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Abstract—Multi-slice helical CT is widely used for baggage account for a wide array of scanner characteristics inofydi
inspection in transportation security due to its fast acquisition photon counting and electronic noise, beam hardening,Imeta
speed and large scan coverage. In addition, recent studies indieat attenuation and scatter, and the detector point-spreatidmn

that model-based reconstruction has the potential to improve M ¢ deli fth b dt d
image quality and reduce artifacts relative to traditional filtered ore accurate modeling or theé scanner can be used 10 reduce

backprojection (FBP) method. In this paper, we present the Streaking artifacts from high density objects, which can be
results of a 3D model-based reconstruction algorithm on multi- particular problematic in the security imaging applicatidn

slice helical scan data taken of actual baggage with high and addition, the MBR method incorporates a prior model that

low density objects. We compared our reconstruction results t0 o1 he tuned to the characteristics of typical objects aed th
conventional FBP reconstructions and illustrated the potential . .
performance metrics of interest.

value of our algorithm in terms of image quality and artifact .
reduction. In this paper, we apply the methods of 3D model-based

reconstruction (MBR) to the problem of transportation sigu
. INTRODUCTION imaging. Our approach is based on maximum a posterior
0(Il1\/IAP) reconstruction along with the iterative coordinate
eqescent (ICD) optimization method. We also describe how
r algorithm can be parallelized on multicore processing

Computed tomography (CT) is widely used in transportati
security applications [1], [2]. Among various CT scann
geometries, multi-slice helical CT has come into wide uﬁeu
due to its fast acquisition and large scan coverage. In fai E\rdware. )
many airports have installed multi-slice helical CT syssem !N our results, we present 3D MBR cross-sections from
as a central component of baggage screening. However, fial multislice helical scan data of travel bags packed with
more complex geometry of multi-slice helical CT also posés Variety of high and low density objects. Our results intéica
challenges in reconstruction. For example, as cone angl@t MBR has the potential to produce reconstructions with
become wider, there is an increasing need to use true %ver artifacts than analytic reconstruction methods.

reconstruction methods in order to avoid the image arléfactI
introduced by 2D approximations.

Moreover, the task in transportation security is quite dif- Let = € R be the image vector, and lgte RY be the
ferent from the medical problem. In the medical applicatioivector of projection measurements. We assumend y are
it is critical to preserve fine details of soft tissue struetu related by a linear sparse matrix operator
however, in the security application, typically it is more
important to obtain precise estimates of object boundad/ an y=Az @

its average density. Also, in security, the objects of @®at The matrix coefficientA;; reflects the formation ofi-th
interest typically have densities that are substantiatBater projection by;j-th voxel.

than water. _ _ In the Bayesian statistical framework, battandy are con-
Recently, model-based reconstruction (MBR) algorithmggered as random, and the reconstruction is most commonly

have been shown to be effective in the reconstruction ghmpyted as the maximum a posterior (MAP) estimate given
multislice helical scan CT data [3]. These algorithms ha

the advantage that they can incorporate more detailed sodel
of both the scanner and the objects being reconstructed!-In a
dition, they offer flexibility in the application of transpation
security since they allow for more accurate reconstruchion
nontraditional geometries, such as with limited view dath [
Model-based algorithms have the potential to more acdyrat

|. STATISTICAL MODEL FORIMAGE RECONSTRUCTION

& = argmin {—logp(ylz) —logp(z)} (2

where p(y|z) is the likelihood term corresponding to the
forward projection model ang(x) is the prior distribution
gf x. Also notice that we impose a positivity constraint on the
image.

This research was supported by ALERT DHS center Northeasteiver- ~ CIVEN the imager, the received photon count; of the
sity. i-th projection follows a Poisson distribution with mean



ATﬁie*Ai*“" where Ar; is the photon count of the-th pro- vﬂ
jection obtained in an air calibration scan. The line indégr "
of i-th projection can then be obtained hy = log AT;"

Using the second order Taylor expansion, the log likelihoo
term can be approximated by a quadratic function [5],

log plylr) = 5y — An) D(y — Az) +cly)  (3)

where D is the diagonal matrix with diagonal elemenis ;
which are proportional to the photon counks, and c(y)
is a term depending only op. Notice that in this case, a
smaller value of)\; indicates that the associate projection is<
less heavily weighted. T Detedor

The prior distributionp(x) incorporates knowledge about 0= Detector o
the object being reconstructed, We will describe the prior
model in detail in the next section.
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Fig. 1. 3D forward projection geometry used for the distarroeed projector.

