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Abstract

Statistical and discrete-valued methods can substantially
improve reconstruction quality by incorporating prior in-
formation about both the imaging system and the object be-
ing imaged. A statistical method shown to perform well in
the tomographic setting is Bayesian MAP estimation. How-
ever, computing the MAP estimate in the tomographic do-
main is a computationally involved optimization problem.
Furthermore, discrete-valued MAP reconstruction requires
accurate knowledge of the density or emission levels in the
cross-section. In this paper we present an efficient multi-
scale algorithm for discrete-valued MAP reconstruction in-
cluding estimation of the discrete levels. Experimental re-
sults indicate that the multiscale algorithm has improved
convergence behavior over fixed scale reconstruction and
is more robust with respect to local minima.

1. Introduction

Discrete reconstruction methods are based on the as-
sumption that the object being imaged is composed of a
discrete set of materials each with uniform properties. Thus,
the problem of reconstruction reduces to one of determining
the specific levels present in a reconstruction and then clas-
sifying each pixel to one of these discrete levels. Discrete
reconstruction methods impose a very strong constraint on
the reconstruction process, and therefore can substantially
improve reconstruction quality.

Statistical methods have been shown to considerably im-
prove reconstruction performance over conventional back-
projection techniques under high noise conditions. Further-
more, statistical approaches easily incorporate special ge-
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ometries such as limited or missing angle projection mea-
surements.

A statistical method that has been shown to improve per-
formance in many tomography problems is Bayesian maxi-
muma posteriori(MAP) estimation [4, 5, 3]. Computation
of the MAP estimate, however, poses a computationally in-
volved optimization problem. In this work, we propose a
technique for efficient computation of the discrete-valued
MAP estimate directly in the projection domain. Using a
Markov random field (MRF) prior, we adopt a pixel-wise
update method known as iterative coordinate descent (ICD)
[3]. ICD maximizes the MAP criterion by iteratively updat-
ing each pixel of the image. The discrete version of ICD
used here essentially implements the iterated conditional
modes (ICM) technique introduced by Besag [1]. How-
ever, while ICM was designed for image restoration tasks,
the ICD algorithm is specifically designed for the tomo-
graphic reconstruction problem resulting in improved com-
putational efficiency.

In addition to solving the MAP optimization problem,
accurate estimation of the discrete emission rates or densi-
ties is essential for the reconstruction performance. In this
paper, we present an efficient method to estimate the dis-
crete levels concurrently with the reconstruction. In partic-
ular, we formulate the estimation of the discrete levels as a
continuous-valued tomographic reconstruction problem and
apply existing algorithms for continuous-valued reconstruc-
tion.

Finally, we extend our reconstruction method to a mul-
tiresolution algorithm. Multiresolution techniques achieve
performance improvements in a variety of imaging prob-
lems [6] including continuous-valued tomographic recon-
struction. The multiresolution algorithm presented here re-
constructs the image in a coarse-to-fine fashion by initializ-
ing each resolution level with the interpolated reconstruc-
tion of the next coarser level. Our experimental results
demonstrate that this multiscale algorithm is less prone to
being trapped in local minima and in many cases, computa-



tionally more efficient than fixed resolution reconstruction.

2. Stochastic data models for tomography

In the following, we present the statistical framework for
MAP reconstruction for both emission and transmission to-
mography. For the transmission case, defineX as theN -
dimensional vector of attenuation densities of the pixels in
raster order. LetY denote the vector of photon counts for
all M projections at different angles and parallel offsets.
Furthermore, letPij correspond to the length of intersec-
tion between thejth pixel and theith projection. ThenP
is the matrix of elementsPij andPi∗ denotes the vector
formed by itsith row. Given these assumptions, the pho-
ton countYi, corresponding to projectioni, is Poisson dis-
tributed with meanyT exp(−Pi∗x). The log-likelihood of
theYi may then be written as

L(y|x) =
M∑
i=1

(
− yT e

−Pi∗x + yi(log yT − Pi∗x)

− log(yi!)

)
. (1)

For the emission case, we will use the same notation, but
interpretx as the vector of pixel emission rates andY as the
observed photon counts. We definePij as the probability
that an emission from pixelj is registered by theith detector
pair. The photon countsY are then Poisson distributed with
parameterPi∗x which yields the log-likelihood

L(y|x) =
M∑
i=1

(
− Pi∗x + yi log(Pi∗x)− log(yi!)

)
. (2)

Both (1) and (2) have the common formL(y|x) =

−
∑M
i=1 fi(Pi∗x) where thefi(·) are convex and differen-

tiable. In the following, we will write all equations for the
emission case; however, all methods apply analogously to
the transmission case.

