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(The Saga Continues…)



PnP Original Recipe*
oMotivation
oVariable Splitting and proximal maps
oThe ADMM Algorithm
oPnP-ADMM

*Singanallur V. Venkatakrishanan, Charles A. Bouman, and Brendt Wohlberg, 
“Plug-and-Play Priors for Model Based Reconstruction,” 
IEEE Global Conference on Signal and Information Processing (GlobalSIP), 
Austin, Texas, USA, December 3-5, 2013.
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Model-Based Iterative Reconstruction (MBIR)
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Fresh Look at MBIR (circa 2013)

 Forward model: 𝑢$ 𝑥 = − log 𝑝 𝑦 𝑥

 Prior model:  𝑢% 𝑥 = − log 𝑝 𝑥

MAP or regularized inverse

"𝑥 = argmin
!

𝑢$ 𝑥 + 𝑢% 𝑥

Can we minimize these 
two terms separately?

Proximal 
maps



Proximal Maps
 Proximal map of 𝑓 with base point 𝑥:

!𝐹& 𝑣 = argmin
'
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1
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Prior Proximal Map is a Denoiser

Denoiser: When 𝑢& 𝑥 = − log 𝑝 𝑥 , the proximal map is a denoiser

)𝐹& 𝑣 = argmin
'

1
2𝛾(

𝑣 − 𝑥 ( − log 𝑝 𝑥

= Denoise 𝑣; 𝛾
MAP denoiser for AWGN

-Log likelihood for 
AWGN with variance 𝛾!

)𝐹& 𝑣 = argmin
'

𝑢& 𝑥 +
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ADMM for MBIR Reconstruction

ADMM: 
– Iteratively reproject on sensor/prior manifolds
– Minimizes 𝑢 𝑥 = 𝑢# 𝑥 + 𝑢" 𝑥

Initialize 𝑣, 𝑢 = 0
Repeat {

𝑥 ← !𝐹) 𝑣 − 𝑢

𝑣 ← !𝐹& 𝑥 + 𝑢

𝑢 ← 𝑢 + 𝑥 − 𝑣
}

// Project onto sensor manifold

// Projection onto prior manifold

// Augmented Lagrangian update



PnP for MBIR Reconstruction

Big Idea: 
– Replace 𝐹" with any denoiser!
– Does it still converge? Does it minimize anything?

Initialize 𝑣, 𝑢 = 0
Repeat {

𝑥 ← !𝐹) 𝑣 − 𝑢

𝑣 ← Denoise 𝑥 + 𝑢

𝑢 ← 𝑢 + 𝑥 − 𝑣
}

// Project onto sensor manifold

// Denoise

// Augmented Lagrangian update



PnP circa 2013

Ground Truth

Subsamples

K-SVD BM3D

TV q-GGMRFPLOW
RMSE : 12.56

RMSE : 14.54 RMSE : 15.50 RMSE : 15.72

RMSE : 14.11

Noise std. dev : 5% of max signal

Forward model: 
sparse subsampling

Prior model: denoising 
algorithm

P n P
Prior

Forward
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1
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So what’s the problem?

 PnP only generates a single “best” result

 Can PnP be modified to generate samples 
from the posterior distribution?

𝑋 ∼ 𝑝9|; 𝑥|𝑦 =
1
𝑍
𝑝 𝑦|𝑥 𝑝 𝑥



Generative PnP (GPnP):
oProximal generators 
oMarkov chains
o Intuition behind GPnP



Posterior Distribution

The posterior distribution is given by

𝑝 𝑥|𝑦 =
1
𝑍
exp −𝑢$ 𝑥 − 𝑢% 𝑥

where
𝑢) 𝑥 = − log 𝑝 𝑦|𝑥
𝑢& 𝑥 = − log 𝑝 𝑥

Strategy:
– Create Markov chain
– Proximal generators: create sequential random samples
– Modular implementation



Proximal Generators

Proximal Map
:𝐹% 𝑥 = argmin

/
𝑢% 𝑣 +

1
2𝛾#

𝑣 − 𝑥 #

Proximal distribution

𝑞% 𝑣|𝑥 =
1
𝑍
exp −𝑢% 𝑣 −

1
2𝛾#

𝑣 − 𝑥 #

Proximal Generator
𝑉 = 𝐹% 𝑥 ∼ 𝑞% 𝑣|𝑥

Generates a sample from 
the proximal distribution



ball of 
radius 𝛾

𝑥

x1

x1

Interpretation of Proximal Generator

Intuition:
– Locally samples from the prior distribution
– Expected change approximates score 

