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Abstract. We investigate fast iterative image reconstruction methods for fully 3D
multispectral bioluminescence tomography for applications in small animal imaging. Our
forward model uses a diffusion approximation for optically inhomogeneous tissue, which we
solve using a finite element method (FEM). We examine two approaches to incorporating the
forward model into the solution of the inverse problem. In a conventional direct calculation
approach one computes the full forward model by repeated solution of the FEM problem,
once for each potential source location. We describe an alternative on-the-fly approach where
one does not explicitly solve for the full forward model. Instead, the solution to the forward
problem is included implicitly in the formulation of the inverse problem, and the FEM problem
is solved at each iteration for the current image estimate. We evaluate the convergence speeds
of several representative iterative algorithms. We compare the computation cost of those two
approaches, concluding that the on-the-fly approach can lead to substantial reductions in total
cost when combined with a rapidly converging iterative algorithm.

1. Introduction

Bioluminescence tomography is an in vivo imaging technique that localizes and quantifies
bioluminescent sources in a small animal. It has recently gained a great deal of attention as
a promising means for macroscopic in vivo imaging of gene expression and other molecular
and cellular-level processes (Contag and Bachmann 2002, Ntziachristos et al 2005). The
objective of bioluminescence tomography is to reconstruct the three-dimensional (3D) spatial
distribution of bioluminescent sources inside the animal from images of the light emitted
through the animal surface. Collecting measurement data in multiple spectral bands and
from more than one view, so that the entire animal surface is imaged, facilitates tomographic
reconstruction of the 3D optical source distribution (Chaudhari et al 2005).

We have set up a bioluminescence tomographic imaging system using mirrors to collect
four independent views (Chaudhari et al 2005). Multispectral data were acquired to improve
localization (Chaudhari et al 2005, Dehghani et al 2006, Cong and Wang 2006, Wang et
al 2006b, Kuo et al 2007, Allard et al 2007, Lv et al 2007). We then used an FEM
solution of the diffusion equation to construct realistic forward models. We have successfully
localized bioluminescent sources with this system, using the TOAST software to compute the
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forward model (Arridge et al 1993). However, TOAST is primarily intended to solve the
diffuse optical tomography problem and is not well adapted for bioluminescence tomography
applications; the forward model computation cost is high.

Fully 3D multispectral bioluminescence tomography is a computationally challenging
inverse problem because 1) FEM-based forward models, which allow inhomogeneous tissue
and realistic geometry, require the inversion of a very large matrix to solve the forward
problem, 2) the use of multispectral data, which helps localize deep sources, increases the
problem size by the number of spectral bins, and 3) the inverse problem is intrinsically ill-
posed due to the nature of the photon diffusion process and the limited information contained
in data collected only on the animal surface.

In this paper we investigate various numerical techniques in order to minimize the
cost of computing inverse solutions. The inverse problem is equivalent to a search for the
source distribution which best predicts the measured data while also satisfying an a priori
assumption regarding the smoothness of the source distribution. In order to iteratively solve
the inverse problem, a forward model which maps a source to the data domain must be
computed repeatedly. We explore two different approaches to incorporating the forward
solutions into iterative algorithms for the inverse problem: 1) a direct calculation approach
where the forward problem is solved in advance for every source location and then a forward
solution is computed as a linear combination of these precomputed solutions, and 2) an on-
the-fly approach where the FEM matrix inversion problem is solved as needed at each iteration
using the current estimate of the source configuration. In this way, the full forward model need
never be computed. We evaluate those approaches, combined with several different iterative
algorithms, to determine the combination of forward and inverse algorithm that will minimize
the computational cost.

Our goal in this paper is to introduce and evaluate methods that can rapidly reconstruct
3D bioluminescent images while still using a realistic FEM forward model. To the best of
our knowledge, the on-the-fly approach is novel to this application and can substantially
reduce the total reconstruction time, as shown in Section 4. The iterative algorithms we
consider in this paper include the class of incremental gradient or ordered subset methods,
which have been widely explored for applications in nuclear medicine imaging (Hudson
and Larkin 1994, Browne and De Pierro 1996, Ahn and Fessler 2003) but have not been
investigated in the optical imaging literature. The algebraic reconstruction technique (ART)
(Gordon et al 1970), which is a special case of the incremental gradient algorithms, was
used for diffuse optical tomography (Arridge and Schweiger 1997). Our comparison of
reconstruction times for the different methods described above should help guide the selection
of reconstruction and forward modeling algorithms for developers of 3D bioluminescent and
fluorescent imaging systems when using FEM-based forward models.

In Section 2 we formulate the forward problem based on the diffusion equation using
FEM models and describe approaches to incorporating the FEM solvers into iterative
algorithms. In Section 3 we define the inverse problem using regularized least squares (RLS)
and describe various iterative algorithms for computing the inverse solution. Finally, in
Section 4 we evaluate different reconstruction methods in terms of computation times using
in vivo bioluminescent imaging data from a mouse with an implanted brain tumour.

2. Forward problem

In the forward problem one needs to predict the photon flux from the animal surface for a given
bioluminescent source distribution using known optical scatter and absorption properties
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within the animal. Since iterative solutions to the inverse problem require multiple solutions
to the forward problem, a computationally efficient forward solution is important.

2.1. Forward model

Photon propagation in turbid media can be described by the radiative transfer or Boltzmann
transport equation (Arridge 1999). While this model can be used in bioluminescence
tomography (Klose 2007), the high computation cost and detailed knowledge required of the
media’s optical properties limit its use in practice. In contrast, the diffusion approximation
under the assumption of isotropic scattering has been used extensively (Arridge et al
1993, Schweiger et al 1995, Jiang 1998, Arridge 1999, Hielscher et al 1999, Gu et al
2004, Wang et al 2004, Cong et al 2005, Slavine et al 2006, Dehghani et al 2006, Comsa

et al 2006, Soloviev 2007, Kuo et al 2007). The diffusion approximation is reasonably
accurate in soft tissue in the near-infrared region where scattering dominates absorption
(Arridge 1999, Shen et al 2007). We therefore focus on the forward model based on the
following steady-state diffusion equation (Arridge 1999):

{−∇ · κ(r, λ)∇ + µa(r, λ)}φ(r, λ) = q(r, λ) for r ∈ Ω (1)

subject to a Robin boundary condition

φ(r, λ) + 2κ(r, λ)Gn̂(r) · ∇φ(r, λ) = 0 for r ∈ ∂Ω (2)

where q represents the bioluminescent source distribution, φ denotes the photon density,
r ∈ R

3 denotes the location vector, Ω ⊂ R
3 is the animal volume, ∂Ω is the animal surface,

n̂ is a unit vector pointed outwardly normal to the surface ∂Ω, λ is the wavelength, and
κ(r, λ) = 1/[3{µa(r, λ) + µ′

s(r, λ)}] with µa and µ′
s being the absorption and reduced

scattering coefficients, respectively. In the boundary condition (2), G is a parameter modelling
internal reflection at the boundary and can be computed as G = (1 + γ)/(1 − γ) where
γ ≈ −1.4399n−2

int + 0.7099n−1
int + 0.6681 + 0.0636nint with nint being the refractive index

of tissue (Schweiger et al 1995). The measurable photon flux at r ∈ ∂Ω is given by
m(r, λ) = φ(r, λ)/(2G). The mapping from the source distribution q in the volume to
the photon flux m through the surface can be obtained by solving (1) for φ given q.

