP(Y = y) (1.7)

The maximum a posteriori (MAP) estimate is then the value of x̂ which
maximizes the a posteriori density given the observations y

x̂ = argmax
x

Lp(x|y) (1.8)

= argmax
x
{L(y|x) + log p(x)}

= argmax
x
{L(y, x)} .

The last equation indicates that the MAP estimate also maximizes the log
of the joint distribution, L(y, x) = logP(X = x, Y = y).

The MAP estimate has been shown to substantially improve performance
in many image reconstruction and estimation problems. While computation
of the exact MAP estimate is computationally intractable, approximate
solutions can be obtained with reasonable complexity as outlined in the
next section. We will treat only the MAP estimation problem, since the
ML estimate is the special case of a constant prior distribution.

1.3 Markov random field prior

While the likelihood term L(y|x) in the MAP equation (1.8) is determined
by the physics of the data collection process, the prior distribution is se-
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lected by the experimenter to model desired characteristics of typical re-
constructions. Most commonly, the prior models are chosen to reflect the
high correlation of adjacent pixels. A model that has proven particularly
useful is the Markov random field (MRF) [41]. Similar to a Markov chain
in one dimension, the 2D MRF limits pixel interactions to a local neigh-
borhood of pixels. This localization allows for efficient optimization of the
MAP equation.

In order to write the equations for the MRF prior, we first need to define
the concept of a neighborhood. If i denotes a single pixel location, we will
denote its neighborhood by ∂i. This neighborhood can consist of any set of
pixels {k : k 6= i} which satisfies the symmetry property that i ∈ ∂k⇒ k ∈
∂i. Given this definition, a MRF is a random field which has the property

p(xi|xj , j 6= i) = p(xi|x∂i). (1.9)

In other words, the prior conditional probability of a pixel value depends
only on a local neighborhood of pixels. Under some weak technical condi-
tions, a random field is a MRF if and only if it has a probability distribution
corresponding to a Gibbs distribution [41, 42]. This result, which is known
as the Hammersley-Clifford theorem, may be used to express the likelihood
function log p(x). While the theory of MRF’s is quite extensive [43, 44, 45],
we will restrict ourselves to a simple model based on at most an 8-point
neighborhood.

Since we are interested in discrete-valued tomographic reconstruction,
we assume that each pixel has one of a fixed set E of known emission
rates. We then apply a discrete MRF prior model that is frequently used
in segmentation problems [21, 22, 23]. The model encourages neighboring
locations to have the same states or, in our case, emission rates. To define
the model, we must first define two simple functions, t1(x) and t2(x). t1(x)
is the number of horizontally and vertically neighboring pixel pairs with
different emission rates in x, and t2(x) is the number of diagonally neigh-
boring pixel pairs with different emission rates in x. The discrete density
function for x ∈ EN is then assumed to be of the form

log p(x) = −(β1t1(x) + β2t2(x)) + log(Z) (1.10)

where Z is an unknown constant called the partition function. The regular-
ization parameters β1 and β2 weight the influence of the prior in compar-
ison to the likelihood term. Larger values of β1 and β2 assign higher cost
to local pixel differences which will result in a smoother reconstruction.
Based on the geometry of the 8-point neighborhood, β2 is often chosen as
β2 = β1/

√
2. In the following, we will often write β for β1 and assume

β2 = β1/
√

2.
Substituting the prior (1.10) into the MAP and likelihood equations (1.8)
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and (1.4) for the emission case, we obtain the optimization criterion

x̂ = arg max
x∈EN

{ M∑
i=1

(−Pi∗x + yi log(Pi∗x))

−(β1t1(x) + β2t2(x))

}
. (1.11)

1.4 Optimization techniques

In order to compute the MAP reconstruction, we must perform the opti-
mization of (1.11). Gradient methods such as steepest descent or conjugate
gradient optimization are not directly applicable, since the discrete prior
(1.10) is non-differentiable.

A method that is well suited for the MAP optimization is a discrete
version of iterative coordinate descent (ICD) [16, 31]. The ICD method
sequentially updates each pixel of the image. With each update, the cur-
rent pixel is chosen to maximize the posterior probability (1.11). There-
fore, the discrete ICD algorithm essentially implements the well known
ICM optimization introduced by Besag [22]. However, while ICM was orig-
inally developed for image restoration tasks, the ICD implementation is
specifically designed for the tomographic reconstruction problem. The ICD
algorithm takes advantage of the sparse structure of the forward projec-
tion matrix P to dramatically speed-up the optimization. Furthermore,
ICD initializes the optimization with the convolution backprojection in-
stead of the ML initialization used by ICM. The ML estimate is not a
good initialization for tomographic reconstruction problems and, since the
pixel likelihoods are not independent, the ML estimate is computationally
expensive to compute. The convolution backprojection, in comparison, is
inexpensive to compute and captures most of the low-spatial frequency be-
havior of the reconstruction. This makes the CBP a suitable initialization,
especially since coordinate-wise update methods have slow convergence for
low spatial frequencies and fast convergence for high-spatial frequencies. In
the following, we will show how the ICD can be used to efficiently compute
the MAP estimate.

