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Abstract

In this paper, we propose a general framework for

nonlinear multigrid inversion applicable to any inverse

problem in which the forward model can be naturally

represented at differing resolutions. In multigrid in-

version, the problem is adjusted to be solved at each

resolution by using the solutions at both finer and

coarser resolutions. To do this, we formulate a con-

sistent set of cost functionals across resolutions. At

each resolution, both the forward and inverse problems

are discretized at the lower resolution; thus reducing

computation. Our simulation results for the problem

of optical diffusion tomography indicate that multigrid

inversion can dramatically reduce computation in this

application.

1 Introduction
Recently, some new imaging modalities, such as

optical diffusion tomography (ODT) and electrical
impedance tomography, have received great attention.
For example, ODT holds great potential as a safe non-
invasive medical diagnostic modality with chemical
specificity. However, solving the required inverse prob-
lems for these new modalities is very computationally
challenging because the associated forward models are
described by the solution to a three-dimenstional (3-
D) partial differential equation (PDE).
To solve inverse problems, we need to choose a dis-

cretization grid spacing to represent both the forward
model and its subsequent inverse operation. Although
a fine grid is desirable because it reduces modeling
error and increases the resolution of the final image,
these improvements are obtained at the expense of
a dramatic increase in computational cost. Solving
problems at fine resolution also tends to slow conver-
gence because the convergence speed of most fixed grid
algorithms depends on the spectral characteristics of
the error [1, 2]. Furthermore, fixed grid optimization
methods essentially perform a local search of the cost
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function, and therefore tend to become trapped in lo-
cal minima.

In this paper we propose a method we call multigrid
inversion. Multigrid inversion is a general approach to
applying nonlinear multigrid optimization to the so-
lution of inverse problems. A key innovation in our
approach is that the resolution of both the forward
and inverse models are varied at different grid resolu-
tions. This makes our method particularly well suited
to the solution of inverse problems with PDE forward
models for a number of reasons: (1) The computation
is dramatically reduced by using coarse grids to solve
the forward model PDE; (2) the coarse grid forward
model is computed using a discretized version of the
true PDE, thereby preserving its nonlinear character-
istics; (3) a wide variety of optimization methods can
be used for solving the inverse problem at each grid.

The multigrid inversion method is formulated in an
optimization framework by defining a sequence of op-
timization functionals at varying resolutions. In or-
der for the method to have well behaved convergence
to the correct fine grid solution, it is essential that
the cost functional at different scales be consistent.
To achieve this, we formulate a recursive method for
adapting the coarse grid functionals which guarantees
that the fine grid solution is also a fixed point of the
multigrid algorithm.

This paper will be organized as follows. Section 2
introduces general concept of the multigrid inversion
algorithm. In Section 3, we illustrate an application of
the proposed multigrid inversion to the ODT problem,
and its numerical results will be provided in Section 4.
Section 5 makes concluding remarks.

2 Multigrid Inversion Framework

2.1 Inverse Problems

Let Y be a random vector of (real or complex) mea-
surements, and let x be a finite dimensional vector rep-
resenting the unknown quantity, in our case an image,
to be reconstructed. For any inverse problem, there is



then a forward model f(x) given by

E[Y |x] = f(x) , (1)

which represents the computed means of the measure-
ments given the image x.
We will assume that the measurements Y are con-

ditionally Gaussian given x, so that

log p(y|x) = −
1

2α
||y − f(x)||2Λ −

P

2
log(2πα|Λ|−1) ,

(2)
where Λ is a positive definite weight matrix, P is the
dimensionality of the measurement (i.e. the length of
Y in real-valued data, or twice its length in complex-
valued data), α is a parameter proportional to the
noise variance, and ||w||2Λ = wHΛw.
Our objective is to invert the forward model of (1)

and thereby estimate x from a particular measurement
vector y. All these methods work by computing the
value of x which minimizes a cost functional of the
form

1

2α
||y − f(x)||2Λ +

P

2
log(2πα|Λ|−1) + S(x) , (3)

where S(x) is a stabilizing functional used to regu-
larize the inverse. Since the noise variance parame-
ter α is usually unknown in practice, we will estimate
both α and x by simultaneously maximizing over both
quantities. Minimization of (3) with respect to α and
dropping constants yields the final cost functional to
be optimized

c(x) =
P

2
log ||y − f(x)||2Λ + S(x) . (4)

