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ABSTRACT

Segmenting interesting objects from CT images has a wide
range of applications. However, to achieve good results, it is
often necessary to apply metal artifact reduction to raw CT
images before segmentation. While there has been a great
deal of research focusing on metal artifact reduction and seg-
mentation as individual tasks, there have been very few at-
tempts to solve the two problems jointly. We present a novel
approach to solve the problem of segmenting raw CT im-
ages with metal artifacts, without the access to the raw CT
data. Given an approximate metal artifact mask, the problem
is formulated as a joint optimization over the restored image
and the segmentation label, and the cost function includes a
dictionary-based image prior to regularize the restored image
and a continuous-relaxed Potts model for multi-class segmen-
tation. An effective alternating method is used to solve the
resulting optimization problem. The algorithm is applied to
both simulated and real datasets and results show that it is ef-
fective in reducing metal artifacts and generating better seg-
mentations simultaneously.

Index Terms— Metal Artifact Reduction, Potts Model
Segmentation, Dictionary Learning, Security CT

1. INTRODUCTION

Computed Tomography (CT) has a wide range of applications
in medical diagnosis [1] and security inspection [2]. In many
of these applications, it is important and necessary to segment
CT images for further analysis. For example, segmentation
of anatomical structure is a critical step in image guided ra-
diotherapy or the design of custom bone replacements. Seg-
mentation is also of great importance in security applications
where objects are segmented before target classification.
However, raw CT images often contain artifacts such as
streaks due to dense metal objects, and these artifacts can
make accurate segmentation difficult. In the past decades,
people have developed various metal artifact reduction (MAR)
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techniques to correct the image. Perhaps the most well-known
approaches in MAR are based on sinogram correction (SC-
MAR). These methods typically correct the metal trace in
the raw CT data by using either sinogram inpainting [3,4] or
the knowledge obtained from the projection of a prior image
that is derived from the original CT image [5-7]. The final
image of SC-MAR is then produced by reconstructing the re-
stored sinogram. Alternatively, if the original CT data is not
available, MAR can be done in the image domain (ID-MAR).
Some ID-MAR methods produce the corrected image by uti-
lizing a pseudo sinogram from the projection of the original
CT image [4]. Others identify the metal artifact regions in
the image and apply image restoration techniques to do the
correction [8].

On the other side, there have also been a variety of meth-
ods proposed for segmentation by using graph cut [9], shape
prior [10], active contour [11], Mumford-Shah functional [12]
etc.. Perhaps, the most related work in CT applications is
[13], which is based on the method of isoperimetric graph
partitioning [14]. The algorithm searches for splits within the
connected components recursively until it is unable to find
a strong separation. However, it does not fully explore the
metal artifact structure in the CT image. Surprisingly, while
a great deal of research has been done in metal artifact re-
duction and segmentation as individual tasks, relatively little
research has considered the two problems jointly.

In this paper, we propose a novel approach to the segmen-
tation of CT images with metal artifacts, and with no access
to the raw CT data. Our method is based on the joint esti-
mation of both the restored image and the segmentation in
a unified optimization framework. The unified cost function
consists of three terms: 1) a data fidelity term that relates the
raw and restored image and incorporates a streak mask; 2)
a dictionary-based image prior which regularizes the restored
image; 3) a term based on the continuous-relaxed Potts model
which couples the restored image intensities and segmenta-
tion labels. We derive an alternating optimization algorithm
to minimize the overall cost function and the result of this
procedure produces a joint restoration and segmentation of
the image. We present results using both simulated and real
CT dataset and demonstrate that the joint MAR and segmen-
tation can produce better results than the sequential ID-MAR
and segmentation method, without the use of the raw CT data.



2. JOINT METAL ARTIFACT REDUCTION AND
SEGMENTATION

Let () ¢ RY be the input CT image with metal artifacts.
Assume K target material intensities 4 € R¥ is given and a
binary artifact mask b € {0, 1}", defined as
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is obtained in advance. Our objective is to use z(*®), ; and
b to produce an output image x which has reduced metal arti-
facts and a segmentation label vector z € {1,--- , K}V of K
materials over the image.