Let v1(z, x∂j) be the number of horizontal and vertical neighbors of xj
which do not have emission rate z, and v2(z, x∂j) be the number of diagonal
neighbors of xj which do not have emission rate z. Then, the maximization
of the MAP equation with respect to pixel xj can be written as

xn+1
j = arg min

z
{−L(y|Xj = z,Xk = xnk , k 6= j)

+(β1v1(z, x∂j) + β2v2(z, x∂j))}. (1.12)

In our notation, xn is the image containing all previous pixel updates. Thus,
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the reconstruction xn+1 differs only in pixel xj from xn. A full update of
the reconstruction requires N applications of (1.12).

Computation of the log-likelihood L(y|z, xn) using (1.4) for each pixel
update would still lead to prohibitive computational complexity. This can
be avoided by using only the log-likelihood difference

∆L(z) =
∑
i∈Ij

(
−Pijz + yi log(Pi∗x

n + Pij(z − x
n
j ))− yi log(Pi∗x

n)
)

(1.13)
where Ij is the set of projections i which intersect pixel xj , i.e. Ij = {i :
Pij 6= 0 , 1 ≤ i ≤ M}. Leaving out the terms which are constant with
respect to z, the update equation for xj can then be written as

xn+1
j = arg min

z

{∑
i∈Ij

(Pijz − yi log(Pi∗x
n + Pij(z − x

n
j )))

+(β1v1(z, x∂j) + β2v2(z, x∂j))

}
. (1.14)

Assuming a reasonably small set E of K fixed emission rates, the mini-
mization can be carried out by trying all z ∈ E and selecting the one which
minimizes (1.14). We store the M -dimensional state vector S = Px be-
tween iterations. After a pixel xj is updated, the components of S can be
efficiently updated using

Sn+1
i = Sni + Pij(x

n+1
j − xnj ). (1.15)

This update is necessary only for the components i ∈ Ij since for all other
projections Pij = 0.

In order to assess the computational complexity of the reconstruction,
we first define M0 as the average number of projections passing through a
single pixel

M0 =
1

N

N∑
j=1

|Ij | . (1.16)

The computational cost for a pixel update is then on the order of KM0 op-
erations. The complexity of a full-update of the reconstruction is therefore
NKM0. This is quite reasonable, considering that due to the sparsity of P ,
M0 is typically small compared to M , i.e. M0 � M . In cases where K is
large, it might be desirable to reduce computation by using a global second
order approximation to the likelihood functions (1.2) and (1.4) as described
in [16, 31]. Using these techniques, computation for a single pixel update
can be reduced to order K +M0, resulting in N(K +M0) complexity for
a full reconstruction update.
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1.5 Estimation of discrete levels

So far, we have assumed the set E of discrete emission rates or densities
to be known. In practice, however, the exact emission rates corresponding
to different regions in the cross-section may not be known. Even if a good
initial guess is available, the accuracy of the emission rates is critical for
the reconstruction. For illustration, assume that the emission rate of a par-
ticular region is over-estimated by some amount. For projections yi which
pass through this region, the forward projected reconstruction Pi∗x will be
larger than the measured photon count, i.e. Pi∗x > yi. To compensate for
this mismatch, the reconstruction algorithm may misclassify large numbers
of pixels. Therefore, it is desirable to estimate the discrete emission rates
as part of the reconstruction algorithm.

In this section, we show how the emission rates can be estimated con-
currently with the reconstruction. We implement ML estimation of the
emission rates by iteratively updating entire regions of pixels with equal
emission rates [46]. We will show that this estimation is equivalent to a
continuous-valued tomographic ML reconstruction problem with K pix-
els. The updates of the emission rates will be performed between full ICD
updates of the reconstruction.