Approaches to solving the diffusion equation (1) include analytical methods that assume
simplified geometry and homogeneous tissue (Rice et al 2001) and the more general finite
element method (FEM) (Arridge et al 1993, Schweiger and Arridge 1997, Jiang 1998,
Arridge 1999, Arridge et al 2000, Roy and Sevick-Muraca 2001, Gu et al 2004, Cong et
al 2005, Alexandrakis et al 2005, Chaudhari et al 2005, Lv et al 2006). Although the
analytical method is more computationally efficient, simplifying assumptions about geometry
and optical properties can produce inaccurate results (Chaudhari et al 2005). Here we focus
on the FEM-based forward model.

In the FEM framework, the 3D animal volume Ω is discretized into tetrahedral elements
connected at v vertex nodes. The source q and the photon density φ are also discretized using
finite element basis functions and are represented by q ∈ R

v and φ ∈ R
v , respectively. Then

the problem of solving the diffusion equation reduces to

Fφ = q (3)

where F ∈ R
v×v . The FEM matrix F is a function of the optical absorption and

reduced scattering coefficients and refractive index. The optical properties can be specified
using published measurements applied to a segmented MR or CT volume (Wang et al
2004, Chaudhari et al 2005, Alexandrakis et al 2005, Wang et al 2006a, Lv et al
2006, Alexandrakis et al 2006, Allard et al 2007). A detailed description of how to construct
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F can be found in (Arridge et al 2000). The FEM matrix F is symmetric (Arridge et al 2000,
Equations (29)–(34)). It is also sparse with on the order of 10 nonzero elements per row.

2.2. Forward solution method

There are two standard methods for solving the inversion problem in (3) for φ: 1) Cholesky
factorization and substitution (CFS) and 2) preconditioned conjugate gradient (PCG) (Arridge
et al 1993, Davies et al 1997, Schweiger and Arridge 1997, Arridge 1999). See (Schweiger
and Arridge 1997) for an overview of those methods and an analysis of their computational
complexities. We chose CFS for our forward problem solver since CFS was faster than
PCG in our experiments using a realistic FEM mesh; a comparison can be found in
(Chaudhari 2006, Ahn et al 2007a). The reason that CFS was more efficient in our case
is that if Cholesky factorization is done once, subsequent forward and back-substitutions can
be inexpensively performed for multiple sources, as noted in (Schweiger and Arridge 1997).
In CFS, F is first decomposed into Cholesky factors as F = U ′U where U is an upper
triangular matrix and ′ represents matrix or vector transpose. Next one solves U ′c = q for
c ∈ R

v by forward substitution and then solves Uφ = c for φ by back-substitution. The
Cholesky factorization to calculate U is a one-time computation for a given FEM model F

and the forward and back-substitution can be repeatedly computed for different q’s using the
precomputed Cholesky factor U .

2.3. System matrix

Let wi ∈ R
v be the load vector for a unit source at voxel i and W = [w1 w2 . . . wp] ∈ R

v×p

be a matrix of the load vectors. Then the source representation x ∈ R
p using the load vectors

as a basis, and the corresponding source q ∈ R
v in tessellation nodes have the following

relationship:

q = Wx. (4)

The data y ∈ R
N , which denote the photon flux through the animal surface as measured by a

CCD camera, is given by

y = Dφ (5)

where D ∈ R
N×v maps the photon density in the volume to the CCD camera measurements.

Typically, p < v and N < v; therefore, W is a thin matrix and D is wide.
Combining (3), (4), and (5), we construct a system matrix A ∈ R

N×p that transforms
the source x into the measurement data y such that

y = Ax = DF−1Wx. (6)

The matrices D and W are sparse so the cost for multiplying a vector by D or W is
negligible. Note that the system matrix A is not sparse whereas F is. To compute F −1q

for some q, one needs to solve the forward problem (3) as discussed in Section 2.2.

2.4. Forward and back-projector implementation approach

The two important operations involving the system matrix A are “forward projection”
and “back-projection,” referred to jointly below as F/B projection. This terminology is
borrowed from computed tomography (Herman 1980) although a mapping from a source
to measurement data analogous to the system matrix was called the projection operator and
the data was called the projection data in a context of optical tomography in (Arridge and
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Schweiger 1997). For forward projection one multiplies a vector by the system matrix, that
is, one computes y = Ax for some x ∈ R

p. For back-projection one computes x = A′y for
some y ∈ R

N . One needs to compute F/B projection multiple times in iterative algorithms.
Since the time required for F/B projection is a major contributor to the total reconstruction
time, it is important to implement F/B projection operators efficiently. We investigate two
approaches to implementing F/B projectors: a straightforward scheme described below we
call the “direct calculation” approach and a new “on-the-fly” method.

2.4.1. Direct calculation approach In the direct calculation approach, one precomputes the
full system matrix A and implements the F/B projector by a matrix-vector multiplication.
Each column of the system matrix is computed by taking a unit vector corresponding to each
source location as follows:

compute Cholesky factor U

for j = 1, . . . , p

q̂ = Wej

solve U ′Uφ̂ = q̂ for φ̂ by forward and back-substitution (7)
ŷ = Dφ̂

store ŷ as the jth column of A

end

where ej = [0, . . . , 0, 1, 0, . . . , 0]′ ∈ R
p is the jth unit vector with only the jth entry being 1.

The substitution step in (7) must be repeated for a total of p source locations. However, once
A is precomputed, F/B projection can be implemented as direct matrix-vector multiplications,
Ax and A′y.

2.4.2. On-the-fly approach An alternative that avoids precomputing the full system matrix,
is to calculate the F/B projection in an on-the-fly manner. The on-the-fly forward projector
can be implemented as follows:

compute Cholesky factor U

if “Ax” needs to be computed for some x ∈ R
p

q̂ = Wx

solve U ′Uφ̂ = q̂ for φ̂ by forward and back-substitution (8)
ŷ = Dφ̂, which yields “Ax”

end.

