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ABSTRACT

Many samples imaged in structural biology and mate-

rial science contain many similar particles at random loca-

tions and orientations. Model-based iterative reconstruction

(MBIR) methods can in principle be used to exploit such

redundancies in images through log prior probabilities that

accurately account for non-local similarity between the parti-

cles. However, determining such a log prior term can be chal-

lenging. Several denoising algorithms like non-local means

(NLM) successfully capture such non-local redundancies, but

the problem is two-fold: NLM is not explicitly formulated as

a cost function, and neither can it capture similarity between

randomly oriented particles.

In this paper, we propose a rotationally-invariant non-

local means (RINLM) algorithm, and describe a method to

implement RINLM as a prior model using a novel frame-

work that we call plug-and-play priors. We introduce the

idea of patch pre-rotation to make RINLM computationally

tractable. Finally, we showcase image denoising and 2D to-

mography results, using the proposed RINLM algorithm, as

we highlight high reconstruction quality, image sharpness,

and artifact suppression.

Index Terms— Rotationally-invariant NLM, denoising,

tomography, plug-and-play, prior modeling

1. INTRODUCTION

Many important imaging problems in structural biology [1,2],

and material science [3] require the reconstruction of many

similar particles at random orientations. This presents a huge

opportunity in image prior modeling due to the enormous re-

dundancy in the reconstruction of many such similar particles.

In fact, cryo electron microscopy (EM) tomography exploits

this redundancy but requires very specialized preparation of

a thin frozen biological sample that ensures that particles do

not overlap [1]. In the more general problem of 3D EM to-
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mography, no solution currently exists which fully exploits

the redundancy of similar particles.

Model-based iterative reconstruction (MBIR) [4,5] can in

principle be used to capture such redundancies through the

choice of a log prior term in the MAP cost function. In prac-

tice, formulating such a log prior term that captures similarity

between non-local particles can be quite difficult. In previous

research, Chen et al. proposed using pixel-wise differences

between local patches as a log prior term [6]; Chun et al.

used the convex Fair potential [7] based on a convex function

of L2 differences between image patches [8]; and Yang et al.

proposed a dynamically updated cost function with properties

similar to a non-local means filter [9], resulting in a model

that captures the intrinsically non-convex behavior required

for modeling distant particles with similar structure. In any

case, none of these capture the redundancies of rotationally-

invariant particles.

In fact, there has been substantial progress in developing

denoising algorithms that capture non-local redundancies.

For example, non-local means (NLM) effectively denoises

images with non-local redundancies by matching image

patches at distant locations [10, 11]. However, it does not

account for the rotation of particles in an image. There have

been some methods proposed to allow for rotational invari-

ance in the non-local matching process [12–16]. However,

these methods are either computationally approximate be-

cause they use Fourier descriptors instead of actual patch

rotation, or they are computationally expensive because they

rotate patches dynamically during the search process. In any

case, a fundamental limitation of NLM is that it is a denois-

ing algorithm rather than a prior model. So it is unclear how

the methods of NLM can be used to improve tomographic

reconstruction quality for images containing similar particles.

In this paper, we present a method for tomographic re-

construction of images containing many similar particles at

random positions and orientations. The key to our method

is a rotationally invariant non-local means (RINLM) filtering

algorithm, together with a novel framework for incorporating

RINLM into MAP reconstruction. Our proposed RINLM

algorithm allows for the matching of particles or structures

at random orientations, and it is computationally efficient be-

cause it depends on the pre-rotation of patches to a standard



orientation. In order to use the RINLM denoising algorithm

in the MBIR reconstruction framework, we use a method

introduced in [17, 18] which we call plug-and-play priors.

Our experimental results on both simulated and real trans-

mission electron microscopy (TEM) data demonstrate that

the RINLM-MBIR reconstruction can substantially improve

reconstruction quality as compared to traditional MBIR re-

constructions [19]. Moreover, we find that the algorithm has

rapid and stable convergence to its final result.