Let θ1 . . . θK denote the discrete emission rates so that E = {θ1, · · · , θK}.
Changing a single emission rate θk is equivalent to changing all pixels in
the reconstruction that are classified to have emission rate θk. If we define a
region as the collection of all pixels with the same emission rate, we obtain
K different regions in the reconstruction. Analogously to the projection
matrix P for individual pixels, we can now define a projection matrix Q
for the regions. Given the region geometries, we can compute the entry Qik
as the probability that an emission from the kth region is registered by the
ith detector.

Assuming knowledge of Q, the likelihood for the emission rates can be
computed analogously to the pixel likelihoods in (1.2) and (1.4). The re-
sulting optimization problem is equivalent to a continuous-valued recon-
struction with K pixels and projection matrix Q.

In practice, direct computation of Q from the geometry of the regions
would be computationally involved and difficult to update. Instead, we can
obtain an expression for the entries of Q by adding the contributions of
all pixels in a region. We can rewrite the i’th forward projection Pi∗x as
follows

Pi∗x =
N∑
j=1

Pijxj

=
K∑
k=1

θk ∑
{j:xj=θk}

Pij


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=
K∑
k=1

θkQik = Qi∗θ (1.17)

where
Qik =

∑
{j:xj=θk}

Pij . (1.18)

For the emission case, this yields the likelihood function

logP(Y = y|θ) =
M∑
i=1

(−Qi∗θ + yi log(Qi∗θ)− log(yi!)) . (1.19)

This log-likelihood function is clearly of the same form as (1.4), except that
the discrete-valued N -component vector x is replaced by the continuous-
valued K-component vector θ. Also, the new projection matrix Q is of size
M ×K instead of M × N . Thus, maximum likelihood estimation of θ is
equivalent to a continuous-valued tomographic ML reconstruction with K
pixels.

Since θ is continuous-valued, the optimization of (1.19) is different from
the discrete case. In general, all methods proposed for continuous-valued
tomographic reconstruction can be applied. Again, we will use an ICD op-
timization since it is easily implemented with constraints such as positivity
of the emission rates. The ICD update equation of the θk is analogously to
(1.14) given by

θn+1
k = arg min

v≥0

∑
i∈Ĩk

(Qikv − yi log(Qi∗θ
n +Qik(v − θ

n
k )))

 (1.20)

where v ≥ 0 enforces the non-negativity of the emission rates and Ĩk is
defined as Ĩk = {i : Qik 6= 0 , 1 ≤ i ≤M}. Since the cost function in (1.20)
is well approximated by a quadratic, the optimization can be efficiently
implemented using Newton minimization.

Let φ1 and φ2 be the first and second derivatives of the log-likelihood
function evaluated at the current emission rate θk. The Newton update for
minimization of (1.20) is then given by

θ′k = min

{
θk −

φ1

φ2
, 0

}
(1.21)

where the derivatives φ1 and φ2 are computed as

φ1 =
∑
i∈Ĩk

Qik

(
1−

yi

Qi∗θ

)
(1.22)

φ2 =
∑
i∈Ĩk

yi

(
Qik

Qi∗θ

)2

. (1.23)
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The Newton updates (1.21)-(1.23) are repeatedly applied until |φ1| < ε.
For our experimentation, we have found an accuracy of ε = 0.001 to be
sufficient. For efficient computation, we store and update the same state
vector S = Px = Qθ as in the discrete MAP reconstruction (1.15). If θnk is
updated to θn+1

k , S can be updated as

Sn+1
i = Sni +Qik(θ

n+1
k − θnk ) (1.24)

for all i ∈ Ĩk.
In order to assess computational complexity, we define H as the average

number of Newton-iterations per class update (1.20). Furthermore, we use
the number of projections M as a bound for the size of the sets Ĩk. Com-
putation of a single emission rate θk then requires on the order of MH
multiplies and divides. Typically, only a few Newton-iterations are neces-
sary to obtain sufficient accuracy (H < 2). The computational complexity
KMH for a full update of θ is therefore typically small in comparison to a
complete update of the discrete reconstruction x of order NKM0.

The iterations for the estimation of θ can be performed between full re-
construction updates. Each time a pixel changes during the reconstruction,
the new Q matrix can be obtained as follows: If xnj = θk and xn+1

j = θl,
then

Q′ik = Qik − Pij

Q′il = Qil + Pij (1.25)

for all projections i ∈ Ij . This recursion results in a computationally effi-
cient algorithm since it avoids recomputing Q using (1.18) after each re-
construction update.

In order to apply the estimation of the emission rates as described above,
it is necessary to obtain initial values for the estimates of θk. In practice,
initial values for the θk can be extracted from the convolution backpro-
jection reconstruction. One possibility is to extract the initial θk manually
by taking the average value of approximately uniform regions in the CBP.
This ensures that the estimated emission rates correspond to the regions
of interest in the reconstruction and minimizes chances of the estimation
getting trapped in local minima.