Similarly, in view of the symmetry of F , one can compute the backprojection on the fly as
follows:

compute Cholesky factor U

if “A′y” needs to be computed for some y ∈ R
N

φ̂ = D′y

solve U ′Uq̂ = φ̂ for q̂ by forward and back-substitution (9)
x̂ = W ′q̂, which yields “A′y”

end.

Every time we compute a forward or back-projection in the on-the-fly approach, we need to
perform the substitution step only once.
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2.4.3. Comparison In the direct calculation approach, it is very expensive to precompute the
full system matrix A ∈ R

N×p because the forward problem must be solved p times where
p is the number of source voxels. However, once the matrix has been precomputed, the F/B
projection can be computed rapidly as a single matrix vector product. On the other hand, in
the on-the-fly approach, whenever one needs to compute the forward or back-projection, one
must solve the forward problem in (3), which is more expensive than computing the product
of the system matrix and a vector, partly because the FEM matrix F ∈ R

v×v is larger than
the system matrix A ∈ R

N×p (typically, N < v and p < v) despite the sparsity of F . For
example, in the multispectral bioluminescence tomography system we consider in Section 4,
v2 was larger than Np by a factor of > 150.

Which of the direct calculation and on-the-fly approaches should be used? This depends
on how many images are to be reconstructed for a given forward model, how many iterations
per image are required for practical convergence of an iterative algorithm, and how many
F/B projections per iteration are needed. If one wishes to investigate many different iterative
algorithms and regularization schemes for a given subject or if one assumes that the animal’s
anatomical structure and position do not change much over time in a longitudinal study, the
direct calculation approach will be beneficial because once the expensive precomputation
is performed, subsequent forward solutions can be rapidly computed by matrix vector
multiplication. In contrast, if one is to compute relatively few images with a small number
of iterations, the on-the-fly approach should be chosen. Comparisons of image reconstruction
times for different approaches using real mouse bioluminescent data are made in Section 4.

One of the advantages of the direct calculation approach is that direct access to any
column or row in the system matrix is possible when the matrix is precomputed. Column
or row access is required by certain iterative algorithms such as coordinate descent and
incremental gradient algorithms as discussed in Section 3. Furthermore, the direct calculation
approach may be more readily parallelizable than the on-the-fly approach.

Interestingly, the on-the-fly approach is closely connected with the adjoint or reverse
differentiation method which is widely used for computing the gradient of a cost function in
nonlinear diffuse optical tomography (Davies et al 1997, Hielscher et al 1999) as discussed
in the appendix.

2.5. Multispectral system model

In multispectral imaging with K spectral bins, a multispectral system matrix Amul is
constructed by concatenating monochromatic system matrices A1(λ1), . . . ,AK(λK) for
wavelengths λ1, . . . , λK (Chaudhari et al 2005):

ymul = Amulx (10)

where Amul = [s1A1(λ1)
′ . . . sKAK(λK)′]′ ∈ R

NK×p with s1, . . . , sK being known
emission spectra of the bioluminescent source, and ymul = [y1(λ1)

′ . . . yK(λK)′]′ ∈ R
NK

the multispectral data. It is straightforward to apply the F/B projection methods discussed in
Section 2.4 by combining individual F/B projections for each wavelength. That is, the forward
projection is given by

ymul = Amulx = [s1(A1(λ1)x)′ . . . sK(AK(λK)x)′]′

and the back-projection

x = A′
mulymul =

K
∑

k=1

skAk(λk)′yk(λk).
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Henceforth, we omit the subscript in Amul and ymul for notational simplicity and consider
both monochromatic and multispectral systems in a common framework.

3. Inverse problem

The ultimate goal of bioluminescence tomography is to estimate the source x from the photon
flux measurement y based on the system model (6) or (10). In this section we formulate the
inverse problem and discuss iterative algorithms for the inverse solution.

3.1. Regularized least squares (RLS)

We focus on the following regularized least squares (RLS) estimate:

x̂ = arg min
x≥0

Φ(x), Φ(x) = L(x) + βR(x). (11)

The nonnegativity constraint, x ≥ 0, is imposed because the source strength is physically
nonnegative (Jiang and Wang 2004, Jiang et al 2007). Although the problem size can
be reduced by allowing sources only in a permissible region (Cong et al 2004, Jiang
and Wang 2004, Cong et al 2005, Wang et al 2006b, Wang et al 2006a, Cong and
Wang 2006, Jiang et al 2007, Lv et al 2007), we do not consider such constraints here.
In (11), L is the data-fit function:

L(x) =
1

2
‖y − Ax‖2, (12)

β is a regularization parameter, and R is a quadratic regularization function such that

R(x) =
1

2
x′Rx (13)

for a nonnegative definite matrix R ∈ R
p×p. The regularizer R stabilizes the noise in

reconstructed images yet usually introduces bias. In a Bayesian framework, if the source
and the additive noise are assumed to be zero-mean Gaussian with covariance of K and
σ2I , respectively, then the RLS estimate x̂ obtained with choosing β = σ2 and R = K−1

can be viewed as a maximum a posteriori (MAP) estimate where I is the identity matrix
(Tarantola 2005, Chapter 3). Other noise models such as the shot-noise model (Ye et al
1999) can also be used; other types of regularization functions include generalized Gaussian

Markov random field priors (Bouman and Sauer 1993), non-Gaussian Gibbs priors (Hebert
and Leahy 1989), which have an edge-preserving property, and L1-norm regularizers, which
are known to produce sparse reconstruction (Cao et al 2007). We focus here on the quadratic
cost function using (12) and (13). However, we note that the optimization methods described
below are general, and can, with certain restrictions on differentiability and continuity, be
used in conjunction with the nonquadratic regularizers referred to above.

We use a weighted L2-norm regularizer with a positive-definite diagonal matrix R

(Lin et al 2006). If R is the identity matrix, then R(x) becomes a conventional L2-norm
regularizer (Cong and Wang 2006, Han et al 2006, Wang et al 2006a, Lv et al 2006, Han
and Wang 2007, Soloviev 2007). In this case, as the regularization parameter β increases,
the reconstructed image becomes smooth and less noisy. But the reconstructed sources also
tend to become superficial, consequently increasing localization errors particularly for deep
sources. This occurs because deep sources are highly attenuated so need larger amplitudes
to match the surface photon flux from a superficial source; these large amplitudes are in turn
penalized by the L2-norm. Quadratic weighting schemes have been proposed to reduce the
preference for superficial sources in the related problem of cortical current imaging in EEG
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and MEG (Lin et al 2006, Baillet et al 2001). Nonquadratic penalties can also have attractive
properties in this respect.

