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Abstract— Tomographic reconstruction, which involves com-
puting a 3-D volume from its 2-D projections, is an important
problem in imaging with wide-ranging applications, including
medical scanners, electron microscopy, nondestructive testing,
and transportation security. Model-based iterative reconstruc-
tion (MBIR) is a popular approach to 3-D reconstruction that
has demonstrated the state-of-the-art reconstruction quality on
several applications, and has been deployed in commercial
healthcare systems. However, software implementations of MBIR
on commodity general-purpose processors demonstrate poor
performance due to its high compute and data requirements
and cache unfriendly data access patterns. In this paper, we
develop an efficient MBIR accelerator (EMBIRA) that achieves
significant performance and energy improvement over software
implementations. EMBIRA utilizes arrays of three types of
specialized processing elements that match MBIR’s computation
patterns, and is further operated as a two-level nested pipeline
to fully exploit the parallelism present in the algorithm. Another
important source from which EMBIRA derives its efficiency is
by constraining the sequence in which voxels! in the 3-D volume
are reconstructed. This enables better data reuse within the
accelerator, thereby significantly reducing the number of off-chip
memory accesses. To demonstrate the benefits of EMBIRA, we
implemented a prototype on an Altera DES field-programmable
gate array (FPGA) platform that includes an Altera Stratix V
GX FPGA and DDR3 memory. Our implementation of EMBIRA,
operating at 165 MHz, achieved 51.8x (5.8x) improvement in
performance, and 355x (199x) improvement in energy, com-
pared with optimized sequential (multithreaded) software imple-
mentations on a 48-core 2.3-GHz AMD Opteron-based server.

Index Terms—3-D tomographic reconstruction, energy
efficiency, hardware accelerator, model-based iterative
reconstruction (MBIR).

Manuscript received March 26, 2015; revised July 21, 2015 and

October 1, 2015; accepted October 6, 2015. Date of publication April 29,
2016; date of current version October 21, 2016. This work was supported in
part by the National Science Foundation under Grant CNS-1423290 and in
part by High-Performance Imaging, Inc.

J. Liu was with Purdue University, West Lafayette, IN 47906 USA.
He is now with the Institute of VLSI Design, Zhejiang University,
Hangzhou 310027, China (e-mail: stoneljsh@zju.edu.cn).

S. Venkataramani, C. A. Bouman, and A. Raghunathan are with the School
of Electrical and Computer Engineering, Purdue University, West Lafayette,
IN 47906 USA (e-mail: venkata0@purdue.edu; bouman@purdue.edu;
raghunathan @purdue.edu).

S. V. Venkatakrishnan is with the Lawrence Berkeley National Laboratory,
Berkeley, CA 94720 USA (e-mail: svenkata@purdue.edu).

Y. Pan is with the Institute of VLSI Design, Zhejiang University,
Hangzhou 310027, China (e-mail: panyun@zju.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSIL.2016.2551204

IEach location in the 3-D volume represents a voxel. It is analogous to a
pixel in a 2-D image.
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Fig. 1. 3-D reconstruction example: CT.

I. INTRODUCTION

ODEL-BASED image processing refers to a suite
of recently developed algorithms and techniques that
address a class of important problems, called inverse problems,
in imaging systems [1]. One of the popular inverse problems
is 3-D tomographic reconstruction, in which the objective
is to piece together a 3-D volume (a physical object or
a scene) from multiple 2-D observations acquired using an
imaging system. The 3-D reconstruction finds applicability in
a wide spectrum of domains, ranging from medical imaging
scanners and explosive detection systems to electron and
X-ray microscopy [2]-[9]. For example, Fig. 1 shows
a computed tomography (CT) scan application, in which
X-ray radiation is passed from several angles to record 2-D
radiographic images (or virtual projections) of specific areas
of the scanned object. These radiographic images are then
composed using a reconstruction algorithm to form a 3-D
image of the object, which is subsequently used for medical
diagnosis. Other examples include forming 3-D object models
in baggage scanners, mapping terrains and surfaces in 3-D, and
studying objects at the nanometer scale, among many more.
Model-based iterative reconstruction (MBIR) is a promising
approach to realize 3-D reconstruction [5], [6], [10]-[12].
The MBIR framework formulates the problem of 3-D recon-
struction as the minimization of a high-dimensional cost
function, in which each voxel in the 3-D volume is a variable.
While several variants of MBIR exist based on how the cost
function is minimized [10]-[12], we consider a popular vari-
ant, called iterative coordinate descent MBIR (ICD-MBIR),
that has demonstrated the state-of-the-art performance on
several tomographic applications [6], [13], and has also been
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commercially deployed in healthcare systems [14], [15]. For
brevity, we refer to the ICD-MBIR algorithm as MBIR in
the rest of this paper. Given a set of 2-D image observations,
the MBIR algorithm reconstructs the 3-D image by iteratively
updating each voxel in the volume. First, the voxels are
randomly initialized (or based on simple precomputations),
and are then refined in a random sequence. Each voxel is
updated, such that an error function that depends on the
difference between the input 2-D image observations and the
2-D observations derived from the reconstructed 3-D volume
is minimized. The algorithm terminates either upon executing
a fixed iteration count or if the error function falls below a
prespecified convergence threshold.