If, on the other hand, a fully unsupervised algorithm is desired, cluster-
ing techniques can be applied to the CBP reconstruction to estimate the
initial emission rates θk. To do this, we used a clustering method based on
Gaussian mixture models and the EM algorithm [47]. This method used
the Rissanen criterion to estimate both the number of clusters K as well
as the mean emission rate of each cluster. These estimates were then used
to initialize the estimation of the emission rates which resulted in a fully
unsupervised reconstruction algorithm.
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x(2)

x(0)

x(1)

Fine

Coarse

FIGURE 1.2. Illustration of multiresolution structure. Shown are pix-
els in three different resolution levels. We assume a quadtree structure
in which each coarse scale pixel corresponds to four pixels at the next
finer scale.

1.6 Multiscale approaches

We now extend the previous results to a multiresolution framework. Mul-
tiresolution algorithms reconstruct the cross-section at different resolutions,
typically starting at coarse resolution and progressing to the desired finest
resolution. Fig. 1.2 illustrates the multiresolution structure used in our al-
gorithm. We assume a quadtree model in which each coarse scale pixel
corresponds to four pixels at the next finer scale. Each resolution level is
half the size of the next finer level in each direction and therefore contains
only 1/4th the number of pixels. The small number of pixels at coarse scales
implies lower computational complexity for pixel operations at these levels.

Compared to the fixed scale reconstruction, the multiscale approach
has several significant advantages. While at first, reconstructing the cross-
section at several resolutions might seem like additional overhead, the mul-
tiscale algorithm has substantially faster convergence behavior. The fixed
scale ICD reconstruction algorithm updates one pixel at a time using a prior
that only depends on a small pixel neighborhood. As a result, propagation
of information per iteration is limited which results in slow convergence
for low spatial frequencies. The multiscale version of the algorithm im-
proves this by first reconstructing the image at coarse resolutions where
local interactions are equivalent to large scale propagation at fine resolu-
tions. The coarse scale reconstructions then serve as initialization for the
finer reconstructions. Since the coarse reconstructions already contain the
large scale behavior of the solution, substantially fewer iterations are nec-
essary at the finer scales. This, combined with the fact that the coarse scale
reconstructions are of low complexity, makes the multiscale algorithm very
efficient. In addition to increased efficiency, the multiresolution algorithm
is more robust with respect to local minima in the optimization. This in-
creased robustness holds for both the reconstruction and the estimation of
the emission rates.
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1.7 Multiscale MRF

The multiscale MRF model is a straightforward generalization of the fixed
resolution model in section 1.3. For the multiresolution case, we essentially
use the fixed scale algorithm for each resolution level and use the result to
initialize the next finer level [34].

Let x(n) denote the reconstruction at resolution n, where n = 0 is the
finest and n = L−1 is the coarsest resolution. In order to calculate the log-
likelihood function for level n, we simply compute a new projection matrix
P (n) which incorporates the pixel size at level n. P (n) is of dimension
M × 4−nN . The log-likelihood for the emission case is then given by

L(n)(y|x(n)) =
M∑
i=1

(
−P (n)

i∗ x(n) + yi log(P
(n)
i∗ x(n))− log(yi!)

)
. (1.26)

This yields the MAP equation

x̂(n) = argmin
x(n)

{
−L(n)(y|x(n)) + β

(n)
1 t1(x

(n)) + β
(n)
2 t2(x

(n))
}
. (1.27)

The remaining question is how to choose the coarse resolution parameters

β
(n)
1 and β

(n)
2 . An intuitive approach is to choose these parameters so that

the cost functions for any two adjacent resolutions are equal when the
finer reconstruction x(n−1) equals the coarser reconstruction x(n) [23]. This
assumes that the finer reconstruction x(n) is constant on blocks of 2 by 2
pixels.

