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Inverse Problems

• Forward model

y = f(x) + noise

• Inverse problem: Determine X from Y

• Applications include: image restoration, tomography, remote

sensing, machine vision

• Computation of f(x) can be very difficult

• Inversion of f(x) can be more difficult

– Need to search for x which solves equation

– Can be formulated as optimization problem

– Optimization may have local minima

– Convergence may be slow
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Our Approach: Multigrid Inversion

• Formulate a series of inverse problems at different scales

y(k) = f (k)(x(k)) + noise

• Move between scales to solve problem

– Coarse-to-fine: Fine is more accurate

– Fine-to-coarse: Coarse is less accurate!

– Cost functionals are not consistent

– Dynamically adjust cost functionals for consistency

• Advantages:

– Designed for nonlinear inverse problems

– Both inverse and forward model scales change

– Coarse scale iterations can be applied at any time

– Rapid and robust convergence
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Gaussian measurement model

• We use a Gaussian measurement model

log p(y|x) = −
1

2α
||y − f(x)||2Λ −

P

2
log(2πα|Λ|−1)

where

x : unknown image

y : measurement

f(x) : forward model

α : measurement noise factor (assumed unknown)

Λ : measurement covariance

P : number of (real valued) dimensions to y
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Regularized Inverse

• Joint MAP estimation of x and α yields

x̂ = arg min
x

min
α
{− log p(y|x, α) + S(x)}

= arg min
x

min
α

{

1

2α
||y − f(x)||2Λ +

P

2
log(2πα|Λ|−1) + S(x)

}

= arg min
x

{

P

2
log ||y − f(x)||2Λ + S(x)

}

where S(x) = − log p(x) is a stabilizing functional

• Estimation of α makes convergence more robust!
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The Optimization Problem

• Function to be minimized is

c(x; y) =
P

2
log ||y − f(x)||2Λ + S(x)

– Forward model may be difficult to compute

– For nonlinear problems c(x) is generally not convex

– Cost function may have local minima

– Fixed grid optimization can be slow
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Fixed-grid Optimization

xupdate ← Fixed Grid Update(xinit, c(·; y))

where

c(x; y) =
P

2
log ||y − f(x)||2Λ + S(x)

• Shortcomings

– All operations are performed at the finest scale

– Forward model is always evaluated at the finest scale

– Convergence speed depends on spectral characteristics of error

– Very sensitive to initial condition

– Tends to become trapped in local minima
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Multigrid Cost Functionals

• Cost functional at scale q

c(q)(x(q); y(q), r(q)) =
P

2
log ||y(q) − f (q)(x(q))||2Λ + S(q)(x(q))− r(q)x(q)

f (q)(·) - coarse scale forward model

x(q) - coarse scale solution

S(q)(·) - coarse scale stabilizing functional

y(q) - coarse scale measurement

r(q) - adjustment factor at scale q
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Coarse Scale Correction

Fixed grid update

x(q) ← Fixed Grid Update(x(q), c(q)( · ; y(q), r(q)))

Decimate result

x
(q+1)
init ← I

(q+1)
(q) x(q)

Compute y(q+1) (... But how?)

Compute r(q+1) (... But how?)

Coarse grid update

x
(q+1)
update ← Fixed Grid Update(x

(q+1)
init , c(q+1)( · ; y(q+1), r(q+1)))

Interpolate correction

x(q) ← x(q) + I
(q)
(q+1)(x

(q+1)
update − x

(q+1)
init )
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Choosing Consistent Cost Functionals

fine scale
cost function

fine scale
cost function

solution
true

initial
solution

scale update

initial
solution

scale update

Uncorrected Update Corrected Update

cost function

corrected

coarse
coarse

coarse scale
cost function

uncorrected
coarse scale

• Coarse scale cost should:

– Upper bound fine scale cost functional

– Be tangent to fine scale cost functional at initial solution
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Choosing y
(q+1) and r

(q+1)

• This is VERY important

• Match error in data term at coarse and fine scales

y(q+1) ← y(q) −
[

f (q)(x(q))− f (q+1)(I
(q+1)
(q) x(q))

]

• Match derivatives in cost function at coarse and fine scales

r(q+1) ← ∇c̃(q+1)(x(q+1))
∣

∣

∣

x(q+1)=I
(q+1)

(q)
x(q)

−
(

∇c̃(q)(x(q))− r(q)
)

I
(q)
(q+1)

• Theorem: If the difference between cost functionals is convex, then

multigrid iterations generate monotone decreasing cost.
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Stabilizing Functional

• We need would like

S(q)(x(q))
∼
= S(x) .

• For the generalized Gaussian Markov random field model

S(q)(x(q)) =
1

p(σ(q))p

∑

{i,j}∈N

bi−j

∣

∣

∣x
(q)
i − x

(q)
j

∣

∣

∣

p

where σ(q) = 2
q(1− 3

p
)
· σ(0)
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Application: Optical Diffusion Tomography

(ODT)

• Measure light that passes through a highly scattering medium

• Determine unknown absorption and/or diffusion cross-section of

material

• Obeys the frequency-domain diffusion equation:

∇ · [D(r)∇φk(r)] + [−µa(r)− jω/c] φk(r) = −δ(r − ak)

• Nonlinear forward model E[y] = f(x):

y : complex measurement of φk(r)

x : image of unknown absorption µa(r) and diffusion D(r)
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Simulation Experiment

• Phantom

0

0.05

0.1

– 10cm× 10cm× 10cm cube

– Linearly varying background from µ = 0.01cm−1 to 0.04cm−1

– Two spherical inhomogeneities with diameters of 1.85cm and densities

of µ = 0.10cm−1 and µ = 0.12cm−1

– Diffusion coefficient, D, is constant

• Model

– 100MHz modulation frequency and 35dB average SNR

– GGMRF with p = 1.2 and σ = 0.018cm−1
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Source/Detector Positions
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• Sources and detectors on all 6 faces of cube using 100MHz

modulation frequency and 35dB average SNR

• Important: Source/detector pairs on same face were not used in

order to reduce discretization error.
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How Much Resolution Do We Need?

• Relative measurement error versus grid resolution

– Based on 257× 257× 257 reference simulation
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Best Reconstructions at Various Resolutions
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(d) 17× 17× 17 Recon.

⇒ 65× 65× 65 grid is required for accurate reconstruction

⇒ huge computation!
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Convergence Speed for 65× 65× 65

Reconstruction with Good Initial Condition
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• All iterations in units of a single fixed grid iteration

18



Purdue University

Reconstruction Quality for Multigrid and Fixed

Grid Algorithms
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Convergence Speed for 65× 65× 65

Reconstruction with Poor Initial Condition
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Concluding Remarks

• About Inverse Problems

– Nonlinear inverse problems are difficult and of growing importance

– Grid resolution can be important for both forward and inverse problem

• About Multigrid Inversion

– Fast and robust convergence

– Insensitive to initial condition

– Widely applicable

– Changes grid resolution for both forward and inverse problems

– Very stable convergence
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