A. ICD-MBIR Computational Characteristics

The ICD-MBIR algorithm is highly compute and data inten-
sive, and general-purpose implementations of the algorithm
often fail to meet the desired performance. For instance,
the application considered in our experiments reconstructs
a 512 x 512 x 256 3-D volume from 47 2-D images of size
512 x 512 each. In this case, the MBIR algorithm requires
50.33 GOPS (giga operations) to update all voxels in the
volume once, which constitutes one full iteration of the algo-
rithm. The algorithm can take tens of iterations to converge
depending on the error threshold. Clearly, this represents a
significant compute demand. Our software baseline (adopted
from [16]) required ~1700 s per iteration on a 2.3-GHz AMD
Opteron server with 196-GB memory, which is unacceptable
for many practical applications.

In addition, unlike other optimization strategies for the
MBIR cost function [17], [18], the ICD-MBIR algorithm is
not easily amenable to parallel execution on multicores and
many-core accelerators, such as General Purpose Graphics
Programming Units for the following reasons. First, there is
limited parallelism within the core computations that evaluate
the updated value of the voxel. In addition, the per-voxel-
update computations themselves are relatively small (in our
implementation, the time per-voxel update was ~26 us).
Hence, the overheads of parallelization, such as task startup
time, data communication, synchronization, and so on, become
significant. In summary, parallelizing computations within
each voxel update yield little or no performance improvement.

The bulk of the data parallelism in ICD-MBIR stems from
the large number of voxels (512 x 512 x 256) that need to be
updated. In the strict sense, the computations on different vox-
els are not parallel, as MBIR requires each voxel to be updated
sequentially and in a random order. However, the previous
studies [6], [7], [19], [20] have shown that convergence is
not affected when multiple voxels are updated simultaneously,
provided that they are located sufficiently far apart in the
3-D volume. While this enables considerable parallelism, the
benefits saturate beyond a small number of parallel voxel
updates. For example, in our parallel software implementa-
tion (adopted from [16]) on a 48-core server, we observed
that speedup decreased beyond 12 parallel voxel updates
(or threads). This is because, the memory access pattern for
voxel updates is not cache-friendly (each voxel-update com-
putation randomly accesses a small number of elements from
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different parts of a large array structure). Furthermore, voxels
that are concurrently updated do not share any data. Therefore,
when parallelized, the ICD-MBIR algorithm quickly becomes
memory bandwidth-limited, and the benefits naturally saturate.

The above discussions indicate that the new approaches to
improve the efficiency of MBIR are critical.

B. EMBIRA: Key Features and Contributions

In this paper, we design a hardware accelerator to achieve
improved efficiency in the execution of the MBIR algo-
rithm. The proposed efficient MBIR accelerator (EMBIRA)
is composed of processing elements called voxel evaluation
modules (VEMs). Each VEM, in turn, contains three types
of specialized processing elements viz., theta computation
element, neighborhood processing element (NPE), and voxel-
update element (VUE), which together perform all the com-
putations required to update a given voxel. The different
processing elements are operated as two-level nested pipeline
to exploit the fine-grained pipelined parallelism present in the
algorithm. The VEM also employs multiple on-chip memory
arrays to enhance data reuse and reduce off-chip data accesses.
Furthermore, we leverage optimizations, such as data pack-
ing and pipelining data computation with communication, to
enhance the overall performance of voxel updates on VEMs.
The EMBIRA architecture is organized as an array of VEMs,
facilitating multiple voxels to be updated concurrently.