Let I denote the operator of interpolation by a factor of two using pixel-
replication. The equality of adjacent levels can then be written as x(n−1) =
Ix(n). We now observe that a horizontal or vertical pixel difference in x(n)

results in two horizontal or vertical plus two diagonal differences in the
pixel-replicated Ix(n), and one diagonal pixel difference in x(n) yields one
diagonal pixel difference in Ix(n). Therefore, x(n−1) = Ix(n) implies

t
(n−1)
1 = 2 t

(n)
1

t
(n−1)
2 = 2 t

(n)
1 + t

(n)
2 . (1.28)

Consequently, the fine and coarse resolution cost functions will be equal if

β
(n)
1 = 2(β

(n−1)
1 + β

(n−1)
2 )

β
(n)
2 = β

(n−1)
2 (1.29)

for all resolutions n. By using these parameters, minimization of (1.27)
corresponds to the minimization of the original MAP equation (1.11) under
the constraint that the solution be constant on the appropriately sized
blocks.
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Coarse resolution minimization using the parameters given by (1.29) will
effectively minimize (1.11) if the correct segmentation is approximately
block constant. However, this recursion for the parameters has an unde-
sirable property. It implies that the MRF models for coarser resolution
segmentations should have progressively higher spatial correlation, or al-
ternatively, finer resolution segmentations should have lower correlation.
This, of course, runs counter to normal assumptions of spatial coherence
in images, and will tend to cause insufficient spatial correlation at finer
resolutions or excessive correlation at coarse resolutions. A more reason-
able approach is to assume that the spatial correlation is independent of
the resolution since it avoids the problem of excessive correlation at coarse
resolutions. Also, this assumption is appropriate when prior information is
unavailable about the likely scale of regions in the image. Therefore, in all
experimentation, we will fix the parameters of the MRF as a function of
scale

β
(n)
1 = β1

β
(n)
2 = β2. (1.30)

The L level Multiresolution MAP reconstruction algorithm may then be
summarized as follows:

1. Compute CBP, estimate initial emission rates θ.

2. Classify CBP pixels into discrete emission rates θk, decimate (L−1)-
times to initialize x(L−1). Set n = L− 1.

3. Compute reconstruction x(n) using fixed scale MAP reconstruction.
Include ML estimation of emission rates θ if necessary.

4. Initialize x(n−1) with pixel-replicated x(n).

5. if n = 0 stop. Otherwise set n = n− 1, goto 3.

The parameters β1 and β2 can be chosen manually to achieve the amount
of regularization desired.

1.8 Computational complexity

Table 1.1 compares the computational complexity for one full update of
the reconstruction to one update of the emission rates θ. The complexity
of the reconstruction update NKM0 depends on the number of pixels N
and therefore on the resolution of the reconstruction. In the multiresolution
framework, each level contains 1/4th the number of pixels of the next finer

level. The reconstruction complexity at scale n is therefore 4−nNKM
(n)
0 ,
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Reconstruction Update Emission Rate Update

Fixed Scale NKM0 KMH

Multiscale 4−nNKM
(n)
0 ≈ 2−nNKM0 KMH

N Number of pixels in the reconstruction
K Number of discrete emission rates θk
M Number of projections

M
(n)
0 Average number of projections

intersecting a pixel at scale n, M0 = M
(0)
0

H Average number of Newton iterations
for update of single θk

TABLE 1.1. Computational complexity for reconstruction and emis-
sion rate updates. While the complexity of the reconstruction is a
function of the resolution n, the cost for the estimation of θ is con-
stant. For the overall reconstruction, the time spent on estimation of
θ is typically less than 10% of total execution time.

where M
(n)
0 replaces M0. Due to the larger pixel size at coarse resolution,

more projections intersect each coarse-scale pixel and M
(n)
0 increases with

n. In order to compare the complexities for different scales, we can ap-

proximate M
(n)
0 as follows: As the size of a pixel doubles in each direction,

we assume that the number of parallel projections intersecting the pixel
at each angle doubles. The cost of a reconstruction update at scale n is
therefore approximately 2−nNKM0. Assuming that the multiscale recon-
struction performs the same number of iterations at each scale as the fixed
resolution algorithm, the multiscale overhead is bounded by a factor of 2.
In most real applications, however, the multiscale algorithm performs con-
siderably fewer computationally expensive iterations at fine scale than the
fixed scale method.

The complexity of the emission rate update is not a function of resolu-
tion. To obtain a bound on the computational cost, we assume that all M
projections intersect each region. Since the number of Newton iterations per
class update H is usually small, the upper bound KMH for the emission
rate update is small in comparison to the cost NKM0 for a reconstruction
update at finest or fixed scale. At coarse resolutions, however, the complex-
ity for the emission rate update may become comparable to the cost for
a reconstruction update. Again, the advantage of the multiscale method
is that the emission rates often converge after the reconstruction of the
coarser scales. Therefore, fewer iterations for reconstruction and emission
rate estimation are necessary at finer scale.

In practice, the total cost of the emission rate estimation is usually small
compared to that of the reconstruction updates. Performing six updates of
θ between full reconstruction updates, we find that the cost of the emission
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rate updates is typically less than 10% of the total execution time. In ad-
dition, the multiscale algorithm is typically faster than the fixed resolution
method.