We formulate this problem as the joint optimization prob-
lem of the restored image and the segmentation. Mathemati-
cally, the overall cost function can be written as

if the i-th pixel has artifact
otherwise
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where §(-) is the delta function, C represents the set of
all neighboring pixel pairs, and 8, A are the regularization
weights. Here J;(z) denotes the image domain prior which
is used to balance the local smoothness and edge structures.
We also add the weights w;, defined as

ifb; =1
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to control the segmentation term in artifact and non-artifact
regions.

Notice that the optimization over the segmentation label z
only involves the last two terms, which is essentially the MAP
segmentation based on the discrete Potts model. However,
due to the non-convexity, this solution can often be trapped
into a local minimum which can lead to poor segmentation re-
sult. Instead, we use an approach similiar to [15] and propose
a continuous-relaxed version of the discrete Potts model. In
particular, we relax the §(z; — k) to be a probability measure
u; for each ¢, and the overall problem becomes the following
constrained optimization:
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Once we have the optimal u, the segmentation label can be
obtained by picking up the label with the largest probability,

Z; 4= arg  max  Uj . 5
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Lastly, the image domain prior J;(x) regularizes the lo-
cal image behavior and serves to fill in correct pixel values in
the metal artifact region. Several image priors have been pro-
posed in different image processing applications [16—18]. We
construct the term Jy(z) by representing all the overlapped
patches as the sparse combination of entries from a globally
learned dictionary ® using K-SVD algorithm [17]. Loosely
speaking, it assumes that

RZ‘IE ~ (I)VZ', with ||V7;||0 < T (6)

where @ is the global over-complete dictionary, R; is the ma-
trix to extract a patch located at the i-th pixel, v; is the cor-
responding sparse coefficient vector, and 7' is the specified
sparsity constraint. Under certain conditions [19], it is equiv-
alent to solve an unconstrained optimization with the [y norm
replaced by ;. Substituting the image prior into J; () in (4),
we obtain the final optimization problem as follows
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where o and +; are additional regularization weights.

We use alternating optimizing to solve (7). The inputs
of the algorithm are the original image (%) the artifact
mask b, the globally learned dictionary ¢ for image patches,
the mean intensities p of K materials, and the regularization
weights a, (3, v; and w;. At the initialization step, we set the
image z « 2°®, and u; ), < & for all i and k. Firstly,
fixing « and u, optimization over v can be solved patch-wise
using the standard sparse coding techniques, such as Orthog-
onal Matching Pursuit (OMP) [20]. Then, with v and u fixed,
we optimize over the image x. If we denote U € RV*K as
the matrix whose entries are u; ;, W and D as the diagonal
matrices whose diagonal entries are w; and 1—b; respectively,
then the image update can be written in the compact form as
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and its solution is given by
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Despite its complicated form, (9) is nothing but the weighted
average of all the overlapped patches with some additional
pixel-wise regularization, and the update in (9) can be im-
plemented very efficiently using pixel-wise division. Finally,
fixing v and x, we solve the constrained optimization over
given by
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The optimization (10) can be solved using the effective con-
tinuous max-flow algorithm in [15], which converts the prob-
lem into the convex optimization problem.

3. IDENTIFY METAL ARTIFACTS IN CT IMAGES

We propose the forward and backward projection method to
generate the binary artifact mask b as follows.

e Step 1: Generate the high density image z(hig")

e g (ori) 5(m§orig> > L(high)) (11)

where L") is the threshold for high density pixels.

e Step 2: Apply the forward Radon transform to z(°1¢)
and z(Me") separately to obtain two projections:
plhigh) o Aq(high) o (orig) o g (orig) (12)

where A represents the forward projection matrix.

e Step 3: Correct the high density projection with the pa-
rameter r > 1.
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e Step 4: Apply Filter Back-projection (FBP) to the cor-
rected projection and thresholding.

v« FBP(pem) (14)
b a(b > L )5 (o7 < L0 )15)

where L@ ig the threshold for metal artifact pixels.
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Fig. 1. the ground truth (a) intensity map, (b) segmentation,
of the simulated data, the display window of the intensity is
[—200, 400] HU; the segmentation label is color-coded.