2. PLUG-AND-PLAY FRAMEWORK

We outline a general framework for adapting any denoising

operator as a prior model for our tomographic reconstruction

problem. This approach, which we call Plug-and-Play priors,

lends the ability of having two separate software modules –

one to perform the inversion and the other to denoise; how-

ever, both these modules are still incorporated into the MBIR

framework allowing for qualitatively optimized experimental

reconstructions, and quantitatively accurate reconstructions

of the simulated data. The plug-and-play technique is an

application of alternating direction method of multipliers

(ADMM) [20, 21], in which we split the state variable thus

decoupling the forward and prior model terms of the MAP

estimation. The key advantage of this framework is that

the denoising operator does not need to correspond to an

optimization problem in order to function as a prior model.

In the MBIR framework, reconstruction is generally for-

mulated as the maximum a posteriori (MAP) estimate of the

unknowns given the measurements, and is given by,

x̂ = argmin
x≥0

{l(y;x) + βs(x)}, (1)

where y represents the data, x represents the unknown pixels,

l(y;x) = − log p(y|x) is the forward model term, s(x) =
− log p(x) is the prior model term, and β is a unit less param-

eter that controls the regularization applied. Increasing the

value of β increases the regularization applied, while decreas-

ing β corresponds to lowering the regularization. The variable

x (see Eq. (1)) is split into two variables x and v [17], and we

reformulate Eq. (1) as,

(x̂, v̂) = argmin
x≥0
v=x

{l(y;x) + βs(v)}. (2)

The augmented Lagrangian corresponding to Eq. (2) is given

by,

Lλ(x, v, u) = l(y;x) + βs(v) +
1

2σ2
λ

‖x− v + u‖22, (3)

where u is a scaled dual variable (initialized to zero) and σλ

is the augmented Lagrangian parameter. In theory, the recon-

struction does not depend on σλ, but in practice, well-chosen

values of σλ tend to speed up the ADMM convergence. We

discuss how we set the value of σλ in Sec. 4.

Each iteration of ADMM algorithm consists of the fol-

lowing steps.

x̂ = F(y, x̃;σλ), (4)

v̂ = H(ṽ;σn), (5)

u = u+ (x̂− v̂), (6)

where x̃ = v̂−u, ṽ = x̂+u, and σn =
√
βσλ is the assumed

noise standard deviation for the denoising operation. Also, x̂
and v̂ are initialized to the best available guess of the estimate.

The inversion operator, F used in Eq. (4), is given by,

F(y, x̃;σλ) = argmin
x≥0

{

l(y;x) +
‖x− x̃‖22

2σ2
λ

}

. (7)

The denoising operator, H used in Eq. (5), is given by,

H(ṽ;σn) = argmin
v≥0

{‖ṽ − v‖22
2σ2

n

+ s(v)

}

. (8)

We use the proposed RINLM that we develop in Sec. 3 as

the denoising operator H. Although NLM-based methods are

not explicitly formulated as solutions to optimization prob-

lems, we do observe consistent empirical convergence of x̂
and v̂ [18] – implying convergence of the ADMM iterations.

In Sec. 4, we showcase tomography results supporting

this choice of H.

3. FORMULATION OF RINLM

Let S is the set of all lattice points in the image, N = |S| be

the number of lattice points in the image, and s = (s1, s2)
t ∈

S be the s-th lattice point. Also, let y be the tomographic

measurement, x be the unknown, and x̂ be the estimate of x.

Further, let ṽs be the gray-level of the s-th pixel of the noisy

image, and v̂s be that of the s-th pixel of the denoised image.

Instead of considering all patches in the image for denois-

ing, we only consider patches corresponding to pixels in a

square search window around the pixel. A (2n + 1)2 search

window around pixel s is defined by,

Ωs = {r ∈ S : ‖r − s‖∞ ≤ n} ⊂ S. (9)

Next we define a circular window, W , to window out circular

patches as we pass through the image.