3 Discrete prior model

For discrete-valued tomographic reconstruction, we as-
sume that each pixel has one of a fixed setE of known emis-
sion rates. We then apply a discrete Markov random field
(MRF) prior model [1, 2]. The model encourages neighbor-
ing locations to have the same states or, in our case, emis-
sion rates. Definet1(x) as the number of horizontally and
vertically neighboring pixel pairs with different emission
rates inx, and t2(x) as the number of diagonally neigh-
boring pixel pairs with different emission rates inx. The
discrete density function forx ∈ EN is then assumed to be
of the form

log p(x) = −(β1t1(x) + β2t2(x)) + log(Z) (3)

whereZ is an unknown constant called the partition func-
tion. The regularization parametersβ1 andβ2 weight the
influence of the prior in comparison to the likelihood term.
Larger values ofβ1 andβ2 assign higher cost to local pixel
differences which results in smoother reconstructions. In
the following, we will often writeβ for β1 and assume
β2 = β1/

√
2. Combining the prior (3) with the log-

likelihood (2), we obtain the MAP optimization criterion

x̂ = arg max
x∈EN

{L(y|x) + log p(x)} (4)

= arg max
x∈EN

{ M∑
i=1

(−Pi∗x + yi log(Pi∗x))

−(β1t1(x) + β2t2(x))

}
. (5)

4 Optimization

In order to compute the MAP reconstruction, we must
perform the optimization of (5). A method that is well
suited for the MAP optimization is a discrete version of it-
erative coordinate descent (ICD) [3]. The ICD method se-
quentially updates each pixel of the image. With each up-
date, the current pixel is chosen to maximize the posterior
probability (5). In comparison to ICM [1], the ICD algo-
rithm takes advantage of the sparse structure of the forward
projection matrixP to dramatically speed-up the optimiza-
tion. Furthermore, ICD initializes the optimization with the
convolution backprojection (CBP) instead of the ML initial-
ization used by ICM.

Let v1(z, x∂j) be the number of horizontal and vertical
neighbors ofxj which do not have emission ratez, and
v2(z, x∂j) be the number of diagonal neighbors ofxj which
do not have emission ratez. Then, the maximization of the
MAP equation with respect to pixelxj can be written as

xn+1
j = arg min

z
{−L(y|Xj = z,Xk = xnk , k 6= j)

+(β1v1(z, x∂j) + β2v2(z, x∂j))} (6)

wherexn is the image containing all previous pixel updates.
Computation of the log-likelihoodL(y|z, xn) using (2)

for each pixel update would lead to prohibitive computa-
tional complexity. This can be avoided by using only the
log-likelihood difference

∆L(z) =
∑
i∈Ij

(
− Pijz + yi log(Pi∗x

n + Pij(z − x
n
j ))

−yi log(Pi∗x
n)
)

(7)

whereIj is the set of projectionsi which intersect pixelxj ,
i.e. Ij = {i : Pij 6= 0 , 1 ≤ i ≤ M}. Leaving out
the terms which are constant with respect toz, the update



equation forxj can then be written as

xn+1
j = arg min

z

{∑
i∈Ij

(Pijz − yi log(Pi∗x
n

+Pij(z − x
n
j ))) + (β1v1(z, x∂j) + β2v2(z, x∂j))

}
. (8)

Assuming a reasonably small setE of K fixed emission
rates, the minimization can be carried out by trying all
z ∈ E and selecting the one which minimizes (8). We store
theM -dimensional state vectorSi = Pi∗x between iter-
ations. After a pixelxj is updated,Si can be efficiently
updated using

Sn+1
i = Sni + Pij(x

n+1
j − xnj ) ∀i ∈ Ij . (9)

In order to assess the computational complexity of the
reconstruction, we first defineM0 as the average num-
ber of projections passing through a single pixelM0 =
(1/N)

∑N
j=1 |Ij | . The complexity of a full-update of the

reconstruction is thenNKM0. This is quite reasonable,
considering that due to the sparsity ofP , M0 is typically
small compared toM , i.e.M0 �M .

5 Estimation of emission rates/densities

In practice, the set of densities or emission ratesE cor-
responding to different regions in the cross-section may not
be known. Since in the tomography problem the pixel like-
lihoods are not independent, even slight errors in the esti-
mated emission rates may result in a large number of mis-
classified pixels. Thus, the accuracy of the emission rates is
critical for the reconstruction. In the following, we show
how ML estimation of the emission rates can be imple-
mented by iteratively updating entire regions of pixels with
equal emission rates [7].