𝑝 𝑥 =
1
𝑍 exp −𝑢" 𝑥

𝑉 = 𝐹" 𝑥 ∼ 𝑞" 𝑣|𝑥



Generative PnP

Observations/questions: 
– This is a Markov chain
– Does it converge to a stationary distribution?
– If so, then what is the stationary distribution?

Initialize 𝑋 = Random 0, 𝐼 + ⁄) (
Repeat {

𝑋 ← 𝐹& 𝑋

𝑋 ← 𝐹) 𝑋
}
Return(𝑥)

// Prior Model Proximal Generator 

// Forward Model Proximal Generator



GPnP Theorem

Theorem: Consider 𝑋< = 𝐹$ 𝐹% 𝑋<=$ , then
• 𝑋* is a reversible Markov chain
• 𝑋* has a stationary distribution given by

?𝑝 𝑥|𝑦 =
1
Z
exp −𝑢) 𝑥 − ?𝑢& 𝑥; 𝛾(

– where >𝑢" 𝑥; 𝛾$  is 𝑢" 𝑥  blurred with a Gaussian noise of variance 𝛾$.

Bottom line:
– Repeated sequential application of 𝐹" and 𝐹# converges to “desired” distribution.
– But GPnP introduces AWGN with variance 𝛾$ to the prior distribution!



sensor manifold 
𝑢# 𝑥

Generative Plug-and-Play Intuition

Repeat {
𝑋 ← 𝐹" 𝑋
𝑋 ← 𝐹# 𝑋

}

prior manifold 
𝑢" 𝑥

blurred prior manifold 
>𝑢" 𝑥



Implementing Proximal Generators:
oGeneric implementation
oPrior model proximal generator
oGPnP Psuedo-code



How to implement the Proximal Generator?

For 𝛾 small, just add white noise!
𝐹 𝑥 ≈ :𝐹 𝑥 + 𝛾𝑊

white Gaussian noiseOrdinary 
proximal map

Proximal map 
parameter

Proximal 
generator



Forward Model Proximal Generator

For small 𝛾,
𝐹$ 𝑣 = :𝐹$ 𝑣 + 𝛾𝑊

𝑣
𝑥 = )𝐹# 𝑣 	

“projection” onto 
“sensor manifold”)𝐹# 𝑣𝐹# 𝑣



Prior Proximal Generator (First Order Approx.)

First order approximation
𝐹% 𝑣 = :𝐹% 𝑣 + 𝛾𝑊

≈ Denoise 𝑣, 𝛾 + 𝛾𝑊

– But we can get a better approximation…

MAP denoiser for AWGN



Denoising Score Matching (Vincent 2011)*

Amazing	result:	
– The	AWGN	denoiser	provides	an	exact	MMSE	estimate	of	the	score

−∇N𝑢% 𝑥; 𝜎# =
1
𝜎#

Denoise 𝑥; 𝜎 − 𝑥
– Exactly true for any 𝜎

But….
– >𝑢" 𝑥; 𝜎$  is the energy function for the “noisy” prior
– So we have the exact solution, but for a noisy prior

MMSE denoiser for AWGN

*P. Vincent, “A connection between score matching and denoising autoencoders,” Neural Computation, 2011. 



Prior Proximal Generator (Second Order Approx.)

Define
𝛾# = 𝜎#	𝛽

Better approximation using score matching is: 

R𝐹% 𝑥; 𝛽, 𝜎 ≈ 1 − 𝛽 𝑥 + 𝛽Denoise 𝑥; 𝜎 + 𝛽𝜎𝑊

Remember:
– 𝛽 = #

%
	works	well	in	all	cases	we	tried.