An important source of EMBIRA’s efficiency is the sig-
nificant reduction in external memory accesses achieved by
constraining the sequence in which voxels in the 3-D volume
are updated. In particular, we impose the following constraints:
1) voxels that are updated in parallel should lie on a straight
line and 2) when a voxel is updated, a small volume around
the voxel is also updated. These constraints greatly enhance
data reuse within the accelerator. This leads to a reduction
in the number of off-chip data transfers, lowering the mem-
ory bandwidth requirement and improving performance. It is
worth noting that we ensure that voxels updated concurrently
in EMBIRA lie sufficiently far apart in order to preserve
convergence.

In summary, we make the following key contributions.

1) We propose an efficient hardware accelerator, EMBIRA,
to realize the MBIR algorithm. EMBIRA features
two-levels of nested pipelining and specialized process-
ing elements that are tailored to the computations
involved in voxel updates.

2) To improve the processing efficiency of EMBIRA,
we constrain the sequence in which the voxels are
updated to enforce better data sharing/reuse within the
accelerator, thereby significantly reducing the memory
bandwidth requirement.

3) We prototype EMBIRA on an Altera DE5 field-
programmable gate array (FPGA) platform that includes
an Altera Stratix V GX FPGA interfaced with a
DDR3 memory. Our implementation of EMBIRA,
operating at 165 MHz, demonstrates 51.8x and 5.8x
improvement in performance compared with optimized
sequential and multithreaded software implementations
on a 48-core 2.3-GHz AMD Opteron-based server.
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The energy consumption of EMBIRA is 355x
(199x) lower than the sequential (multithreaded)
implementations.

The rest of this paper is organized as follows. Section II
provides a brief description of the MBIR algorithm. Section III
details the EMBIRA architecture. Section IV outlines the
system-level evaluation setup. Section V presents the experi-
mental methodology, followed by the results in Section VI.
Section VII describes the related research efforts and
highlights the distinguishing features of this paper, and
Section VIII concludes this paper.

II. MBIR: BACKGROUND AND PRELIMINARIES

In this paper, we focus on the problem of 3-D tomographic
reconstruction from a set of 2-D images obtained using a
parallel beam source and by rotating the source/object about a
single axis. Typically, the measurements in such a system are
related to the unknown voxels via line integrals (projections).
Thus, the goal of a reconstruction algorithm is to obtain the
unknown volume from the set of noisy 2-D parallel beam
images.

In order to describe the MBIR approach, it is useful to
think of all the 2-D images (measurements) as well as the
unknown 3-D volume of voxels as vectors. If y is an M x 1
vector containing all the measurements, x is an N x 1 vector
containing all the voxels in the 3-D volume, and A is an
M x N matrix implementing the line intergral through the
3-D volume, then the MBIR is obtained by minimizing the
function

1
c@)=5lly = Axlii + D wrpley—x) (D)
r,seNG

where r and s are voxels, N represents the set of all pairs of
neighboring voxels in 3-D (using, say, a 26-point neighbor-
hood system), p(.) is a potential function that incorporates a
model for the underlying image, A is a diagonal matrix whose
entries weight each term by a factor inversely proportional to
the noise in the measurement, and w, is a set of normalized
weights, depending on the physical distance between neigh-
boring voxels. While there are a variety of options for the
p(.) function, we choose the -GGMREF potential [21] function
given by
Gl
p(A) = —
c+

)

2—p

A
of

where c is typically set to 0.01, 1 < p < 2, and oy is a
smoothing parameter. The first term in (1) has the interpre-
tation of enforcing consistency of the desired reconstruction
with the measurements while the second term enforces certain
desirable characteristics in the reconstruction (sharp edges, low
noise, and so on).

Note that each column of the matrix A represents all the
projections of a single voxel on the detector. Hence, each
column is a sparse vector. Furthermore, since we are dealing
with a parallel beam geometry with rotation about a single
axis, the A-matrix columns share values across slices in the
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Fig. 2. Access pattern for voxel update in the MBIR algorithm.

3-D volume (see Fig. 2). Hence, the A matrix needs to only be
computed for voxels in a single slice and can then be reused
across slices.