Let θ1 . . . θK denote the discrete emission rates so that
E = {θ1, · · · , θK}. Changing a single emission rateθk is
equivalent to changing all pixels in the reconstruction that
are classified to have emission rateθk. If we define a region
as the collection of all pixels with the same emission rate,
we obtainK different regions in the reconstruction. Analo-
gously to the projection matrixP for individual pixels, we
can now define a projection matrixQ for the regions such
thatQik is the probability that an emission from thekth re-
gion is registered by theith detector. In practice,Q can be
efficiently computed by adding the contributions of all pix-
els in each region. This strategy allows for efficient updates
of Q after pixel changes in the reconstruction updates. We
can rewrite thei’th forward projectionPi∗x as follows

Pi∗x =
N∑
j=1

Pijxj =
K∑
k=1

θk ∑
{j:xj=θk}

Pij



=
K∑
k=1

θkQik = Qi∗θ (10)

where
Qik =

∑
{j:xj=θk}

Pij . (11)

Substituting (10) into (2) gives the likelihood for the emis-
sion case as

logP(Y = y|θ) =
M∑
i=1

(−Qi∗θ + yi log(Qi∗θ)− log(yi!)) .

(12)
This log-likelihood function is of the same form as (2), ex-
cept that the discrete-valuedN -component vectorx is re-
placed by the continuous-valuedK-component vectorθ and
the new projection matrixQ is of sizeM ×K. Thus, ML
estimation ofθ is equivalent to a continuous-valued tomo-
graphic ML reconstruction withK pixels.

Sinceθ is continuous-valued, the optimization of (12)
is different from the discrete case. Again, we use an ICD
optimization since it is easily implemented with constraints
such as positivity of the emission rates. The ICD update
equation of theθk is analogously to (8) given by

θn+1
k = arg min

v≥0

{∑
i∈Ĩk

(Qikv − yi log(Qi∗θ
n

+Qik(v − θnk )))

}
(13)

wherev ≥ 0 enforces the non-negativity of the emission
rates and̃Ik is defined as̃Ik = {i : Qik 6= 0 , 1 ≤ i ≤M}.
Since the cost function in (13) is well approximated by a
quadratic, the optimization can be efficiently implemented
using Newton minimization. The details of this algorithm
are given in [3]. For efficient computation, we store and up-
date the same state vectorS = Px = Qθ as in the discrete
MAP reconstruction (9). Ifθnk is updated toθn+1

k , S can be
updated as

Sn+1
i = Sni +Qik(θn+1

k − θnk ) ∀i ∈ Ĩk. (14)

In order to assess computational complexity, we define
H as the average number of Newton-iterations per class
update (13) and useM as an upper bound for|Ĩk|. The
complexity for a full update ofθ is then on the order of
KMH multiplies which is typically small in comparison to
the complexityNKM0 for a reconstruction update.

The iterations for the estimation ofθ can be performed
between full reconstruction updates. Each time a pixel
changes during the reconstruction, the newQ matrix can
be obtained as follows: Ifxnj = θk andxn+1

j = θl, then

Q′ik = Qik − Pij

Q′il = Qil + Pij (15)



for all projectionsi ∈ Ij . This results in a computationally
efficient algorithm since it avoids recomputingQ using (11)
after each reconstruction update.

In order to apply the estimation of the emission rates as
described above, it is necessary to obtain initial values for
the estimates ofθk. In practice, initial values for theθk can
be extracted from the CBP reconstruction either manually
or using clustering techniques.

6 Extension to multiscale model

We now extend the previous model to a multiresolution
reconstruction algorithm. The multiscale algorithm per-
forms image reconstruction at different resolutions, start-
ing at coarse resolution and progressing to the desired finest
resolution. The reconstruction at each resolution is initial-
ized with the interpolated reconstruction at the next coarser
level.

In comparison to the fixed scale method, the multiscale
algorithm has improved convergence behavior. The coarse
scale reconstructions are computationally inexpensive but
already contain the large scale behavior of the solution.
Thus, considerably fewer computationally expensive iter-
ations are necessary at finer scales. Furthermore, the mul-
tiresolution algorithm is less prone to being trapped in local
minima. This is especially true for the case where the dis-
crete emission ratesθ are estimated concurrently with the
reconstruction.

To define the multiscale data model, letx(n) denote the
reconstruction at resolutionn, wheren = 0 is the finest and
n = L − 1 is the coarsest resolution. In order to calculate
the log-likelihood function for leveln, we simply compute
a new projection matrixP (n) which incorporates the pixel
size at leveln. P (n) is of dimensionM × 4−nN . The log-
likelihood for the emission case is then given by

L(n)(y|x(n)) =
M∑
i=1

(
− P (n)

i∗ x(n) + yi log(P
(n)
i∗ x(n))

− log(yi!)