I1l. M ETHOD AND ALGORITHM We studied two dif ¢ votential functi ] by th
_ e studied two different potential functions, given by the
A. 3D Forward Projection Model I, norm prior, which is a special case of generalized Gaussian
To calculate the projection matrid, we use the distance- MRF (GGMRF) [7] whenp = 1,
driven (DD) model [6]. Figure 1 illustrates how the 3D
projection geometry is decomposed into thexis that falls p(A) = [A], 9)

along the object’s translation direction, and thg-plane, ang the g-generalized Gaussian MRF (q-GGMRF) [3].
which is perpendicular ta [3]. Each voxel is flattened along

the dimension most parallel to the detector, and the coeffici (A) = _ Al (10)
Aj;; is calculated as the product ofj-plane projection,3;;, 1+ |AfclaP
and z-direction projection(;;. The g-GGMRF allows more degrees of freedom to control

both low-contrast and high-contrast edge characteristics
Al < ¢, p(A) =~ |Al]7 and if |A] > ¢, p(A) = |A/c|P
The coefficientsB;; andC;; are calculated as the convolutionwhere c is the parameter determining the transition between
of the detector response and the flattened voxel profile td yighe two cases. Normally, we will sgt= 2 and1 < p < q.

It ensures the overall cost to be convex and, thereforewsllo

Aij = Bij X Cij (4)

= Ay ~cl {0, Wet Ade [0c], min(W,, Ad,.) global convergence.
: Ad, cos b 2
) C. Optimization
1 , W, + Ad, . . . -
Cy = mclzp 0, —5 |0, |, min(W,., Ad,.) The overall cost function, obtained by combining the ap-
r COS ®) proximate log-likelihood and the prior, is

where W denotes the voxel's width when projected onto the 1
detector, Ad denotes the detector width, subscriptand r # = argmin §||y — Az|% + Z berp(zs — )
'T;_

denote channel and row respectivéland¢ are the ray angles 20 {s.r}ec

in zy-plane andz-direction, andd is the adjusted ray angle (11)

defined by We solve this optimization problem using the iterative eoor
g — (9 T E) mod = _ T (7) dinate descent (ICD) algorithm [5] in which we scan over all

4 2 4 voxels and sequentially optimize each voxel while fixing the

The function clip is defined by clip|a,b, (]| = others. In order to solve the 1D optimization problem résglt

min(max(a, b), c). from each pixel update, we design a quadratic substitute

B. Prior Moddl functio_nan(A; A') that upper bou/ndﬁ(A) and _optimize the

cost with p(A) replaced byg(A; A’) [8]. In particular,
We model the image: as a Markov random field, with a A
26-point 3D neighborhood and the following distribution (A A = P )A2 (12)

2A/
1 where A’ denotes the voxel difference before this update.
p(z) = P > barpls — ) ®) I this way, the original 1D line search is converted into a
{srpec guadratic optimization and the closed form solution can be
wherep is the positive and symmetric potential function anderived. Since the substitute cost is always an upper botind o
C is the set of all pairwise cliques. the original cost, minimizing the substitute will also puoe a



TABLE |

I CT PROJECTION GEOMETRIC PARAMETERS
CPU #2
cpum = no. of rows 16
777777777777 no. of channels 896
i aa— U 5 no. of rotations 60
Update voxel line mg’etfher no. of views per rotation 960
e no. of views 57600
v N distance from source to iso 518 mm
14— distance from source to detector 910 mm
helical pitch (normalized) 1
Fig. 2. Parallelized ICD scheme detector width in channel 1.028 mm
channel offset 0.0031 rad
field of view (diameter) 500 mm

decreasing sequence of original cost and iterative opéiticiz

will lead to the optimal solution of the original problem.