In this paper, we will focus on minimizing the above
cost using the ICD algorithm combined with the concept of
majorization [5], [6]. The basic idea in ICD is to update
the voxels one at a time so as to decrease the value of the
cost function (1) with each update. The updates result in a
monotonic decrease of the cost. Since the cost function is
convex and is bounded from below, this method converges
to the global minimum.

The cost function in (1) with respect to a single voxel
(ignoring constants) indexed by s is given by

17
cs(z) = Oz + 32(2 —x)2 + ; wrsp(z —x)  (3)

Oy = —¢'AAsy, 0r= AL AA,, @)

where A, ; is the sth column of A, e = y — Ax, and x; is the
current value of the voxel s.

Due to the complicated nature of the function p(), it is
not possible to find a simple closed form expression for the
minimum of (3). Hence, p() is often replaced by a quadratic
surrogate function, which makes (3) simpler to minimize.
In particular, if

p'(xr — x5)
aw={ Gy T )
PU(O) Xs = Xr

then a overall surrogate function to (3) is given by

cs(2) =01 — x5) + 02z — x) + D wrsarg(z — x,)°.
reN;

(6)

Taking the derivative of this surrogate function and setting it
to zero, it can be verified that the minimum of the function is

o OBt Dy e

6, + Z WysQys

reNy

Note that minimizing (6) ensures a decrease in (3), and hence,
in the original function (1). The algorithm can be efficiently
implemented by keeping track of the fitting error vector e (also
called the error sinogram) along with each update [5].
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Algorithm 1 Pseudocode of the MBIR Algorithm

Input: 2D Measurements: y
Output: Reconstructed 3D volume: x

1: Initialize x at random

2: Error Sinogram: e = y — Ax

3: while Convergence criteria not met do

4 for each slice s (y co-ord.) do

5 for each voxel v in s in random order do
6: 01 and 05 = f(e, As) (Eqn. 4)
7.
8

for voxels u € neighborhood A, of v do
: Compute surrogate fn. a,, for u (Eqn. 5)
9: end for

10: Compute z* = (61,02, 2y, a.,) (Eqn. 7)

11 Update Error Sinogram: e <— e — (2* — x,)As
12: Update voxel: x, < z*

13: end for

14:  end for
15: end while

The pseudocode of MBIR is summarized in Algorithm 1.
Given a set of 2-D measurements (y) as inputs, the algorithm
produces the reconstructed 3-D volume (x) as the output. First,
the voxels in x are initialized at random (line 1). Next, the
error sinogram (e) is computed as the difference between the
2-D measurements and the 2-D views obtained by projecting
the current 3-D volume. The algorithm iteratively updates
the voxels (lines 4-14) until the convergence criterion is
met. In each iteration, every voxel in the volume is updated
once in a pseudorandom order. To this end, the 3-D volume
is decomposed into multiple slices along the y-axis. Thus,
each slice is comprised of a plane of voxels in the x- and
z-directions. We adopt the following two-step process to
decide the order in which the voxels are updated. First, a slice
in the volume is selected (line 4). Next, all voxels within this
slice are updated (lines 5—13) by randomly picking their x- and
z-coordinates. This process is repeated until all the slices are
updated. The two-step process facilitates easy parallelization
of the algorithm along the slice loop (line 4). Note that the
slices updated in parallel should be located as far apart as
possible to ensure convergence.

Lines 6-12 describe the steps involved in updating a
voxel. First, the parameters 6; and 6, are computed using
the A matrix and the error sinogram e (line 6). Next, the
quadratic surrogate function is evaluated for each of the voxel’s
neighbors (lines 7-9). These are utilized to compute the new
value of the voxel z* (line 10). The error sinogram (e) and
the 3-D volume (x) are then updated (lines 11 and 12).
From a computational standpoint, each voxel update involves
accessing three key data structures as shown in Fig. 2 and
enumerated as follows: 1) a column of the A matrix, which
is indexed by the x- and z-coordinates of the voxel (hence,
voxels along an xz line share the same A-matrix column);
2) voxel neighborhood, which is unique to each voxel, but
shared in part by adjacent voxels along all the directions;
and 3) part of the error sinogram, which is determined by
the slice ID of the voxel, and is, hence, shared by all voxels
in a slice. In EMBIRA, we leverage these data access pat-
terns to optimize computations within a voxel and maximize
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data reuse across voxels, thereby enhancing processing
efficiency.

