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Abstract—Multi-slice helical CT is widely used for baggage
inspection in transportation security due to its fast acquisition
speed and large scan coverage. In addition, recent studies indicate
that model-based reconstruction has the potential to improve
image quality and reduce artifacts relative to traditional filtered
backprojection (FBP) method. In this paper, we present the
results of a 3D model-based reconstruction algorithm on multi-
slice helical scan data taken of actual baggage with high and
low density objects. We compared our reconstruction results to
conventional FBP reconstructions and illustrated the potential
value of our algorithm in terms of image quality and artifact
reduction.

I. I NTRODUCTION

Computed tomography (CT) is widely used in transportation
security applications [1], [2]. Among various CT scanner
geometries, multi-slice helical CT has come into wide use
due to its fast acquisition and large scan coverage. In fact,
many airports have installed multi-slice helical CT systems
as a central component of baggage screening. However, the
more complex geometry of multi-slice helical CT also poses
challenges in reconstruction. For example, as cone angles
become wider, there is an increasing need to use true 3D
reconstruction methods in order to avoid the image artifacts
introduced by 2D approximations.

Moreover, the task in transportation security is quite dif-
ferent from the medical problem. In the medical application,
it is critical to preserve fine details of soft tissue structure;
however, in the security application, typically it is more
important to obtain precise estimates of object boundary and
its average density. Also, in security, the objects of greatest
interest typically have densities that are substantially greater
than water.

Recently, model-based reconstruction (MBR) algorithms
have been shown to be effective in the reconstruction of
multislice helical scan CT data [3]. These algorithms have
the advantage that they can incorporate more detailed models
of both the scanner and the objects being reconstructed. In ad-
dition, they offer flexibility in the application of transportation
security since they allow for more accurate reconstructionfor
nontraditional geometries, such as with limited view data [4].
Model-based algorithms have the potential to more accurately
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account for a wide array of scanner characteristics including
photon counting and electronic noise, beam hardening, metal
attenuation and scatter, and the detector point-spread function.
More accurate modeling of the scanner can be used to reduce
streaking artifacts from high density objects, which can be
particular problematic in the security imaging application. In
addition, the MBR method incorporates a prior model that
can be tuned to the characteristics of typical objects and the
performance metrics of interest.

In this paper, we apply the methods of 3D model-based
reconstruction (MBR) to the problem of transportation security
imaging. Our approach is based on maximum a posterior
(MAP) reconstruction along with the iterative coordinate
descent (ICD) optimization method. We also describe how
our algorithm can be parallelized on multicore processing
hardware.

In our results, we present 3D MBR cross-sections from
real multislice helical scan data of travel bags packed with
a variety of high and low density objects. Our results indicate
that MBR has the potential to produce reconstructions with
fewer artifacts than analytic reconstruction methods.

II. STATISTICAL MODEL FOR IMAGE RECONSTRUCTION

Let x ∈ R
M be the image vector, and lety ∈ R

N be the
vector of projection measurements. We assumex and y are
related by a linear sparse matrix operatorA,

y = Ax (1)

The matrix coefficientAij reflects the formation ofi-th
projection byj-th voxel.

In the Bayesian statistical framework, bothx andy are con-
sidered as random, and the reconstruction is most commonly
computed as the maximum a posterior (MAP) estimate given
by

x̂ = argmin
x≥0

{− log p(y|x)− log p(x)} (2)

where p(y|x) is the likelihood term corresponding to the
forward projection model andp(x) is the prior distribution
of x. Also notice that we impose a positivity constraint on the
image.

Given the imagex, the received photon countλi of the
i-th projection follows a Poisson distribution with mean



λT,ie
−Ai∗x whereλT,i is the photon count of thei-th pro-

jection obtained in an air calibration scan. The line integral
of i-th projection can then be obtained byyi = log

(

λT,i

λi

)

.
Using the second order Taylor expansion, the log likelihood
term can be approximated by a quadratic function [5],

log p(y|x) ≈ −
1

2
(y −Ax)TD(y −Ax) + c(y) (3)

whereD is the diagonal matrix with diagonal elementsDi,i

which are proportional to the photon countsλi, and c(y)
is a term depending only ony. Notice that in this case, a
smaller value ofλi indicates that the associate projection is
less heavily weighted.