We use the following sensitivity-dependent weight matrix, which through column
normalization removes the increased penalty for deep sources, effectively removing the bias
towards superficial ones:

R = diagj

{

γ2
j

}

(14)

where diag{·} denotes a diagonal matrix, γj is the sensitivity of the jth source location defined
as

γj =
∑

i

aij , (15)

and aij are the entries in the system matrix A. One can assume γj > 0 for all j without
loss of generality since one can exclude any source xj with γj = 0 from the parameter space.
Note that γj’s are readily calculated using an on-the-fly back-projection A′

1 of uniform data
1 = [1, . . . , 1]′, without precomputing A.

The cost function in (11) with a positive-definite matrix R is strictly convex and so there
exists a unique solution x̂ of the nonnegativity-constrained optimization problem in (11) and
a local minimum is also the global minimum (Bertsekas 1999, p. 685). In the continuous
domain, the uniqueness of a solution to the diffusion equation under certain conditions on
the source is discussed in (Wang et al 2004) for the unregularized case and in (Han et al
2006, Han and Wang 2007) for the regularized one.

Most of the iterative algorithms that we study in Section 3.2 use the gradient ∇Φ of the
cost function Φ. The gradient is given by

∇Φ(x) = (A′A + βR)x − A′y, (16)

calculation of which requires F/B projections. The Hessian H of the cost function is given by

H = ∇2Φ(x) = A′A + βR. (17)

The diagonal elements of the Hessian are used in certain preconditioners in Section 3.2.5.
The quality of the reconstructed image x̂ in (11), as reflected in source localization

error, quantitation error, resolution and noise characteristics, is determined by the choice of
cost function Φ as well as the physical properties and limitations of the imaging system.
Inaccuracies in the system model A will introduce a systematic bias into the image. An
inaccurate noise model, for which we assume a zero-mean white Gaussian distribution, can
lead to suboptimal noise characteristics as well as additional bias. Image quality will also
be affected by choice of the regularization function R. However, we note that our goal here
is to explore methods for solving the inverse problem once the cost function Φ is specified,
rather than to investigate the relative merits of different cost functions. In Section 4 we use a
single regularization function which produces reasonably good localization results for the data
used in our evaluations. We then compare the convergence speeds of different reconstruction
algorithms that all converge to the same optimal solution for the chosen cost. Since all
algorithms converge to the same solution we do not present comparisons of image quality
in this paper.

3.2. Iterative algorithms

We will investigate iterative solutions to the optimization problem (11) since the nonnegativity
constraint precludes an analytical solution. We choose four representative iterative algorithms:
a gradient projection method (GPM), preconditioned conjugate gradient (PCG), coordinate
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descent (CD), and an incremental gradient algorithm, OS-SPS. We compare their convergence
speeds using real mouse bioluminescent data in Section 4. Those algorithms are described in
detail below.

A number of different algorithms for bioluminescence tomography have been used in the
literature. The expectation maximization (EM) algorithm (Dempster et al 1977) which was
originally developed to compute a maximum likelihood solution for linear Poisson inverse
problems (Shepp and Vardi 1982) was used in (Jiang and Wang 2004, Alexandrakis et al
2005, Alexandrakis et al 2006, Jiang et al 2007). The EM algorithm maximizes an

unregularized Poisson likelihood function and its convergence speed is generally very slow
(Meng and van Dyk 1997, Qi and Leahy 2006) so we do not consider it in this paper. A
deblurring variant of EM was used in (Slavine et al 2006). A regularized Newton’s algorithm
(Gu et al 2004) and a modified Newton’s method with an active set strategy (Cong et al
2004, Cong et al 2005, Lv et al 2006) have also been used. A major disadvantage of

Newton’s methods for constrained optimization is that it is computationally costly both to
enforce constraints and guarantee convergence to the solution (Bertsekas 1999, p. 231); for
example, naive orthogonal projection onto the nonnegative constraint set does not necessarily
guarantee a decrease in the cost function (Bertsekas 1999, p. 245). A constrained Landweber
method was used in (Jiang and Wang 2004), which requires nontrivial stepsize selection for
both global convergence and optimal convergence rates.

The nonnegativity constraint in (11) can be more easily enforced by the four algorithms
(GPM, PCG, CD and OS-SPS) considered here than by using active set methods (Cong et al
2004, Cong et al 2005, Lv et al 2006, Lv et al 2007). In GPM and PCG, the nonnegativity

constraint is enforced by orthogonal projection onto the constraint set and a subsequent bent
line search (Mumcuoǧlu et al 1994, Qi et al 1998); in CD and OS-SPS, the optimization
problem is reduced to a set of one-dimensional constrained problems, which makes it trivial
to enforce the constraint. All the algorithms are aimed at minimizing the common RLS cost
function in (11) and converge to the optimal point, with the exception of OS-SPS which
approaches an approximate solution as stated below. None of these algorithms has any free
parameters, such as step size, so that we can directly compare convergence rates for solving
the problem in (11).

3.2.1. Gradient projection method (GPM) A gradient projection method (GPM) is an
iterative algorithm for constrained problems analogous to a gradient descent method for
unconstrained problems (Bertsekas 1999, p. 223). The gradient projection method we focus
on here can be summarized as follows: for n = 0, 1, . . . ,

gn = ∇Φ(xn) (18)
dn = −P ngn (19)

αn = arg min
α

Φ(xn + αdn) = −
dn′gn

dn′Hdn
(20)

zn = xn + αndn

if [zn]+ 6= zn

dn = [zn]+ − xn (21)

αn = arg min
α≤1

Φ(xn + αdn) = min

(

−
dn′gn

dn′Hdn
, 1

)

(22)

end
xn+1 = xn + αndn
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where xn ∈ R
p is the nth iterate, x0 is an initial estimate, P n ∈ R

p×p is a preconditioner,
∇Φ and H are given in (16) and (17), respectively, and [·]+ denotes the orthogonal projection
onto the nonnegative orthant, that is, q = [t]+ implies qj = min(tj , 0) for all j. We describe
preconditioners for this method in Section 3.2.5. The above algorithm can be implemented
by keeping Ax as a state vector so that GPM requires one F/B projection pair per iteration
unless zn leaves the constraint set. Calculating the gradient in (18) and (16) requires one
back-projection if Axn is retained as a state vector, and calculating the denominator in (20)
needs one forward projection since dn′Hdn = ‖Adn‖2 + βdn′Rdn. If [zn]+ 6= zn, then
an additional forward projection is needed in (22) because dn is updated in (21).