ITII. EMBIRA: HARDWARE ARCHITECTURE

The EMBIRA architecture, shown in Fig. 3, is designed
to efficiently realize the MBIR algorithm by exploiting its
computational characteristics. The hardware architecture is
scalable, i.e., its microarchitectural parameters can be easily
modulated to achieve various levels of performance, power,
and reconstruction quality. EMBIRA consists of an array of
VEMs, a global control unit, local memory, and an external
memory interface. Each VEM can perform all computations
required to update a single voxel. The input 2-D images, the
reconstructed 3-D volume, and other data structures (A matrix,
error sinogram) are assumed to be stored in external memory.
The global control unit of EMBIRA contains appropriate
control registers to specify the locations of the data structures
in external memory and control logic to generate the required
interface signals.

At the high level, the operation of EMBIRA can be sum-
marized as follows. First, the global control unit generates a
pseudorandom voxel ID (x-, y-, and z-coordinates). Based on
the coordinates, the data required to update the voxel viz.,
the column of the A matrix, a portion of the error sonogram,
and the voxel neighbors, are transferred from the external
memory to EMBIRA. One of the VEMs then computes
the updated values of the voxel and error sinogram. This
process may be concurrently performed on multiple voxels
to utilize the VEM array. We adopt several techniques to
reuse the data in the internal memory across multiple voxel
updates, thereby significantly reducing the number of external
memory accesses. The updated values of the voxel and the
error sinogram are then stored back to the external memory.
This process is repeated until the convergence criterion is
met. In this section, we describe the architectural features
of EMBIRA and the optimizations adopted to improve its
processing efficiency.

A. Voxel Evaluation Module and Intravoxel Pipelines

The key computation element of EMBIRA is the VEM.
A VEM performs the core computations that evaluate the
updated value of a voxel. Fig. 4 shows the VEM design
that operates on a single voxel. We enhance this design
in the subsequent sections to enable multiple voxel updates
and achieve significant bandwidth reduction in the process.
The VEM comprises of three types of specialized processing
elements: 1) theta evaluation module (TEM), in which the
variables 81 and 6, are evaluated; 2) NPE, in which a complex
one-to-one function is applied on each of the voxel neighbors;
and 3) VUE, which uses the outputs of TEM and NPE to
compute the updated value of the voxel and the error sinogram.
The column of the A matrix is stored in a first-in-first-
out (FIFO) buffer. Since the column of the A matrix is sparse,
it is stored as an adjacency list, i.e., each memory location in
the FIFO stores the index and the value of the nonzero entries.
On the other hand, the error sinogram and the voxel neighbors
are stored as dense arrays.

The VEM operates as follows. First, the elements of the
A-matrix column are streamed into the TEM. The TEM
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utilizes the index of the A-matrix elements to address the
error sinogram memory to obtain the corresponding error sino-
gram value. The TEM performs a vector reduction operation
on the A matrix and error sinogram values to obtain 8; and 6;.
In parallel to the TEM, the NPE sequentially operates on
each of the voxel neighbors and stores the processed neighbor
values in an FIFO memory. Since the TEM and the NPE
operate in parallel, the performance of the VEM is maximized
when their latencies are equal. This is achieved by proportion-
ately allocating hardware resources in their implementation.
After the TEM and the NPE complete execution, the VUE
utilizes their outputs to compute the updated value of the
voxel. As shown in (4), this involves performing a vector
reduction operation on the voxel neighborhood, followed by
multiple scalar operations. The entries in the error sinogram
memory are also updated based on the new value of the voxel.
Finally, the voxel is written back to the external memory. Note
that the MBIR algorithm updates all the voxels (in a random
order) in a given slice before choosing the next slice. Since
all the voxels in a slice access the same region of the error

sinogram (Fig. 2), the error sinogram memory in the VEM can
be reused across all of them. However, the A-matrix column
and the neighborhood voxels are unique to each voxel in a
slice, and need to be fetched from an external memory before
every voxel update.