The prior distributionp(x) incorporates knowledge about
the object being reconstructed,x. We will describe the prior
model in detail in the next section.

III. M ETHOD AND ALGORITHM

A. 3D Forward Projection Model

To calculate the projection matrixA, we use the distance-
driven (DD) model [6]. Figure 1 illustrates how the 3D
projection geometry is decomposed into thez axis that falls
along the object’s translation direction, and thexy-plane,
which is perpendicular toz [3]. Each voxel is flattened along
the dimension most parallel to the detector, and the coefficient
Aij is calculated as the product ofxy-plane projection,Bij ,
andz-direction projection,Cij .

Aij = Bij × Cij (4)

The coefficientsBij andCij are calculated as the convolution
of the detector response and the flattened voxel profile to yield

Bij =
∆xy

∆dc cos θ̃
clip

[

0,
Wc +∆dc

2
− |δc|,min(Wc,∆dc)

]

(5)

Cij =
1

∆dr cosφ
clip

[

0,
Wr +∆dr

2
− |δr|,min(Wr,∆dr)

]

(6)
whereW denotes the voxel’s width when projected onto the
detector,∆d denotes the detector width, subscriptc and r
denote channel and row respectively,θ andφ are the ray angles
in xy-plane andz-direction, andθ̃ is the adjusted ray angle
defined by

θ̃ =
(

θ +
π

4

)

mod
π

2
−

π

4
. (7)

The function clip is defined by clip[a, b, c] =
min(max(a, b), c).

B. Prior Model

We model the imagex as a Markov random field, with a
26-point 3D neighborhood and the following distribution

p(x) =
1

z
exp







−
∑

{s,r}∈C

bs,rρ(xs − xr)







(8)

whereρ is the positive and symmetric potential function and
C is the set of all pairwise cliques.
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Fig. 1. 3D forward projection geometry used for the distance driven projector.

We studied two different potential functions, given by the
l1 norm prior, which is a special case of generalized Gaussian
MRF (GGMRF) [7] whenp = 1,

ρ(∆) = |∆| , (9)

and the q-generalized Gaussian MRF (q-GGMRF) [3].

ρ(∆) =
|∆|q

1 + |∆/c|q−p
(10)

The q-GGMRF allows more degrees of freedom to control
both low-contrast and high-contrast edge characteristics. If
|∆| ≪ c, ρ(∆) ≈ |∆|q and if |∆| ≫ c, ρ(∆) ≈ |∆/c|p

wherec is the parameter determining the transition between
the two cases. Normally, we will setq = 2 and 1 < p < q.
It ensures the overall cost to be convex and, therefore, allows
global convergence.

C. Optimization

The overall cost function, obtained by combining the ap-
proximate log-likelihood and the prior, is

x̂ = argmin
x≥0







1

2
‖y −Ax‖2D +

∑

{s,r}∈C

bs,rρ(xs − xr)







(11)
We solve this optimization problem using the iterative coor-
dinate descent (ICD) algorithm [5] in which we scan over all
voxels and sequentially optimize each voxel while fixing the
others. In order to solve the 1D optimization problem resulting
from each pixel update, we design a quadratic substitute
functionalq(∆;∆′) that upper boundsρ(∆) and optimize the
cost withρ(∆) replaced byq(∆;∆′) [8]. In particular,

q(∆;∆′) =
ρ′(∆′)

2∆′
∆2 (12)

where ∆′ denotes the voxel difference before this update.
In this way, the original 1D line search is converted into a
quadratic optimization and the closed form solution can be
derived. Since the substitute cost is always an upper bound of
the original cost, minimizing the substitute will also produce a
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Fig. 2. Parallelized ICD scheme

decreasing sequence of original cost and iterative optimization
will lead to the optimal solution of the original problem.

In order to further speed convergence, we also use the
non-homogeneous ICD (NHICD) method of [8]. The idea
is to focus computation on voxels which tend to generate
significant updates. In NHICD, we alternated between a full
scan and a partial scan which involves only those voxels which
have significant updates at the previous iteration. This scheme
provides a further speedup of approximately a factor of three.