)
. (16)

This yields the MAP equation

x̂(n) = arg min
x(n)

{
− L(n)(y|x(n)) + β

(n)
1 t1(x(n))

+β
(n)
2 t2(x(n))

}
. (17)

Assuming that the spatial correlation is independent of
the resolution, we choose the coarse resolution parameters
β

(n)
1 andβ(n)

2 as outlined in [2] to be

β
(n)
1 = β1

β
(n)
2 = β2. (18)

Em.-Rateθ1 Em.-Rateθ2 Em.-Rateθ3

Original Phantom 0.001 0.05 0.1
CBP Clustering 0.0005 0.0108 0.04
Fixed-Res. MAP 0.0007 0.0105 0.0632
Multi-Res. MAP 0.0010 0.0512 0.1028

Table 1. Original and estimated emission
rates for synthetic cross-section. While
the fixed scale algorithm gets trapped near
the clustering initialization, the multiscale
method estimates the emission rates quite
accurately. All units are in mm −1.

The parametersβ1 and β2 can be chosen manually to
achieve the amount of regularization desired. TheL level
multiresolution MAP reconstruction algorithm may then be
summarized as follows:

1. Compute CBP, estimate initial emission ratesθ.

2. Classify CBP pixels into discrete emission ratesθk, decimate(L −
1)-times to initializex(L−1). Setn = L− 1.

3. Compute reconstructionx(n) using fixed scale MAP reconstruction.
Include ML estimation of emission ratesθ if necessary.

4. Initializex(n−1) with pixel-replicatedx(n).

5. if n = 0 stop. Otherwise setn = n− 1, goto 3.

7 Experimental Results

Reconstructions using the fixed and multiscale algo-
rithms for a synthetic phantom are shown in Fig. 1. Fig.
1(a) shows the original cross-section of size 192 by 192
pixels containing pixels with three different emission rates.
The projection data was calculated at 16 evenly spaced an-
gles each with 192 parallel projections. The data samples
where formed by Poisson random variables with the appro-
priate means.

Fig. 1(b) shows the CBP reconstruction using a general-
ized Hamming filter weighted by a Gaussian envelope. An
unsupervised clustering routine applied to the CBP recon-
struction identified three clusters with mean emission rates
θ = [0.005, 0.0108, 0.04]. The clustering result consists
of two classes with very low emission rates corresponding
to background pixels and only one class with higher emis-
sion rate corresponding to the discs in the foreground. The
CBP thresholded at the midpoints between the classes de-
termined by the clustering routine is shown in Fig. 1(c). In
addition to the errors in the class estimates, the result con-
tains noise and aliasing effects. Fig. 1(d) shows the fixed
resolution MAP reconstruction usingβ = 1.0 where we as-
sume thatβ1 = β andβ2 = β/

√
2. The reconstruction

was initialized to the thresholded CBP reconstruction and
the class estimates were initialized to the clustering result.
While the reconstruction is less noisy than the thresholded
CBP, the estimation of emission rates is trapped in a local
minimum close to the initial values.



(a) Original phantom (b) CBP (c) Thresholded CBP (d) Fix-Resolution MAP
β = 1.0

(e) Multiresolution MAP
β = 1.0

Figure 1. Results for synthetic cross-section. Shown in (a) is the original cross-section. The
continuous-valued CBP (b) contains considerable noise which is still present in the thresholded
version (c), using the thresholds determined by unsupervised clustering. The fixed resolution al-
gorithm (d), gets trapped in a local minimum resulting in class estimates close to the initialization.
The multiresolution algorithm (e) estimates the classes correctly and achieves higher reconstruction
performance.

Reconstruction Error

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPU−time

N
or

m
al

iz
ed

 R
M

S
E

Multi−Resolution
Fixed−Resolution

Figure 2. Normalized reconstruction error as
a function of CPU-time for fixed- and multires-
olution MAP reconstructions. The multiscale
algorithm converges considerably faster than
the fixed resolution method.

The reconstruction result using the multiscale algorithm
with L = 5 resolution levels andβ = 1.0 is shown in Fig.
1(e). The algorithm was initialized as in the fixed scale case.
The estimated emission rates are very close to the true val-
ues as shown in Table 1. This results in correct classification
of the 4 larger discs in the cross-section. Only the smallest
disc is misclassified which is not surprising given the level
of noise and the small size of the disc.

In addition to the superior reconstruction quality, the
multiresolution method is faster than the fixed scale algo-
rithm. Shown in Fig. 2 is the root mean square recon-
struction error as a function of CPU-time. The multiscale
algorithm converges considerably faster and achieves lower
final reconstruction error than the fixed resolution method.

8 Conclusion

We have described an efficient multiresolution algorithm
for discrete-valued tomographic MAP reconstruction. The
algorithm includes an efficient method for estimating the
discrete emission rates. The quality of the multiresolution
reconstructions is significantly better than thresholded CBP
reconstructions. In comparison to a fixed scale MAP recon-
struction, the multiresolution method is less prone to local
minima and converges faster.
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