To improve performance, the VEM is operated as a
two-level nested pipeline. The first-level pipeline is within the
TEM module. In this case, we leverage pipeline parallelism
across the different elements of the vector reduction. When
the TEM computes on a given A-matrix element, the error
sinogram value for the successive element is fetched from the
error sinogram memory in a pipelined manner. The second-
level pipeline exploits the parallelism across successive voxels.
In this case, we concurrently transfer data required by the
next voxel, even as the previous voxel is being processed in
the VEM. Thus, both the levels of pipelining improve the
performance by overlapping communication (memory access)
with computation.

B. VEM Array With Shared A-Matrix Memory

While the specialized processing elements and the two-level
pipelined VEM operation aim to improve the performance of
a single voxel update, much of the parallelism in MBIR stems
from updating multiple voxels in parallel. We leverage this
intervoxel parallelism by designing a VEM array, as shown
in Fig. 3. The VEMs are arranged as an array with L lanes,
each comprising its TEM, NPE, and VUE modules. One key
constraint to ensure the convergence of the MBIR algorithm
is that the voxels that are updated in parallel need to locate
far apart in the 3-D volume. To maximize the separation,
the voxels are typically selected from different slices that are
spread equidistant from each other across the length of the
3-D volume. In our implementation of EMBIRA, we choose
the number of VEM lanes to be 12, and the 3-D volume
even in the case of our smallest benchmark data set contains
512 slices. As a result, voxels updated in parallel are approx-
imately 40 slices apart, and therefore, updating voxels in
parallel does not impact the convergence rate of the algorithm.
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If the 3-D volume is smaller or if the number of VEMs is
increased, then the voxels get progressively closer and may
require additional iterations to achieve similar reconstruction
quality.

While processing voxels from multiple slices in paral-
lel linearly improves computation time, the amount of data
transferred from the external memory remains constant. This
is because the voxels updated in parallel are independent,
and use different A-matrix columns and neighborhood. Since
data transfer is pipelined with voxel evaluation, reducing one
without the other has little impact on the overall performance
of EMBIRA. We reduce the amount of data transferred by
leveraging the manner in which the voxels access the different
data structures of the MBIR algorithm. To this end, as shown
in Fig. 5, we constrain how the voxels updated concurrently
are chosen, by restricting them to lie on a straight line parallel
to the y-axis. In other words, all voxels updated in parallel
have the same x- and z-coordinates. Since A-matrix columns
are indexed only using the x- and z-coordinates (Fig. 2),
concurrently updated voxels share the same A-matrix column.
Therefore, the data transfers from external memory for the
A matrix are reduced in direct proportion to the number
of concurrently updated voxels. This approximation does not
impact convergence, as the slices from which the voxels are
picked lie sufficiently far apart.

As shown in Fig. 3, the A-matrix memory is placed outside
the VEMs and shared by all the VEMs during their execution.
Before a batch of voxels is processed by the VEM array, the
neighborhood for all voxels and one A-matrix column are
transferred from the external memory. This results in a net
reduction of L — 1 A-matrix column transfers per execution,
where L is the number of VEM lanes. Thus, by constraining
the sequence in which voxels are selected, we reduce the
number of off-chip memory accesses.

C. Vol-VEM Design for Neighborhood Reuse

The reduction in the amount of data transferred due to the
sharing of A-matrix columns yields diminishing improvements
in the overall performance of EMBIRA as the number of
VEM lanes is increased beyond a point. This is because, when
a set of voxels are processed by the VEM array, the time
taken to transfer the voxel neighbors to all VEMs increasingly
outweighs (the already reduced) A-matrix column transfers
as the number of VEM lanes is increased. Therefore, the
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neighborhood transfer time eventually limits the overall per-
formance. To reduce the neighborhood data transferred, we
leverage the observation from Fig. 2 that the adjacent voxels in
the 3-D volume share part of their neighborhoods. Therefore,
as shown in Fig. 6, we enhance the VEM design from
updating a single voxel to updating a small 3-D volume of size
a x b x c (along the x-, y-, and z-directions) around the voxel.
We term this the voxel volume evaluation module (Vol-VEM)
design.