3.2.2. Preconditioned conjugate gradient (PCG) A PCG method is a general purpose
optimization algorithm using a conjugate direction as a search direction (Bertsekas 1999,
p. 138). To enforce the nonnegativity constraint, we use a constrained version of PCG where
the search direction is bent when an iterate leaves the constraint set, as in Section 3.2.1
(Mumcuoǧlu et al 1994, Qi et al 1998). The version we use can be summarized as follows:
for n = 0, 1, . . . ,

gn = ∇Φ(xn)

rn = P ngn (23)

ηn =







rn′(gn − gn−1)

rn−1′gn−1
, n > 1

0, n = 0

dn = −rn + ηndn−1

if dn′
gn > 0, then dn = −rn

αn = arg min
α

Φ(xn + αdn) = −
dn′gn

dn′Hdn

zn = xn + αndn

if [zn]+ 6= zn

dn = [zn]+ − xn

αn = arg min
α≤1

Φ(xn + αdn) = min

(

−
dn′gn

dn′Hdn
, 1

)

end
xn+1 = xn + αndn.

The PCG method requires one F/B projection pair per iteration with an extra forward
projection, depending on whether zn leaves the constraint set.

3.2.3. Coordinate descent (CD) A coordinate descent (CD) method is an iterative algorithm
that minimizes the cost function along one coordinate direction for each update (Bertsekas
1999, p. 267). The method has been successfully applied to image reconstruction applications
(Bouman and Sauer 1996, Ye et al 1999). The CD method can be implemented as follows:

r = y − Ax0 for initial image x0

for n = 1, 2, . . .

for j = 1, . . . , p

xold
j = xj
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xj :=

[

xj −
(∇Φ(x))′ej

Hjj

]

+

(24)

r := r + (xold
j − xj)A·j (25)

end
xn = x

end

where ej is the jth unit vector and A·j is the jth column of A. In (24), the jth diagonal
element Hjj of the Hessian H in (17) is given by

Hjj = ξj + βRjj (26)

where

ξj =
∑

i

a2
ij , Rjj = γ2

j (27)

from (14), (15), and (17). The CD method requires access to each column A·j of the system
matrix; therefore, the on-the-fly approach is not suitable for CD.

3.2.4. Incremental gradient methods Incremental gradient methods (Bertsekas 1999, p. 108)
or ordered subset (OS) algorithms (Hudson and Larkin 1994) are optimization techniques
which use only a subset of the data for each update with the aim of reducing the cost
for computing gradients. Various incremental gradient methods have been successfully
applied to PET/SPECT image reconstruction to accelerate convergence speeds (Hudson and
Larkin 1994, Qi and Leahy 2006). The applicability of an OS algorithm to bioluminescence
tomography was mentioned in (Jiang and Wang 2004). In this paper we consider an OS
version of separable paraboloidal surrogates (OS-SPS) where a line search is not required
(Erdoğan and Fessler 1999). We derive the OS-SPS algorithm for our problem by following
the derivation of additive updates in (Erdoğan and Fessler 1999):

for n = 0, 1, 2, . . . ,

xn,1 = xn

for m = 1, 2, . . . ,M

xn,m+1 =
[

xn,m − MP SPS∇Φm(xn,m)
]

+

end
xn+1 = xn,M+1

end

where

P SPS = diagj

{

1
∑

i aij

∑

k aik + βRjj

}

and

Φm(x) =
1

2

∑

i∈Sm

(yi − [Ax]i)
2 +

1

M
R(x) (28)

for m = 1, . . . ,M with M being the number of subsets Sm or subcost functions Φm.
We choose the subsets Sm in (28) by downsampling the data space as Sm = {i : i ≡
m − 1 (mod M), i = 1, . . . ,KN}.

Generally, OS-SPS does not converge to an optimal solution of the problem in (11) but
to a limit cycle of points which are only approximate solutions (Ahn et al 2006). The OS type
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Figure 1. Example scatter plot of ξj =
P

i a2

ij vs. γ2

j = (
P

i aij)
2 for the multispectral

imaging system used in Section 4.

algorithms can be forced to converge to the optimal solution by using relaxation parameters
(Ahn and Fessler 2003), switching to a convergent algorithm at some point (Li et al 2005),
or rederiving the algorithm in a framework of incremental optimization transfer (Ahn et al
2006). However, we use the original form of OS-SPS as outlined above for simplicity because
it works well enough for our purposes, as shown in Section 4. Since OS algorithms, including
OS-SPS, require access to each row of the system matrix A to compute the gradient ∇Φm of
the subcost function, the on-the-fly approach is not suitable.

3.2.5. Preconditioners For ill-conditioned problems, gradient based methods suffer from
slow convergence but can be accelerated using preconditioning. Newton’s method using the
inverse of the Hessian as a preconditioner converges very quickly (Bertsekas 1999, p. 26).
However, calculating the Hessian inverse is impractical for large-scale problems. Here we
consider only simple diagonal preconditioners.

A popular choice is a diagonal approximation to Newton’s method (Bertsekas 1999,
p. 27):

P N = diagj

{

1

Hjj

}

= diagj

{

1

ξj + βRjj

}

(29)

with ξj and Rjj defined in (27). Calculating the term ξj =
∑

i a2
ij requires precomputation of

the full system matrix A so the on-the-fly approach is not suitable for this preconditioner.

However, one can estimate ξj from γ2
j where γj

4
=

∑

i aij since ξj and γ2
j are usually

highly correlated and γj can be readily computed on the fly by backprojecting a vector of
ones as discussed in Section 3.1. Figure 1 shows an example scatter plot of ξj versus γ2

j

for the multispectral imaging system model from Section 4. As shown in the figure, ξj

and γ2
j are strongly correlated (Pearson’s correlation coefficient was 0.922). A practical
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strategy for estimating ξj , which works for the on-the-fly approach, is as follows. First,
one computes γj for j = 1, . . . , p by back-projection A′

1. Next, one randomly chooses
T source locations j1, . . . , jT , and calculates projections y(t) = Aejt and subsequently
ξjt

= ‖y(t)‖2 =
∑

i a2
ijt

for t = 1, . . . , T . Then one estimates the slope τ in the scatter plot
by fitting a line ξ = τγ2 to the T samples {(γ2

jt
, ξjt

)}T
t=1. Finally, one approximates ξj as

ξ̂j = τ̂ γ2
j using the slope estimate τ̂ for j = 1, . . . , p. We refer to the resulting preconditioner

as the estimated diagonal approximation to Newton’s (EN) method:

P EN = diagj

{

1

ξ̂j + βRjj

}

, (30)

which can be applied in both direct calculation and on-the-fly approaches. Calculating this
preconditioner requires one back-projection for computing γ2

j ’s and T forward projections for
estimating τ . In Section 4, we choose T = 10 source locations for estimating the slope τ . The
coefficient of variation (CV) of τ̂ due to randomly choosing 10 source locations was about
29%, which is stable enough for our purposes (a very accurate estimate of τ is not necessary).