(a) Original phantom (b) CBP (c) Thresholded CBP

(d) Fix-Resolution MAP

β = 1.0

(e) Multiresolution MAP

β = 1.0

FIGURE 1.3. Results for synthetic cross-section. Shown in (a) is the
original cross-section. The continuous-valued CBP (b) contains consid-
erable noise which is still present in the thresholded version (c), using
the thresholds determined by unsupervised clustering. The fixed reso-
lution algorithm (d), gets trapped in a local minimum resulting in class
estimates close to the initialization. The multiresolution algorithm (e)
estimates the classes correctly and achieves higher reconstruction per-
formance.

1.9 Results

Reconstructions using the fixed and multiscale algorithms on synthetic data
are shown in Fig.1.3. Fig.1.3(a) shows the original cross-section of size 192
by 192 pixels where each pixel is of both width and height 3.13mm. The
cross-section contains pixels with three different emission rates as shown in
Table 1.2. The projection data was calculated at 16 evenly spaced angles
each with 192 parallel projections. The projection beam was assumed to be
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Em.-Rate θ1 Em.-Rate θ2 Em.-Rate θ3

Original Phantom 0.001 0.05 0.1

CBP Clustering 0.0005 0.0108 0.04

Fixed-Res. MAP 0.0007 0.0105 0.0632

Multi-Res. MAP 0.0010 0.0512 0.1028

TABLE 1.2. Original and estimated emission rates for synthetic
cross-section. While the fixed scale algorithm gets trapped near the
clustering initialization, the multiscale method estimates the emission
rates quite accurately. All units are in mm−1.

Multi-Resolution Fixed-Resolution

Phantom I 27 59
Phantom II 349 404

TABLE 1.3. CPU-time in seconds for fixed- and multiresolution algo-
rithms. Both algorithms were run until convergence and terminated
when no pixel change occurred in a discrete reconstruction update.

infinitely thin. The data samples where formed by Poisson random variables
with the appropriate means.

Fig. 1.3(b) shows the convolution backprojection (CBP) reconstruction
using a generalized Hamming filter weighted by a Gaussian envelope. The
CBP reconstruction was used to obtain initial values for the emission rates
θ. The unsupervised clustering routine using a Gaussian mixture model ap-
plied to the CBP reconstruction identified three clusters with mean emis-
sion rates θ = [0.005, 0.0108, 0.04]. The clustering result consists of two
classes with very low emission rates corresponding to background pixels
and only one class with higher emission rate corresponding to the discs
in the foreground. A first discrete-valued reconstruction can be obtained
by thresholding the CBP reconstruction using the midpoints between the
emission rates determined by the clustering routine. The resulting thresh-
olded CBP is shown in Fig. 1.3(c). In addition to the errors in class esti-
mates, the result contains noise and aliasing effects. Fig. 1.3(d) shows the
fixed resolution MAP reconstruction using β = 1.0 where we assume that
β1 = β and β2 = β/

√
2. The fixed resolution reconstruction was initialized

to the thresholded CBP reconstruction and the class estimates were ini-
tialized to the clustering result. While the reconstruction is less noisy than
the thresholded CBP, the estimation of emission rates is trapped in a local
minimum close to the initial values from the clustering result. This results
in the classification of all 5 discs into the same class of emission rates.

The reconstruction result using the multiscale algorithm with L = 5
resolution levels and β = 1.0 is shown in Fig. 1.3(e). The algorithm was
initialized as in the fixed scale case. The estimated emission rates using the
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FIGURE 1.4. Comparison of convergence for the fixed- and multires-
olution MAP reconstructions of Fig. 1.3(d)-(e). Shown in (a) is the
normalized reconstruction error as a function of CPU-time. The mul-
tiscale algorithm converges considerably faster than the fixed resolu-
tion method. This is partly due to the fast convergence of the emission
rate estimates in the multiscale case (b). The multiresolution algorithm
achieves lower final error in estimation and reconstruction.

multiscale technique are very close to the true values as shown in Table 1.2.
This results in correct classification of the 4 larger discs in the cross-section.
Only the smallest disc is misclassified to a smaller area but higher emission
rate than in the original phantom. This is not surprising, considering the
high level of noise and the small size of the disc which practically eliminates
it from coarser resolution levels. For β = 1.0, there is essentially no high
frequency noise in the reconstruction. Overall, the quality of the multiscale
reconstruction is superior to the fixed scale MAP reconstruction and the
thresholded CBP. The multiscale method is particularly robust with respect
to the estimation of the emission rates.