2.2 Multigrid Inversion Algorithm

Once the cost function of (4) is formulated, the
inverse is computed by minimizing the cost function
with respect to x. In this section, we derive the ba-
sic multigrid inversion algorithm for solving the mini-
mization of (4).
Let x(0) denote the finest grid image, and let x(q) be

a coarse resolution representation of x(0) with a grid
sampling period of 2q times the finest grid sampling
period. To obtain a coarse resolution image x(q+1)

from a fine resolution one x(q), we use the relation

x(q+1) = I
(q+1)
(q) x(q), where I

(q+1)
(q) is a linear decima-

tion matrix. We use I
(q)
(q+1) to denote the correspond-

ing linear interpolation matrix.
We first define a cost functional, c̃(q)(x(q)), with

a form analogous to that of (4), but with quantities
indexed by the scale q

c̃(q)(x(q)) =
P

2
log ||y(q)−f (q)(x(q))||2Λ+S

(q)(x(q)) (5)

Notice that the forward model f (q)( · ) and the stabi-
lizing functional S(q)( · ) are both evaluated at scale q.
This is important because evaluation of the forward
model at low resolution substantially reduces compu-
tation. The specific form of f (q)( · ) generally results
from the physical problem being solved with an appro-
priate grid spacing. In Section 3, we will give a typical
example for ODT where f (q)( · ) is computed by dis-
cretizing a 3-D PDE using a grid spacing proportional
to 2q. The reduced number of variables in the for-
ward model dramatically decreases computation. The
quantity y(q) in (5) denotes an adjusted measurement
vector at scale q. The stabilizing functional at each
scale is fixed and chosen to best approximate the fine
scale functional. We give an example of such a stabi-
lizing functional later in Section 2.3.
We will now explain how the cost functions at each

scale can be matched to produce a consistent solution.
To do this, we define an adjusted cost functional

c(q)(x(q)) = c̃(q)(x(q))− r(q)x(q)

=
P

2
log ||y(q) − f (q)(x(q))||2Λ

+S(q)(x(q))− r(q)x(q) ,

where r(q) is a row vector used to adjust the func-
tionals gradient. At the finest scale, all quantities
take on their fine scale values and r(q) = 0, so that
c̃(0)(x(0)) = c(0)(x(0)) = c(x). Our objective is then to
derive recursions for the quantities y(q)and r(q) that
match the cost functions at fine and coarse scales.
Let x(q) be the current solution at grid q. We would

like to improve this solution by performing an iteration
of fixed grid optimization at the coarser grid q+1 and
using this solution to correct the finer grid solution.
This coarse grid update is expressed as

x̃(q+1) ← Fixed Grid Update(I
(q+1)
(q) x(q), c(q+1)(·)) ,

(6)
where the operator Fixed Grid Update(xinit, c(·)) is
any fixed grid update algorithm (e.g. conjugate gradi-
ent, steepest descent, or iterative coordinate descent)
which is designed to reduce c(·) with the initial value

xinit, I
(q+1)
(q) x(q) is the initial condition formed by deci-

mating x(q), and x̃(q+1) is the updated value. We may
now use this result to update the finer grid solution.
We do this by interpolating the change in the coarser
scale solution

x̃(q) ← x(q) + I
(q)
(q+1)(x̃

(q+1) − I
(q+1)
(q) x(q)) . (7)

Ideally, the new solutions x̃(q) should be at least as
good as the old solution x(q). Specifically, we would



like c(q)(x̃(q)) ≤ c(q)(x(q)) when the fixed grid algo-
rithm monotonically reduces the cost function. How-
ever, this may not be the case if the cost functionals
are not consistent. In fact, for a naively chosen set
of cost functionals, the coarse scale correction could
easily move the solution away from the optimum.
This problem of inconsistent cost functions is elim-

inated if the fine and coarse scale cost functions are
equal within an additive constant. This means we
would like the following approximate equality to hold
for all values of x̃(q+1).

c(q+1)(x̃(q+1))
∼
= (8)

c(q)(x(q) + I
(q)
(q+1)(x̃

(q+1) − I
(q+1)
(q) x(q))) + constant

Our objective is then to choose a coarse scale cost
functional which matches the fine cost functional as
described in (9). We do this by the proper selection of
the y(q+1) and r(q+1). First, we enforce the condition
that the initial error between the forward model and
measurements be the same at coarse scale and fine
scales

y(q+1) − f (q+1)(I
(q+1)
(q) x(q)) = y(q) − f (q)(x(q)) . (9)

This yields the update for y(q+1)

y(q+1) ← y(q) −
[

f (q)(x(q))− f (q+1)(I
(q+1)
(q) x(q))

]

. (10)

Intuitively, the term in the bracket compensates for
the forward model mismatch between resolutions.
Next, we use the condition introduced in [3] to en-

force the condition that the gradients of the coarse
and fine cost functionals be equal at the current val-

ues of x(q) and x(q+1) = I
(q+1)
(q) x(q). More precisely, we

enforce the condition that

∇c(q+1)(x(q+1))
∣

∣

∣

x(q+1)=I
(q+1)

(q)
x(q)

= ∇c(q)(x(q))I
(q)
(q+1) .