For PCG we also consider an EM-type preconditioner as follows:

P EM(x) = diagj

{

xj + ε

γj

}

, (31)

where ε is a small positive number, e.g., ε = 10−3 max(1,maxl xl) > 0. This
preconditioner originates from the EM algorithm for maximizing a Poisson likelihood (Shepp
and Vardi 1982) and has been used successfully to accelerate PCG algorithms for emission
tomography (Kaufman 1987). It has also been used with PCG for bioluminescent tomography
(Chaudhari et al 2005).

3.2.6. Comparison The on-the-fly approach is not suitable for CD and OS-SPS, as discussed
above, since they require access to each row or column of the system matrix; neither is it
suitable for the diagonally approximated Newton preconditioner P N in (29) since calculating
ξj needs the precomputed full system matrix. For GPM and PCG, using P EN in (30) or P EM

in (31), both direct calculation and on-the-fly approaches can be applied.
The computation cost for the iterative algorithms is dominated by F/B projections.

Therefore, the computational complexity of each algorithm can be represented by the number
of F/B projections required per iteration. A forward or back-projection amounts to matrix-
vector multiplication for the direct calculation approach, and to one FEM forward solution
for the on-the-fly approach. GPM and PCG require one F/B projection pair plus possibly an
extra forward projection. The cost per iteration for CD and OS-SPS equals roughly that of
one F/B projection pair. Therefore, the computation costs per iteration for those algorithms
considered here do not differ substantially once the F/B projection implementation approach
is chosen. Other important factors are the cost for precomputation and the convergence speed,
that is, how many iterations are required for practical convergence.

Memory requirements for the iterative algorithms are modest. During iterations, one
needs a memory space O(p + KN) proportional to the image size p and to the data size
KN . Additionally, for the direct calculation approach, one needs to store the KN ×p system
matrix. On the other hand, for the on-the-fly approach, one must retain the v×v FEM matrix,
which is sparse and has about 10v nonzero elements, for each wavelength if PCG is used for
the forward problem solver; and one needs to keep the v×v Cholesky factor, which is a sparse
upper triangular matrix, for each wavelength if CFS is chosen for the FEM solver.

The cost of all of these methods is dominated by the cost of (possibly partial) forward
and back-projections. Since these operations all involve large matrix-vector multiplications
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Table 1. Comparison of computation costs for different reconstruction methods when a single
image reconstruction is performed.

E < 10% E < 5% E < 1%
F/B projection algorithm iteration total iteration total iteration total

approach cost recon. cost recon. cost recon.
(# iters) time (# iters) time (# iters) time

GPM-U 359s 13068s 599s 13307s 1444s 14152s
(216) (378) (879)

GPM-N 53s 12761s 77s 12786s 129s 12838s
(32) (46) (79)

GPM-EN 54s 12762s 71s 12780s 121s 12830s
(29) (42) (73)

direct CG 563s 13272s 941s 13650s 2376s 15084s
calculation (216) (378) (878)
approach PCG-N 58s 12766s 88s 12796s 157s 12865s

with (35) (52) (93)
precomputed PCG-EN 59s 12767s 81s 12789s 146s 12854s

system (33) (48) (86)
matrix PCG-EM 81s 12789s 111s 12819s 268s 12976s

(precomput. (45) (66) (151)
time: CD 37s 12746s 46s 12754s 64s 12773s

12708s) (20) (26) (38)
OS-SPS-2 48s 12756s 80s 12788s 178s 12887s

(36) (61) (136)
OS-SPS-5 20s 12729s 35s 12743s − −

(15) (26)
OS-SPS-10 11s 12719s 20s 12728s − −

(8) (15)

GPM-U 4877s 4987s 8523s 8633s 16152s 16262s
(216) (378) (879)

on-the-fly GPM-EN 688s 798s 981s 1091s 1614s 1724s
approach (29) (42) (73)

(precomput. CG 6531s 6641s 11400s 11509s 21557s 21666s
time: (216) (378) (878)
110s) PCG-EN 735s 845s 1035s 1145s 1797s 1907s

(33) (48) (86)
PCG-EM 1033s 1143s 1480s 1590s 3291s 3401s

(45) (66) (151)

for the direct calculation approach, parallelization using multithreading or other methods is
relatively straightforward. Among the four methods, the full gradient methods (PCG and
GPM) in conjunction with the direct calculation approach benefit most readily since the full
forward and back-projection operations can be easily distributed across processors. The CD
method which updates one variable at a time will benefit least from parallelization.

4. Results

We applied iterative reconstruction methods to real bioluminescent data obtained from a
mouse with a brain tumour implanted in the right cerebral hemisphere. Our goal is to
compare computation cost for different reconstruction methods. All methods described should
converge to the RLS image x̂ in (11) with the exception of OS-SPS which may enter a limit
cycle as described above.
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Multispectral bioluminescent data were obtained from top and two side views by the
IVIS 200 imaging system for wavelengths 580nm, 600nm, 620nm, and 640nm. Since the
tumour was near the dorsal surface of the head, no signal was detected from the bottom view
and those three views (top and two sides) had sufficient information for localizing the source
(Chaudhari et al 2005).

A 3D CT scan data was used to segment the anatomical volume into skull and soft
tissue and to assign standard optical properties (Cheong et al 1990). The specific values
of the absorption and reduced scattering coefficients for the skull and soft tissue we used can
be found in (Chaudhari et al 2005). A regularization parameter value of β = 0.05 was
determined empirically. All image reconstructions were performed on an AMD Opteron 870
2.0GHz computer. For all the iterative algorithms, a zero uniform image, 0 = [0, . . . , 0]′ ∈
R

p, was used as an initial estimate x0.
There is a trade-off between the number of FEM mesh nodes and the accuracy of

FEM model; 105–106 nodes were recommended for sufficient accuracy in 3D problems
(Schweiger and Arridge 1997). Here we used a FEM-based forward model with v = 71 256
tessellation nodes, a source space with p = 10 814 source locations, and N = 3085 surface
measurement nodes for K = 4 spectral bins. We did not attempt to investigate different
FEM models in terms of accuracy and computation cost since our purpose is to compare
the computation speeds of different reconstruction methods for a given model; however, we
achieved reasonably good localization results within a reasonable time as shown below. See
(Chaudhari et al 2005) for a study of the effects of the number of surface measurement points
on reconstruction results.