In addition to the superior reconstruction quality, the multiresolution
method is faster than the fixed scale algorithm. Table 1.3 shows the execu-
tion times for both the fixed- and multiresolution reconstructions (Phantom
I). Both algorithms were run until convergence and terminated when no
pixel change occurred in a discrete reconstruction update. While the mul-
tiscale method terminated after 25 seconds, the fixed scale method needed
56 seconds to converge. Fig. 1.4 compares the error convergence of the two
algorithms. Shown in Fig. 1.4(a) is the reconstruction error as a function of
CPU-time. The reconstruction error is calculated as normalized root mean
square error, i.e.

E =

√√√√∑N
j=1(x̂j − xj)

2∑N
j=1 x

2
j

(1.31)

where x denotes the original cross-section and x̂ the current, if necessary
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(a) Original phantom (b) CBP (c) Thresholded CBP

(d) Fix-Resolution MAP

β = 1.0

(e) Multiresolution MAP

β = 1.0

FIGURE 1.5. Results for second synthetic cross-section. The cluster-
ing only identifies 2 out of 7 classes correctly which is reflected in the
thresholded CBP (c). The fixed resolution algorithm (d) estimates 3 of
7 classes correctly, and fails to divide the two gray ovals on right into
two distinct classes, which results in compensation artifacts. The mul-
tiresolution algorithm (e) performs better, estimating 5 out of seven
classes correctly. Neither algorithm divides the bright left and center
spot into two distinct classes. Both also miss the emission rate of the
small patch within the lower right oval.

interpolated, reconstruction. The multiscale algorithm converges consid-
erably faster and achieves lower final reconstruction error than the fixed
resolution method. Not shown is that the multiscale method achieves larger
posterior likelihood, confirming that the fixed scale algorithm gets trapped
in a local minimum.

The difference in convergence speed and final reconstruction error be-
tween the fixed and multiscale algorithm is reflected in the convergence
behavior of the emission rate estimates. Fig. 1.4(b) shows the convergence
of the normalized root mean square error of the emission rate estimates.
For the multiscale algorithm, the θ are essentially converged after only a
few coarse scale iterations. This reduces the number of computationally ex-
pensive iterations at finer scales, thereby accelerating overall convergence
substantially.
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θ1 θ2 θ3 θ4 θ5 θ6 θ7

Original Phantom 0.001 1.2 1.6 2.0 2.4 3.2 3.6

CBP Clustering 0.0005 0.028 0.094 0.307 1.606 2.359 3.335

Fixed-Res. MAP 0.001 0.028 0.094 0.338 1.445 2.403 3.574

Multi-Res. MAP 0.001 0.144 0.336 1.211 1.602 2.404 3.578

TABLE 1.4. Original and estimated emission rates for second synthetic
cross-section. Both, the fixed and multiscale algorithm were initialized
to the emission rates determined by the clustering algorithm. Units in
mm−1.
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FIGURE 1.6. Error convergence for fixed- and multiresolution MAP
reconstructions of the second phantom. While the multiscale error
at coarser scales is comparably high, convergence at each resolu-
tion is rapid. Again, the multiresolution algorithm terminates earlier
and achieves lower final reconstruction error than the fixed-resolution
method.

Results for a second synthetic cross-section are shown in Fig. 1.5. The
original cross-section in Fig. 1.5(a) contains 7 discrete levels of emission
rates. The size of the phantom is 128 by 128 pixels where each pixel is of
both width and height 1.56mm. The projection data was calculated at 128
evenly spaced angles, each with 128 parallel projections. Again, the data
samples were obtained as Poisson random variables with the appropriate
mean. Fig. 1.5(b) shows the convolution backprojection which is blurred
and contains considerable amounts of noise. The clustering routine was
used to obtain initial values for the emission rates. Due to the high noise
in the CBP reconstruction the number of clusters was not estimated but
manually set to seven. As shown in Table 1.4, the clustering only iden-
tified 2 out of the 7 classes within reasonable tolerance. The thresholded
CBP shown in Fig. 1.5(c) shows that the two gray ovals on the right are
erroneously classified to have the same emission rate. Similarly, the bright
patch on the left is set to the same emission rate as the center spot. In addi-
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tion, the small patch within the gray oval on the lower right is misclassified.
Fig. 1.5(d) shows the reconstruction using the fixed resolution algorithm.
As before, the emission rates were initialized to the cluster means and the
reconstruction was initialized to the thresholded CBP. As indicated in Ta-
ble 1.4, the fixed resolution algorithm terminates with class estimates close
to the initial cluster values. While the background level of 0.001 is now
correctly estimated, the emission rate for the two gray ovals with original
rates 1.2 and 1.6 has moved between the two values to θ5 = 1.4458. Notice
that the overestimation of the lower right oval yields a mismatch between
observed projection counts y and the forward projected reconstruction Px.
Since the pixel values x within the oval are too large, we obtain Pi∗x > yi
for many projections intersecting this region. To compensate for this, the
reconstruction algorithm inserts a pattern of black spots into the region
which lowers the average projection count. Analogously, the gray oval on
the upper right contains white spots to compensate underestimation of
the emission rate 1.6 by 1.4458. Effects such as these result from the al-
gorithm’s being trapped in local minima of the MAP cost function. This
is particularly critical for fixed resolution reconstructions that include the
estimation of emission rates.