This condition is essential to assuring that the opti-
mum solution is a fixed point of the multigrid inversion
algorithm [3]. The equality of (11) can be enforced at
the current value x(q) by choosing

r(q+1) ← ∇c̃(q+1)(x(q+1))
∣

∣

∣

x(q+1)=I
(q+1)

(q)
x(q)

−
(

∇c(q)(x(q))
)

I
(q)
(q+1) (11)

where c̃(q)(·) is the unadjusted cost function defined
in (5).
The multigrid V algorithm [2] is obtained by apply-

ing this two-grid algorithm recursively in resolution,

as shown in the pseudocode in Fig. 1. After initializa-
tion of r(0) ← 0 and y(0) ← y, we can then minimize
(4) through iterative application of the multigridV(·)
subroutine at resolution 0. In this figure, we use the
notation c(q+1)(x(q+1); y(q+1), r(q+1)) to make the de-
pendency on y(q+1) and r(q+1) explicit.

2.3 Stabilizing Functionals

The stabilizing functionals at coarser scales q must
be selected so that

S(q)(x(q))
∼
= S(x) . (12)

To illustrate how to achieve this relation, consider an
example of the generalized Gaussian Markov random
field(GGMRF) image prior model. For the GGMRF
prior in MAP estimation, the stabilizing functional is
usually of the form

S(x) =
1

pσp

∑

{i,j}∈N

bi−j |xi − xj |
p
, (13)

where σ is a normalization parameter, and 1 ≤ p ≤ 2
controls the degree of edge smoothness [4, 5, 3]. The
corresponding coarse scale stabilizing functionals are
derived to be

S(q)(x(q)) =
1

p(σ(q))p

∑

{i,j}∈N

bi−j

∣

∣

∣
x
(q)
i − x

(q)
j

∣

∣

∣

p

. (14)

For a d dimensional problem, (12) can be satisfied by
selecting the normalization parameter σ(q) as

σ(q) = 2(q)(1−
d
p
) · σ(0) , (15)

where we assume xi − xj
∼
= (x

(q)
i − x

(q)
j )/2

q.

3 Application to Optical Diffusion To-

mography
Optical diffusion tomography(ODT) is a method

for measuring cross-sections of optical properties from
the measured data of light transmitted through highly
scattering medium. In frequency domain ODT, the
measured modulation envelope of the optical flux den-
sity is used to reconstruct the absorption coefficient
µa and diffusion coefficient D at each discretized grid
point. However, for simplicity, we will only consider
reconstruction of the absorption coefficient. The 3-D
domain is discretized, and the set of unknown µa at
each discrete grid point forms a image x. The complex
amplitude φk(r) of the modulation envelope due to a
point source at position ak and angular frequency ω
satisfies the frequency domain diffusion equation

∇ · [D(r)∇φk(r)] + [−µa(r)− jω/c]φk(r) = −δ(r − ak)



x(q) ← MultigridV(q, x(q), y(q), r(q)) {

Repeat ν
(q)
1 times

x(q) ← Fixed Grid Update(x(q), c(q)( · ; y(q), r(q))) //Fine grid update
If q = Q− 1, return x(q) //If coarsest scale, return result

x(q+1) ← I
(q+1)

(q)
x(q) //Decimation

Compute y(q+1) using (10)
Compute r(q+1) using (11)
x(q+1) ← MultigridV(q + 1, x(q+1), y(q+1), r(q+1)) //Coarse grid update

x(q) ← x(q) + I
(q)

(q+1)
(x(q+1) − I

(q+1)

(q)
x(q)) //Coarse grid correction

Repeat ν
(q)
2 times

x(q) ← Fixed Grid Update(x(q), c(q)( · ; y(q), r(q))) //Fine grid update
Return x(q) //Return result

}

Figure 1: Pseudo-code specification of subroutine for multigrid V-cycle inversion.