W = {s ∈ Z
2 : ‖s‖2 ≤ R}, (10)

where R ∈ N is the radius of the window.

3.1. Patch pre-rotation

To make NLM rotationally-invariant, we need to compare

each patch with the rotated versions of patches in the search

window. Each such comparison is an L2 norm, thus making

the naive implementation intractable.

Our solution is to pre-rotate all the patches just once – to

align all the patches in the image along one matching orienta-

tion. We assign each pixel some mass that is proportional to



its gray-level intensity. Then we compute the center of mass

of each patch of the image. We match the orientations of the

patches by rotating each patch, by an angle, θs, such that the

center of mass of the rotated patch lies on the positive x-axis

of the image, as shown in Fig. 1. The center of mass of the

Fig. 1. Axes on the image plane, with the center of masses

pointed out before and after rotation. (The green dot is the

center of mass of the blue foreground.)

patch Ps around pixel s is given by,

ms = (ms,1,ms,2)
t ∈ R

2 =

∑

r∈W

rṽs+r

∑

r∈W

ṽs+r

. (11)

We compute the angle the center of mass makes with the pos-

itive x-axis as below.

θs = arctan {ms,1,ms,2} . (12)

We modify the computation of θs to make it robust, especially

when ms gets arbitrarily close to the center of the patch.

θ̃s =
‖ms‖θs

‖ms‖+ (R/ρ)
, (13)

where R is the radius of the patch, and ρ ≫ 1 is a scaling

factor for the guard term. (We use ρ = 10 in our implemen-

tation.) Further, let As =

(

cos(θ̃s) sin(θ̃s)

−sin(θ̃s) cos(θ̃s)

)

be the ro-

tation matrix. Then, we compute the gray-levels of the pixels

of the rotated patches as below.

Ps,j = ṽs+j′ , (14)

where Ps,j is the gray-level of the j-th pixel of patch Ps, and

j′ = A−1
s j. When j′ does not lie on the discrete lattice grid,

we interpolate j′ using bilinear interpolation.

3.2. RINLM algorithm

In this section, we present a brief formulation of rotationally-

invariant NLM. We propose to use the pre-rotated patches,

{Ps}s∈S to compute the similarity between the reference and

candidate patches. Pixel r exerts a weight ws,r on pixel s,

given by,

ws,r = exp

{−‖Pr − Ps‖22
σ2
n

}

. (15)

Fig. 2. Illustration of RINLM’s ability to match rotated

patches: Left and right shapes are rotated versions of each

other. Weight assigned by NLM to the patches marked in

red = 4.9997e-04; weight assigned by RINLM = 1.63e-02;

RINLM treats these patches as being similar, despite the ro-

tation.

After computing the set of all weights, {ws,r}s∈S,r∈Ωs
, we

normalize the weights as below.

w̃s,r =
ws,r

∑

r∈Ωs

ws,r

. (16)

The denoised image, v̂, is computed as follows.

v̂s =
∑

r∈Ωs

w̃s,rṽr. (17)

The key benefits of RINLM are two-fold: (1) RINLM is sig-

nificantly faster than naive implementation due to our pre-

rotation step, and (2) RINLM offers high quality of recon-

struction due to higher weights assigned to similar, but ro-

tated, patches in the noisy image.

4. RESULTS

In this section, we compare the performance of the proposed

algorithm (RINLM) with BM3D, qGGMRF [22], K-SVD,

and NLM. For this comparison, we specifically look at im-

age denoising and 2D tomographic reconstruction.

4.1. Image denoising

We perform the denoising on randomly oriented snowflakes

simulated to induce symmetry and fine structure. The back-

ground intensity is 56, the foreground intensity is 200, and the

phantom measures 256 pixels × 256 pixels. The qGGMRF

parameters used were p = 1.05, q = 0.5, and c = 0.001.