The multiscale algorithm is less prone to being trapped in local minima.
For this phantom, 5 out of 7 emission rates are estimated correctly. The
reconstruction as shown in Fig. 1.5(e) contains little noise and classifies the
two gray ovals correctly. However, the left and center bright regions with
emission rates 3.6 and 3.2 are still both classified as having a single emis-
sion rate of 3.5783. This can be improved by initializing the emission rates
closer to their true values. In general, by varying the initial estimate for the
emission rates, it is often possible for the fixed scale algorithm to obtain
reconstructions comparable to the multiscale reconstruction. However, the
fixed resolution algorithm is less robust with respect to the emission rate
estimation and close initialization does not guarantee a comparable recon-
struction. In almost all cases, with and without estimation of emission rates,
the multiresolution algorithm is faster than the fixed resolution method. As
shown in Table 1.3 (Phantom II), the multiscale algorithm terminates af-
ter 349 seconds compared to 404 seconds for the fixed resolution method.
Fig. 1.6 compares the error convergence for the fixed and multiscale recon-
structions of the second phantom. The multiscale error at coarse scales is
comparably high since the coarse scale reconstructions cannot account for
the phantom’s fine structure. However, the multiscale algorithm converges
rapidly at each scale, resulting in lower total execution time. Again, the
multiresolution algorithm achieves lower final reconstruction error.

Finally, we examine the computational complexity of the estimation of
emission rates in relation to the overall complexity of the algorithms. Ta-
ble 1.5 shows the percentage of CPU-time used for the estimation of θ.
For all reconstructions, six full updates of θ were performed between full
reconstruction updates. In all cases, the emission rate updates make up
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Multi-Resolution Fixed-Resolution

Phantom I 6.48% (1.75/27s) 1.64% (0.97/59s)
Phantom II 8.70% (30.37/349s) 2.77% (11.21/404s)

TABLE 1.5. Percentage of CPU-time used for estimation of emission
rates. In all cases, the complexity for estimating θ is smaller than 10%
of the total execution time. Shown in brackets are the CPU-times for
estimating θ over the total execution times in seconds.

less than 10% of the total CPU-time. The percentages are smaller for the
fixed resolution algorithm than for the multiresolution algorithm. Since the
fixed resolution algorithm performs more computationally expensive iter-
ations at fine scale, the relative cost for reconstruction updates is higher
than for the multiscale method. Added over all resolutions, however, the
multiscale algorithm performs more iterations than the fixed scale method.
Since an iteration at any scale includes a fixed-cost update of θ, the multi-
scale method spends more absolute time on estimating the emission rates.
This may be reduced by introducing a convergence criteria for the emis-
sion rate updates instead of running a fixed number of iterations between
reconstruction updates.

In conclusion, the results indicate that the multiresolution algorithm
can achieve reconstruction results superior to the fixed scale method. It is
particularly robust with respect to the initialization of emission rates. Fur-
thermore, the multiscale method is typically faster than the fixed resolution
algorithm. For both algorithms, the computational cost for estimating the
emission rates is small in comparison to the reconstruction complexity.

1.10 Conclusion

In this work, we have described a fixed- and multiscale method for discrete-
valued Bayesian reconstruction. The multiscale MRF reconstruction algo-
rithm is a straightforward extension of the fixed scale model. Interaction
between resolution levels is obtained by initialization of each reconstruc-
tion with the previous coarser reconstruction. The algorithm includes an
efficient method for estimating the discrete emission rates. The quality of
the multiresolution reconstructions is significantly better than thresholded
CBP reconstructions. In comparison to a fixed scale MAP reconstruction,
the multiresolution method is less prone to local minima and converges
faster.
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