In order to further speed convergence, we also use the
non-homogeneous ICD (NHICD) method of [8]. The idea
is to focus computation on voxels which tend to generate
significant updates. In NHICD, we alternated between a full
scan and a partial scan which involves only those voxelshvhic
have significant updates at the previous iteration. Thigseh
provides a further speedup of approximately a factor ofehre

D. Parall€elization

To utilize multi-core processing and speed up the recon
struction for large image volumes, we implemented a paral
lelized ICD update scheme. In this scheme, the full image
volume is cut into N boxes along thedirection as shown in
Figure 2 and each processor is responsible for updatings/oxe
in one box. Different processors are synchronized once the
finish the work; therefore, one synchronization is made pkr f
scan. This will assign each processor a fairly large amotint o (c) (d)
work to do in parallel and workload is roughly balanced fogig. 3. objects contained in the baggage (a) toy Mr. PotatadH@) gel
different processors in order to reduce processor waiting.t pad (c) steel bar (d) box cutter
Also, since the image is stored with the index:irdirection
as the fastest-changing variable, the processors updagdsvo
alongz-direction first in order to create better cache efficiencihe steel bar, which is of high density and supposed to be
Moreover, the voxels being updated are selected to be farectangular shape, has been distorted. Also, we can see
apart so that they do not share the same sinogram entry, #mel severe streaking artifacts, such as the region around th
therefore, can be updated independently. high-density objects in (b). The model-based algorithms, o
the other hand, provide better reconstructions. The dveral
image is sharper and shapes of objects are more accurately

In this study, we used the scan data provided by the ALEREcovered. Moreover, the model-based algorithm reduces th
(Awareness and Localization of Explosives-Related Tlsjeastructured artifacts as compared to the FBP method. These
Center, at Northeastern University, to conduct our expenitsi advantages suggest that the model-based algorithm has the
The projection geometric parameters are listed in Table ability to provide more detailed and accurate renderingclvh
The reconstructed image is of siz@2 x 512 x 840 and the could possibly lead to better performance for the security
voxel width is 0.975 mm in cross-section in the-plane applications.
and the slice thickness is 1.25 mm indirection. Figure 3 We further quantify the reconstruction quality by measgrin
illustrates some of the objects contained in the bag usedti® noise variance on the uniform region. In Figure 4, a targe
our experiment. object, which is a plastic bottle of water, is shown. Thealtre

Figure 6 demonstrates the quality of different reconstouct ing artifact caused by the nearby high-density metal object
algorithms. The FBP reconstruction shows several dravshackan be easily identified in the FBP reconstruction. In Figure
The reconstruction is blurred, as we can see on the feetSHfwe plot the CT voxel values along the line passing through
the toy Mr. Potato Head in (a). The shape of some objedtse bottle of water vertically. We observe that the curve of
are distorted. For example, in the center of (a) and (khe FBP reconstruction fluctuates more significantly than th
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IV. RESULTS
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Fig. 4. Reconstructions zoomed to the target area using (B) /; norm
prior, and (c) q-GGMRF The round object is the plastic bottflevater.
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Fig. 5. CT values for voxels along the line through the cenofethe target
region in Figure 4

curve of the other two model-based reconstructions. Wadurt
calculate the noise variances with different reconstomsti
along the line and the result is listed in Table Il. The FB
reconstruction leads to the largest noise variance, wisithe
result of the streaking artifacts. It also shows that g-GGMR
gives the smallest noise variance. This is due to the fadt t
g-GGMRF has more smoothing effects than theorm prior.

TABLE I
NOISE VARIANCE ON UNIFORM REGION

Method
Noise variance

FBP
3042.8

1 norm prior
836.0

0-GGMRF
496.5

Fig. 6.
FBP, (c, d)i; norm prior, and (e, f) g-GGMRF. The gray scale is in offset

(e)

®
Reconstruction of the ALERT baggage security daiaguéa, b)

Hounsfield Unit (HU), where aie= 0 HU and the scale range for all results
shown is in[0, 1600] HU.

V. CONCLUSION

In this work, we developed a model-based image recon-
struction algorithm and tested it on the data taken fromaictus]
baggage. Our algorithm depends on a statistical framewor
involving a forward model and a prior model. We compareg;
our reconstructions using two different priois, norm prior
and q-GGMRF prior, to the standard FBP algorithm. The!
model-based algorithms provide better reconstructioisran
duce structured artifacts, which suggests potential ddgas [6]
in application to transportation security. 7]
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