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Model-Based lterative Reconstruction
(MBIR)

o Computed Tomography (CT) Reconstruction
» Diagnostic Radiology
» Additive Manufacturing Inspection

e MBIR Flowchart
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Advantage of MBIR over Filtered-Back
Projection (FBP)

e Superior Image Quality: Low Noise and High Resolution
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Prior Model in MBIR

e Accurate prior modeling is critical to the image quality of MBIR.

e Typical Prior Model: MRF
» Penalize intensity fluctuation in the neighborhood
» Challenge: Noise-induced fluctuation vs. underlying object

e Solution: Prior Model from an Image Database

Machine CT
Learning Reconstruction

Deep Residual MBIR

Prior Knowledge




MBIR Optimization

e MAP Estimation

~ . ~ M
x € " :reconstructed image, y € : measured CT scan

M

A € 7" : system matrix for CT scan, W € ~ **": measurement noise variance

o €~ :regularization parameter, ®: ~" — ~ : prior model

 First-order iterative optimization
> Iterative Coordinate Descent (ICD) / Ordered Subset (OS)
» Prior model should be first-order differentiable.

Not flexible for Data-driven Prior




Plug-and-Play (PnP) Framework
 Variable Splitting
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207
 Alternating Direction Method of Multlpliers (ADMM)
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Step 1: Reconstruction Module
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Step 2: De-noising Module
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Step 3: Update Dual Variable
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Independent Module for De-noising



Deep Residual Learning for De-noising

e Deep Neural Network

» Powerful performance for vision tasks such as de-noising

» Weights of a neural network learned on large training dataset
» Challenge: Long training time

» Deep Residual Learning for Efficient Training
» Bypassing low-freq. image

15 layers
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Deep Residual Learning: Training
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e Training Database
» 40x40 patches for all slices, Data augmentation (flip, rotation)
» Randomly selected 256000 patches, mini-batch size: 128
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Deep Residual Learning: Testing
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MBIR Result: Qualitative @ 1 iter.
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MBIR Result: RMSD
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Significant Speed-up with Faster Convergence




Computational Time

e Deep Learning Training Time
» 4 NVIDIA Titan X GPU (12GB memory)
» Google Tensor Flow
» 65 minutes / 50 epochs

e Deep Learning Testing Time
> ~10ms/slice

o Standard MBIR and PnP MBIR require similar amount of
recon. time per iteration.




Conclusion

e Summary
1. Image prior modeling from FBP/MBIR database

> Deep Residual Learning for Image De-noising
2. Incorporating the prior model from a database into MBIR

» Plug-and-Play Optimization Framework

e Deep Residual Learning is effective in reducing the noise and
enhancing the resolution in FBP.

e PnP MBIR with deep learning prior significantly improves the
iImage quality compared with standard MBIR.