’ Method \ RMSE (HU) \ Sgrensen-Dice score ‘
baseline 136.9830 0.8828
squential MAR/seg. 167.2736 0.9135
joint MAR/seg. 99.3498 0.9382

Table 1. Quantitative comparison of different methods. The
RMSE is calculated over pixels between [0,4500] HU. The
Sgrensen-Dice scores [23] are averaged over all the labels.

4. RESULTS

We present three methods for comparison. The first is the
baseline method where we apply segmentaion [15] on the raw
CT images. The second is the sequential MAR/segmentation
where the image goes through an image restoration algorithm
[21] followed by the segmentation [15]. The last is the pro-
posed joint MAR/segmentation method. We terminate the it-
eration of the joint method when the average pixel update is
less than 0.1 HU.

The first dataset is a simulated dataset based on [22]. The
ground truth intensity and segmentation maps are shown in
Figure 1. The raw CT image is shown in Figure 2b. We
set Ltieh) = 2500 HU and L) = 200 HU and the
artifact mask is shown in Figure 2a. We use K-SVD algo-
rithm with 7" = 3 to learn the dictionary from 9 x 9 patches
from the the raw input image. The input mean intensities
are pu = [0, 850, 1050, 3500, 4700]7 HU. Figure 2 shows the
comparison of different methods. The raw CT image in Fig-
ure 2b contains many streak artifacts due to metal, and the re-
sulting segmentation in Figure 2c is inaccurate in the artifact
regions. In Figure 2d and 2e, while applying the restoration
followed by segmentation can reduce some artifacts, it is sen-
sitive to the mask and can not generate a good segmentation
directly. In contrast, the output of the proposed algorithm in
Figure 2f and 2g gives better results. Major metal artifacts are
reduced and the segmentation is more accurate. The quan-
titative result in Table 1 also suggests the proposed method
generates better image and segmentation.

The second dataset is a real baggage CT image. Figure 3b
shows the raw image, which contains strong streak artifacts



Fig. 2. (a) the artifact mask, (b), (c) the image and segmen-
tation of baseline (d), (e) the image and segmentation of se-
quential MAR/seg. (f), (g) the image and segmentation of
joint MAR/seg. the display window [—200, 400] HU; the seg-
mentation is color-coded.

due to the metal. We set L("gh) = 2500 HU and L (rtifact) —
50 HU and Figure 3a shows the artifact mask. We set the
mean intensities to be y = [0, 600, 1000, 1150, 1400, 3000]*
HU. Figure 3c shows the segmentation on the raw CT im-
age and notice that objects are split due to the streak artifact.
Figure 3d and 3e show the results of applying the restora-
tion algorithm followed by segmentation separately. While
the restoration algorithm fills in the correct values in some ar-
tifact regions, it introduces extra artifacts, such as the region
around the thin sheet on top left. This leads to the inaccurate
segmentation in Figure 3e. On the other side, the major metal
streak artifacts are corrected in the output image of the pro-

Fig. 3. (a) the artifact mask, (b), (c) the image and segmen-
tation of baseline (d), (e) the image and segmentation of the
sequential MAR/seg. (f), (g) the image and segmentation of
the joint MAR/seg. the display window [—1000, 1000] HU;
the segmentation is color-coded.

posed algorithm in Figure 3f. Furthermore, the joint method
merges the objects that were originally split and produces a
more accurate segmentation in Figure 3g.

5. CONCLUSIONS

In this paper, we consider the problem of segmentation of CT
images with metal artifacts and with no access to the CT data.
We present a novel approach based on a joint estimation over
image and segmentation in a unified optimization framework.
By alternating optimization, the algorithm is able to improve
both the image quality and segmentation simultaneously. Re-
sults on both simulated and real datasets show that the method
is effective in reducing metal artifact and producing better
segmentation than the sequential ID-MAR and segmentation,
without the use of the raw CT data.
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