First, we precomputed the full system matrix A by using the mldivide function in
Matlab (v7.3; Mathworks, MA, USA). We computed 500 columns of the system matrix
at a time; that is, we prepared a 71 256 × 500 matrix by combining 500 load vectors and
solved the forward problem in (3) by putting the matrix on the right hand side. It took 12708
secs to compute the full system matrix as shown in Table 1. Then we reconstructed the
bioluminescence image with the system matrix using the direct calculation approach. The
iterative algorithms were implemented in the C language. Table 1 shows, in the columns
named iteration cost, the computation time in secs and the number of iterations, required
for each algorithm to achieve the relative error E = ‖xn − x̂‖/‖x̂‖ < 10%, < 5%, and
< 1%, respectively, where the RLS image x̂ in (11) was estimated by 2000 iterations of
GPM-N. Note that the relative error E is not with respect to the true source distribution which
is unknown but with respect to the RLS solution x̂ given in (11). Therefore, E represents how
close an image is to the converged solution and can be used for evaluating the convergence
speed of an iterative algorithm. In the table, GPM-U denotes the unpreconditioned GPM;
GPM-N and GPM-EN denote GPM with preconditioner P N and P EN given in (29) and
(30), respectively; CG, PCG-N, PCG-EN, and PCG-EM denote PCG with no preconditioner
and with preconditioners P N, P EN, and P EM, respectively; and OS-SPS-2, OS-SPS-5, and
OS-SPS-10 denote OS-SPS with 2, 5, and 10 subsets, respectively. In Table 1, the total
reconstruction time is the sum of the precomputation time and the iteration cost. We did not
include the computation cost for constructing the FEM matrix F , which is common in all the
methods.

Next, we reconstructed images using the on-the-fly approach. For the on-the-fly
approach, the precomputation time (110 secs) in the table represents the time required for
Cholesky factorization. As discussed in Section 3, we excluded CD and OS-SPS, and
preconditioner P N for this approach. For the on-the-fly approach we implemented the
iterative algorithms in Matlab. For the on-the-fly F/B projectors, the one-time computation
for Cholesky factorization was performed by the chol function, and repeated substitutions



Fast image reconstruction methods for bioluminescence tomography 16

were carried out by the mldivide function in Matlab.
As shown in Table 1, for both GPM and PCG, the use of preconditioners P N, P EN, and

P EM significantly accelerates convergence. In other words, the preconditioned algorithms
(GPM-N, GPM-EN and PCG-N, PCG-EN, PCG-EM) require fewer iterations and lower
iteration costs in secs than the unpreconditioned ones (GPM-U and CG). Preconditioners
P EN using the estimated diagonal elements of the Hessian and P N using the exact diagonals
showed similar convergence speeds. In the direct calculation approach, CD and OS-SPS-10
were much faster than GPM and PCG. In fact, OS-SPS-10 showed the fastest convergence
speed; it required only 8 and 15 iterations (11 and 20 secs) for E < 10% and E < 5%,
respectively. However, OS-SPS-10 (as well as OS-SPS-5) could not reach a point where
E < 1% because of the limit cycle behaviour. This is a typical characteristic of incremental
gradient or OS algorithms; as the number of subsets increases the initial convergence speed
becomes faster but the limit point moves further from the optimal solution. Therefore, when
it comes to the number of subsets for OS algorithms, there is a trade-off between convergence
speed and accuracy. For E < 1%, CD was fastest among the iterative algorithms for the direct
calculation approach. On the other hand, for the on-the-fly approach, GPM-EN showed the
fastest convergence rate for all three relative error cases, and PCG-EN showed a similar yet
little slower convergence rate.

The precomputation time (12708 secs) for the direct calculation approach is much larger
than that (110 secs) for the on-the-fly approach whereas the cost per iteration for the direct
approach is smaller than that for the on-the-fly approach. If few images are to be reconstructed
for a given system, then the on-the-fly approach can substantially reduce the total computation
cost. For example, for the relative error < 10%, GPM-EN, the fastest among the on-the-fly
algorithms in total reconstruction time, is faster than OS-SPS-10, the fastest of the direct
calculation algorithms, by a factor of 12719/798 ≈ 15.9; similarly, for E < 5%, by a factor
of 12728/1091 ≈ 11.7. For E < 1%, GPM-EN in the on-the-fly approach is faster than CD in
the direct calculation approach by a factor of 12773/1724 ≈ 7.4. As the number of required
iterations increases, the factor of computational saving of the on-the-fly approach compared
to the direct approach decreases.

Figure 2 shows the RLS image x̂ and Figure 3 shows an image reconstructed by 29
iterations, taking 798 secs in total reconstruction time, of GPM-EN, which is the fastest among
the on-the-fly algorithms. Although the relative error between the images is about 10%, they
look similar and the localization is reasonably accurate.

5. Conclusion

We have explored computationally efficient methods for fully 3D multispectral biolumines-
cence image reconstruction. When it comes to incorporating F/B projectors into iterative
algorithms, we investigated the straightforward direct calculation approach and an on-the-fly
approach where one does not have to precompute the system matrix. We evaluated those
approaches combined with various iterative algorithms by using real mouse bioluminescence
data. We achieved a substantial speed-up using the proposed on-the-fly approach by a factor
of up to 15.9 when a single image reconstruction is required. However, if multiple image
reconstructions are to be performed for a given model, the speed-up factor decreases and in
this case the direct calculation approach may be more efficient. Using proper preconditioners
accelerates convergence speeds significantly; the estimated diagonal approximation to New-
ton’s preconditioner (EN), which applies to both direct calculation and on-the-fly approaches,
reduced the iteration cost by a factor of > 7 for both GPM and PCG. In the on-the-fly ap-
proach, GPM-EN yielded the fastest convergence speed and PCG-EN showed a little slower
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Figure 2. The RLS image x̂, which minimizes the cost function Φ given in (11), shown on nine
horizontal planes. The reconstructed bioluminescence image was obtained by 2000 iterations
of GPM-N and is overlaid on co-registered MR slices. Reconstructed values greater than or
equal to 10% of the maximum value are displayed. The black contour denotes the boundary of
the tumour obtained from the MR image. The color scale on the right shows relative intensity.
These results are not quantitatively calibrated.

convergence rates. For the direct calculation approach, OS-SPS, an incremental gradient al-
gorithm, was the fastest one although it converged to an approximated RLS solution; CD was
the second fastest, which converges to the RLS solution.

We note that the emphasis in this paper is on fast methods for computing inverse
solutions. With the exceptions described above, all methods implemented should converge
to the same solution. For this reason we have not explored measures of image quality such as
bias, resolution and variance. The methods presented here represent the simplest (quadratic)
error models and regularization functions. However, most of the ideas discussed can be
extended to incorporate more sophisticated noise models and nonquadratic regularization
functions. We also restricted our attention here to bioluminescence imaging. However, the
methods can be extended to the related problem of reconstructing images in 3D fluorescence
optical tomography (Ahn et al 2007b). In this case, the models must be extended to also
include the propagation of the excitation light through the animal. Since this process can also
be approximated using the diffusion equation, similar fast FEM and on-the-fly methods can
be developed.
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Figure 3. The same as Figure 2 except that this image was reconstructed using 29 iterations
of GPM-EN using the on-the-fly approach. The relative error E is about 10%.