D. Parallelization

To utilize multi-core processing and speed up the recon-
struction for large image volumes, we implemented a paral-
lelized ICD update scheme. In this scheme, the full image
volume is cut into N boxes along thez-direction as shown in
Figure 2 and each processor is responsible for updating voxels
in one box. Different processors are synchronized once they
finish the work; therefore, one synchronization is made per full
scan. This will assign each processor a fairly large amount of
work to do in parallel and workload is roughly balanced for
different processors in order to reduce processor waiting time.
Also, since the image is stored with the index inz-direction
as the fastest-changing variable, the processors update voxels
alongz-direction first in order to create better cache efficiency.
Moreover, the voxels being updated are selected to be far
apart so that they do not share the same sinogram entry, and
therefore, can be updated independently.

IV. RESULTS

In this study, we used the scan data provided by the ALERT
(Awareness and Localization of Explosives-Related Threats)
Center, at Northeastern University, to conduct our experiments.
The projection geometric parameters are listed in Table I.
The reconstructed image is of size512 × 512 × 840 and the
voxel width is 0.975 mm in cross-section in thexy-plane
and the slice thickness is 1.25 mm inz-direction. Figure 3
illustrates some of the objects contained in the bag used in
our experiment.

Figure 6 demonstrates the quality of different reconstruction
algorithms. The FBP reconstruction shows several drawbacks.
The reconstruction is blurred, as we can see on the feet of
the toy Mr. Potato Head in (a). The shape of some objects
are distorted. For example, in the center of (a) and (b),

TABLE I
CT PROJECTION GEOMETRIC PARAMETERS

no. of rows 16

no. of channels 896

no. of rotations 60

no. of views per rotation 960

no. of views 57600

distance from source to iso 518 mm

distance from source to detector 910 mm

helical pitch (normalized) 1

detector width in channel 1.028 mm

channel offset 0.0031 rad

field of view (diameter) 500 mm

(a) (b)

(c) (d)

Fig. 3. Objects contained in the baggage (a) toy Mr. Potato Head (b) gel
pad (c) steel bar (d) box cutter

the steel bar, which is of high density and supposed to be
a rectangular shape, has been distorted. Also, we can see
the severe streaking artifacts, such as the region around the
high-density objects in (b). The model-based algorithms, on
the other hand, provide better reconstructions. The overall
image is sharper and shapes of objects are more accurately
recovered. Moreover, the model-based algorithm reduces the
structured artifacts as compared to the FBP method. These
advantages suggest that the model-based algorithm has the
ability to provide more detailed and accurate rendering, which
could possibly lead to better performance for the security
applications.

We further quantify the reconstruction quality by measuring
the noise variance on the uniform region. In Figure 4, a target
object, which is a plastic bottle of water, is shown. The streak-
ing artifact caused by the nearby high-density metal object
can be easily identified in the FBP reconstruction. In Figure
5, we plot the CT voxel values along the line passing through
the bottle of water vertically. We observe that the curve of
the FBP reconstruction fluctuates more significantly than the
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Fig. 4. Reconstructions zoomed to the target area using (a) FBP, (b)l1 norm
prior, and (c) q-GGMRF The round object is the plastic bottleof water.
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Fig. 5. CT values for voxels along the line through the centerof the target
region in Figure 4

curve of the other two model-based reconstructions. We further
calculate the noise variances with different reconstructions
along the line and the result is listed in Table II. The FBP
reconstruction leads to the largest noise variance, which is the
result of the streaking artifacts. It also shows that q-GGMRF
gives the smallest noise variance. This is due to the fact that
q-GGMRF has more smoothing effects than thel1 norm prior.

TABLE II
NOISE VARIANCE ON UNIFORM REGION

Method FBP l1 norm prior q-GGMRF

Noise variance 3042.8 836.0 496.5

V. CONCLUSION

In this work, we developed a model-based image recon-
struction algorithm and tested it on the data taken from actual
baggage. Our algorithm depends on a statistical framework
involving a forward model and a prior model. We compared
our reconstructions using two different priors,l1 norm prior
and q-GGMRF prior, to the standard FBP algorithm. The
model-based algorithms provide better reconstructions and re-
duce structured artifacts, which suggests potential advantages
in application to transportation security.
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