The NLM patch size we used was 5 × 5, and the RINLM

patch radius was 3. The value of σn used for both NLM and

RINLM was 22. RINLM-denoised images have clear, sharp

foreground, together with background that is almost artifact-

free. Table 1 shows that RINLM also consistently results in

the lowest RMSE values.

4.2. 2D tomography

We use a real data set that captures the solidification of Al-

Cu alloy. The 2D data set has 145 equi-spaced projection an-

gles in [0, π]. The reconstructed image measures 256 pixels ×



(a) Original (b) One snow flake (c) Noisy (σ = 20)

(d) BM3D (e) K-SVD (f) qGGMRF

(g) NLM (h) RINLM

Fig. 3. Denoising experiment: (a-c) Simulated data; (d)

BM3D produces background artifacts and foreground noise;

(e) K-SVD has artifacts beyond visible portion, and high fore-

ground peripheral noise; (f) qGGMRF produces an overall

noisy image; (g) NLM foreground noise is comparable to

BM3D, and has a grainy background; (h) RINLM renders an

almost-speckle-free foreground, while the background is free

of artifacts and almost all noise.

.

Table 1. RMSE of various denoising algorithms

Noise σ BM3D K-SVD gGGMRF NLM RINLM

5 3.44 3.31 5.39 3.72 2.64

10 6.89 6.91 8.77 7.04 5.95

20 12.36 12.87 14 12.58 8.23

25 14.92 15.28 18.49 14.76 11.99

256 pixels, and has been plotted in the range [0, 19.8× 10−3]
nm−1. The qGGMRF parameters used were p = 1.1, q =
0.5, and c = 0.001. The NLM patches measured 5× 5, while

the RINLM patches had a radius of 5. The augmented La-

grangian parameter, σλ was chosen to be equal to the amount

of variation in the filtered backprojection reconstruction, x̂(0),

which we used as the initialization in the plug-and-play algo-

rithm, i.e., σλ ≈ std. dev. (x̂(0)). The value of σλ was chosen

to be 8.66× 10−3 nm−1, while the value of β was set to 4.2,

1.96, 3.74, and 3.25 for K-SVD, BM3D, NLM, and RINLM

respectively.

In Fig. (4-f), we show the convergence rate for various

prior models. The y-axis denotes the quantity
‖x̂(k) − v̂(k)‖

‖x̂(∞)‖ ,

where x̂(k) and v̂(k) are the values of x̂ and v̂ after the k-

th iteration of the plug-and-play algorithm, respectively, and

x̂(∞) is the final value of the reconstruction, x̂

(a) BM3D (b) K-SVD (c) qGGMRF

(d) NLM (e) RINLM
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(f) Convergence of various prior models

Fig. 4. 2D tomographic reconstruction: (a) BM3D produces

smear-like artifacts in the background and noisy foreground

regions; (b) K-SVD results in artifacts in the background,

foreground speckles and blotches; (c) qGGMRF produces

background blotches and dark foreground merge blots; (d)

NLM reconstruction shows foreground peripheral noises with

fine-grained background artifacts; (e) RINLM noticeably sup-

presses contours within the foreground regions, while the

background is almost free from blotchiness and any visible

contours; (f) Consistent plug-and-play convergence.

The foreground merger regions in RINLM are smooth and

lack darker pigmentation. Also, RINLM results in sharper

edges, lower noise, and minimizes various types of artifacts.

5. CONCLUSIONS

In this paper, we presented a computationally-efficient rotation-

invariant NLM-based denoising algorithm that produces

high quality tomographic reconstructions. Denoising results

demonstrate visibly lower artifacts, alongside significantly

lower RMSE values than competing methods like BM3D,

K-SVD, NLM, and qGGMRF. With the plug-and-play frame-

work, we incorporated RINLM as a prior model to achieve

high-quality tomographic reconstructions, with least con-

tour artifacts and pigmentation compared to BM3D, K-SVD,

NLM, and qGGMRF as prior models.
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