Appendix: Relationship between adjoint or reverse differentiation and F/B projection
approaches

Suppose that F = F (θ) and q = q(θ) where F and q are defined in (3) and θ =
[θ1, . . . , θS ]′ ∈ R

S is an unknown parameter vector. In diffuse optical tomography, θ

represents the optical absorption and reduced scattering coefficients and q is a known constant
in θ. In bioluminescence tomography, θ is the source distribution and F is a known constant.
From (3), one can show

∂φ

∂θs

= F−1

(

∂q

∂θs

−
∂F

∂θs

φ

)

(A.1)

for s = 1, . . . , S. Let a data-fit function be defined as

L(θ) =
1

2
‖y − Dφ‖2 (A.2)

where D is defined as in (5). Here our goal is to compute the gradient ∇L(θ) efficiently.
Using (A.1), one obtains

∂L

∂θs

= − (y − Dφ)′DF−1

(

∂q

∂θs

−
∂F

∂θs

φ

)

= −

〈

D′(y − Dφ),F−1

(

∂q

∂θs

−
∂F

∂θs

φ

)〉

(A.3)

where < ·, · > denotes the real inner product. If one is to use the above expression to compute
∇L(θ), one needs to solve the forward problem in (3) to compute φ and additionally “S”
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forward problems to calculate F −1{∂q/∂θs − (∂F /∂θs)φ} for s = 1, . . . , S by solving
Fu = ∂q/∂θs − (∂F /∂θs)φ for u. Now one can rewrite (A.3) as

∂L

∂θs

= −

〈

(F−1)∗D′(y − Dφ),
∂q

∂θs

−
∂F

∂θs

φ

〉

= −
(

F−1D′(y − Dφ)
)′

(

∂q

∂θs

−
∂F

∂θs

φ

)

(A.4)

where (F−1)∗ is the adjoint of F−1 and (A.4) is due to the fact that F is a real symmetric
matrix, in other words, a self-adjoint operator. Computing ∇L(θ) by (A.4) requires
only two forward solutions, one for computing φ and the other for computing the vector
F−1D′(y − Dφ) by solving Fu = D′(y − Dφ) for u, hence a computational saving by
a factor of (S + 1)/2 is achieved if the cost for forward solutions is dominant in the gradient
computation. Using (A.4) for computing the gradient is often referred to as adjoint or reverse
differentiation in diffuse optical tomography (Davies et al 1997, Hielscher et al 1999). A
similar idea is also used in (Arridge and Schweiger 1995, Arridge and Schweiger 1997).

Now we consider the special case of bioluminescence tomography, where F is a known
constant and q = Wθ as in (4). Then (A.3) becomes

∂L

∂θs

= −
〈

y − Dφ,DF−1Wes
〉

where es represents the sth unit vector. Calculating the vector DF −1Wes in the above
equation for s = 1, . . . , S is equivalent to computing the full system matrix A = DF −1W

as in the direct calculation approach described in Section 2.4.1. On the other hand, (A.4) for
the adjoint differentiation method reduces to

∂L

∂θs

= −(W ′F−1D′(y − Dφ))′es = −(A′(y − Dφ))′es

where calculating A′(y − Dφ) by a forward solution method without precomputing the
system matrix A corresponds to the on-the-fly implementation of F/B projectors.
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Mumcuoǧlu E Ü, Leahy R, Cherry S R and Zhou Z 1994 Fast gradient-based methods for Bayesian reconstruction
of transmission and emission PET images IEEE Trans. Med. Imag. 13 687–701

Meng X L and van Dyk D 1997 The EM algorithm - An old folk song sung to a fast new tune J. Roy. Stat. Soc. Ser.
B 59 511-67

Ntziachristos V, Ripoll J, Wang L V and Weissleder R 2005 Looking and listening to light: the evolution of whole-
body photonic imaging Nat. Biotechnol. 23 313–20

Qi J and Leahy R M 2006 Iterative reconstruction techniques in emission computed tomography Phys. Med. Biol.
51 541–78

Qi J, Leahy R M, Hsu C, Farquhar T H and Cherry S R 1998 Fully 3D Bayesian image reconstruction for the ECAT
EXACT HR+ IEEE Trans. Nucl. Sci. 45 1096–103

Rice B W, Cable M D and Nelson M B 2001 In vivo imaging of light-emitting probes J. Biomed. Opt. 6, 432–440
Roy R and Sevick-Muraca E M 2001 Three-dimensional unconstrained and constrained image-reconstruction

techniques applied to fluorescence, frequency-domain photon migration Applied Optics 40 2206–15
Schweiger M and Arridge S R 1997 The finite-element method for the propagation of light in scattering media:

frequency domain case Med. Phys. 24, 895–902
Schweiger M, Arridge S R, Hiraoka M and Delpy D T 1995 The finite element method for the propagation of light

in scattering media: boundary and source conditions Med. Phys. 22 1779–92
Shen H, Cong W, Qian X, Durairaj K and Wang G 2007 Numerical study on the validity of the diffusion

approximation for computational optical biopsy J. Opt. Soc. Amer. A 24 423–29
Shepp L A and Vardi Y 1982 Maximum likelihood reconstruction for emission tomography IEEE Trans. Med. Imag.

1, 113–22
Slavine N V, Lewis M A, Richer E and Antich P P 2006 Iterative reconstruction method for light emitting sources

based on the diffusion equation Med. Phys. 33 61–8
Soloviev V Y 2007 Tomographic bioluminescence imaging with varying boundary conditions Appl. Optics 46 2778–

884
Tarantola A 2005 Inverse problem theory and methods for model parameter estimation (Philadelphia, PA: SIAM)
Wang G, Cong W, Durairaj K, Qian X, Shen H, Sinn P, Hoffman E, McLennan G and Henry M 2006a In vivo mouse

studies with bioluminescence tomography Opt. Express 14 7801–9
Wang G, Shen H, Durairaj K., Qian X and Cong W 2006b The first bioluminescence tomography system for

simultaneous acquisition of multiview and multispectral data International Journal of Biomedical Imaging
Article ID 58601

Wang G, Li Y and Jiang M 2004 Uniqueness theorems in bioluminescence tomography Med. Phys. 31 2289–99
Ye J C, Webb K J, Bouman C A and Millane R P 1999 Optical diffusion tomography by iterative-coordinate-descent

optimization in a Bayesian framework J. Opt. Soc. Amer. A 16 2400–12