– _𝐹" is based on “noisy” prior, but noise decreases as 𝜎 → 0

proximal map 
parameter

noise variance

Step size 𝛽 → 0



𝑣	

𝑋 = _𝐹" 𝑣 	

Prior Model Proximal Generator

– Prior blurred by 𝜎
– Step size scaled by 𝛽

E𝐹& 𝑥; 𝛽, 𝜎 ≈ 1 − 𝛽 𝑥 + 𝛽Denoise 𝑥; 𝜎 + 𝛽𝜎𝑊

𝑋 Noise blur 𝜎



GPnP Basic Algorithm

𝛽 = ⁄) +; 𝜎,-. = 2;
Initialize 𝑋 = Random 0, 𝐼 + ⁄) (
Repeat {

𝑋 ← 1 − 𝛽 𝑋 + 𝛽Denoise 𝑋; 𝜎 + 𝛽𝜎RandN(0, I)
𝑋 ← )𝐹) 𝑋 + 𝛽𝜎RandN(0, I)
𝜎 ← Reduce 𝜎

}
Return(𝑥)

– Prior	is	blurred	by	 1 + 𝛽 𝜎$

– But with time 𝜎 → 0



GPnP Basic Algorithm with Regularization

𝛽 = ⁄) +; 𝜎,-. = 2; 𝛼 = 1.3;
Initialize 𝑋 = Random 0, 𝐼 + ⁄) (
Repeat {

𝑋 ← 1 − 𝛽 𝑋 + 𝛽Denoise 𝑋; 𝛼𝜎 + 𝛽𝜎RandN(0, I)
𝑋 ← )𝐹) 𝑋 + 𝛽𝜎RandN(0, I)
𝜎 ← Reduce 𝜎

}
Return(𝑥)

– Denoise 𝑋; 𝜎 	-	MMSE	denoiser	trained	for	AWGN	with	variance	𝜎$.
– Increasing 𝛼 increases regularization
– Prior	is	blurred	by	 1 + 𝛽 𝜎$,	but with time 𝜎 → 0



sensor manifold 
𝑢# 𝑥

GPnP Interations

Repeat {
𝑋 ← 1 − 𝛽 𝑋 + 𝛽Denoise 𝑋; 𝛼𝜎 + 𝛽𝜎W
𝑋 ← 2𝐹" 𝑋 + 𝛽𝜎W
𝜎 ← Reduce 𝜎

}

prior manifold 
𝑢" 𝑥

blurred prior manifold 
>𝑢" 𝑥

1 + 𝛽𝜎



Experiments 

Experiment:
• Prior proximal generator: BM3D, DRUNet*, DDPM denoiser trained on 

CelebAHQ-256**
• Forward model: interpolation with sparse sampling of 10%, 5%, 2% and 

missing rectangle.

Parameters
• 𝑁 = 100; 𝜎,-. = 0.5	or	2.0; 𝜎,/0 = 0.005; 𝛽 = ⁄) +; 𝛼 = 1.3; 
• Same parameters work for different problems (interpolation, 

tomography, …) and different denoisers (BM3D, DRUNet, …).
*Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte, “Plug-and-Play Image Restoration 
With Deep Denoiser Prior,” PAMI 2022.

**Kai Zhang, Yawei Li, Wangmeng Zuo, Lei Zhang, Luc Van Gool, and Radu Timofte, “Plug-and-Play Image 
Restoration With Deep Denoiser Prior,” PAMI 2022.



Sparse interpolation: 10% of pixels sampled, DRUNet prior 
(Std dev intensity window changes) 



Sparse interpolation: 5% of pixels sampled, DRUNet prior 
(Std dev intensity window changes) 



Sparse interpolation: 2% of pixels sampled, DRUNet prior 
(Std dev intensity window changes) 



Inpainting: Center rectangle omitted - 3 samples, DRUNet prior 
(Std dev intensity window changes) 



Inpainting: Center rectangle omitted - 3 samples, DDPM denoiser trained 
on CelebAHQ-256 prior (Std dev intensity window changes) 

IT’S A FACE!!



Conclusions

Generative PnP: A natural generalization of PnP original recipe
– Denoiser for prior
– Proximal map for forward model
– Iterate and add noise

GPnP vs Langevin Dynamics*:
– Discrete Markov Chain vs Stochastic Differential Equation
– Proximal Maps  vs Gradient Descent
– New Approach  vs Established Method

*Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, Ben Poole, “Score Based 
Generative Modeling Through Stochastic Differential Equations,” ICLR 2021.