where r is position and c is the speed of light in the
medium. Then the measurement of a detector at loca-
tion bm resulting from a source at location ak is mod-
eled by the complex value φk(bm). Note that φk(bm)
depends on the unknown image x. The complete for-
ward model function f(x) is then given by the set of
φk(bm)’s, and the measurement vector y is also or-
ganized in the corresponding order. Note that f(x)
is a highly nonlinear function since it is given by the
solution to a PDE using coefficients x.
Our objective is to estimate the unknown image

x from the measurements y. Using an independent
Gaussian shot noise model [3] and the GGMRF image
prior model, the MAP estimate of x in a Bayesian
framework is reduced to the minimization [3] of

c(x) =
P

2
log ||y − f(x)||2Λ

+
1

pσp

∑

{i,j}∈N

bi−j |xi − xj |
p , (16)

where Λ is diagonal with Λ(i,i) = 1/|yi|. This cost
functional has the same form as (4) with the stabilizing
functional given by (13). We use multigrid inversion to
solve the required optimization problem using the set
of coarse grid cost functionals developed in Section 2.2
and 2.3. For fixed grid updates at each scale q, we use
the ICD algorithm which also incorporates sequential
updates of α and x. See [5, 3] for details of the fixed
grid ICD algorithm.

4 Numerical Results
The performance of the multigrid inversion algo-

rithm was investigated for the ODT problem. A cu-
bic tissue phantom of dimension 10 × 10 × 10 cm on
an edge shown in Fig. 2(a) was used for reconstruc-
tions. The µa background was linearly varied from
0.01 cm−1 to 0.04 cm−1 in the x-direction, except in

the outermost boundary of width 1.25 cm which was
set to a constant value of µa = 0.025 cm−1. Two
spherical µa inhomogeneities were added with diam-
eters of 1.85 cm and the values of µa = 0.1 cm−1

(left-top) and µa = 0.12 cm
−1 (right-bottom). The

spheres were both centered along the z axis of the
phantom. The diffusion coefficient D was constant
with D = 0.03 cm. Eight sources with a modulation
frequency of 100 MHz and nine detectors were located
on each face. All source detector pairs were used, ex-
cept those on the same face of the cube. To simulate
the measurements, we solved the diffusion equations
with 129× 129× 129 grid points. Gaussian shot noise
was added to the data, and the average signal-to-noise
ratio for sources and detectors on opposite faces was
35 dB. Since the finer discretization more accurately
approximates the continuous domain PDEs and thus
the real measurements, we used this fine grid forward
solution as the simulated measurement data for all re-
constructions.

Reconstructions with 65 × 65 × 65 grid points
were constructed using Fixed-grid algorithms and the
multigrid-V optimization algorithms with 2, 3, and 4
levels of resolution. The eight outermost layers of grid
points are fixed to their true values in order to avoid
singlurarities near the sources and detectors. These re-
gions were excluded from all cross-section figures and
the evaluation of RMS reconstruction error. In order
to make fair comparisons of computational speed, all
iteration measurements were scaled to units of a single
fixed grid iteration at the finest scale. For each algo-
rithm the reconstruction was initialized to the average
value of the true phantom, which is µa = 0.026 cm

−1

andD = 0.03 cm. The image prior model used p = 1.2
and σ = 0.018 cm−1.

The multigrid algorithms speed the convergence
both in the sense of cost function and root-mean-
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Figure 2: Cross-sections of the z = 0 plane
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Figure 3: Cost function versus iteration numbers

square (RMS) reconstruction error, as shown in Fig. 3
and Fig. 4. The multigrid algorithms converge in only
25 iterations while the fixed algorithm required in 280
iterations. Convergence speed and reconstruction im-
age quality were similar for all multigrid algorithms
but were significantly worse for the fixed grid algo-
rithm. In fact, the multigrid algorithms converged to a
slightly lower value of the cost functional (i.e. −39810
versus −39795) which appears to have a significant im-
pact on reconstruction quality. The RMS image error
for the 4 level multigrid algorithm converged to 0.0069
while the fixed algorithm converged to a slightly higher
value of 0.0078. The reconstructions in Fig. 2(b) also
shows that the multigrid algorithms reconstructed im-
ages are visually more accurate than the fixed grid
algorithm in Fig. 2(c).

5 Conclusions

We proposed a multigrid inversion algorithm which
is particularly well suited for nonlinear inverse prob-
lems with forward models given by the solution to
a PDE. Multigrid inversion works by dynamically
computing consistent cost functionals across different
scales. This guarantees that the solution to the multi-
grid algorithm is also a fixed point to the fine grid
algorithm. Experimental results for the ODT applica-
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Figure 4: RMS image error versus iteration numbers

tion demonstrate that multigrid inversion can dramat-
ically speed convergence while producing robust and
stable convergence.
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