The reduction in neighborhood transfers can be computed as
follows. Each voxel update requires a 3 x 3 x 3 neighborhood
(one neighbor voxel in all the directions) around the voxel
to be brought in from the external memory. In the case of
Vol-VEM updating an a x b x ¢ volume, a neighborhood of
(@a+2) x (b+2) x (c+2) voxels is required to collectively
update the entire volume. In the previous case, when the VEM
is designed to evaluate a single voxel, updating abc voxels
would require 27 x abc transfers. Therefore, the total reduction
in data transferred is given by

. (@a+2)b+2)(c+2)
NeighborDataRed ;. = 77 abe . ®)

For example, if the Vol-VEM evaluates a 3 x 3 x 3 volume,
we achieve a 5.8x reduction in neighborhood transfers.
Clearly, the benefits increase as the size of the volume is
increased. However, increasing the volume further constrains
the order in which the voxels are updated, and hence, may
impact convergence. Therefore, it is key to choose the largest
volume that yields the desired reconstruction quality. In addi-
tion, from an efficiency standpoint, increasing the volume
may not be advantageous beyond a point, as the impact
of neighborhood data transfers quickly diminishes. Another
important point to note is that the voxels in the volume are
updated sequentially within the Vol-VEM, as there exist data
dependencies between adjacent voxels. For example, voxels
in the same slice (y-coordinate) share the error sinogram
memory, which is modified to reflect the decrease in error
after each voxel is evaluated. This updated error sinogram
memory should be used to compute the next voxel in the
slice. However, if multiple voxels from the slice are updated in
parallel, then updates to the same error sinogram location from
parallel voxels would conflict. Thus, the Vol-VEM optimiza-
tion is not intended to decrease the compute time of VEMs.
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Fig. 7. Summary of optimizations proposed in EMBIRA.

Instead, the number of external memory accesses is decreased
due to increased data reuse.

To realize Vol-VEM, the following enhancements are made
to the VEM design described in Section III-A. First, the
capacity of the neighborhood memory is increased to hold a
larger number of voxels. In addition, once the updated value of
a voxel is computed, it needs to be written to the neighborhood
memory (in addition to the external memory), as subsequent
voxels in the volume use the updated value. Also, since
adjacent voxels along the y-direction belong to different slices,
the error sinogram memory in the Vol-VEM is replicated to
hold data corresponding to each slice. Along similar lines,
voxels within the slice use different A-matrix columns, and
correspondingly the A-matrix memory is also replicated. The
TEM, NPE, and VUE modules are not replicated in the
Vol-VEMs as voxels in the volume are evaluated sequentially.
Finally, the global and VEM controllers are modified to
appropriately index these memories and evaluate all voxels
within the volume.

The different optimizations proposed in EMBIRA and their
qualitative impact on its execution time are summarized in
Fig. 7. First, the VEM design utilizes three types of spe-
cialized processing elements to improve the computation time
for voxel evaluation (1-VEM). Next, the two-level pipelined
operation further improves the performance by overlapping
data transfer with computation (1-VEM + Pipe). In order to
exploit intervoxel parallelism, multiple VEMs are arranged
as a 1-D array (L-VEM + Pipe). However, this does not
improve the overall performance as the data transfer time,
which is the critical path in the pipeline, is not reduced.
Therefore, we impose an additional constraint that the voxels
updated in parallel should lie along a straight line parallel to
the y-axis. This enables the A-matrix column to be shared
among the VEMs, resulting in reduced data transfer time
(L-VEM + Pipe + Sh. A-Mem). We note that the performance
improvements from this optimization saturate for a large
number of parallel VEMs, as the A-matrix transfer time is no
longer dominant. Therefore, we propose the Vol-VEM design,
in which each VEM is enhanced to update a small a x b X ¢
volume, instead of single voxel. This significantly reduces
the neighborhood transfer time, further enhancing performance
(L-Vol-VEM + Pipe + Sh. A-Mem). In summary, through the
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above optimizations, EMBIRA achieves significant efficiency
in realizing 3-D construction using the MBIR algorithm.

IV. EMBIRA: SYSTEM-LEVEL EVALUATION

To evaluate the benefits of EMBIRA, we integrate it as part
of a larger system, and prototype the system on a commodity
FPGA platform. This section details the different components
of the system design.

A. System Design

Fig. 8 shows the system used for evaluating EMBIRA. The
system is comprised of four key components: 1) the EMBIRA
accelerator; 2) an NIOS II/f general-purpose scalar processor;
3) a DRAM memory controller; and 4) a direct memory
access (DMA) controller. The components communicate with
each other through a system bus. The NIOS II/f core uses
a 32-bit, six-stage, in-order pipelined embedded proces-
sor architecture, along with an instruction and data cache.
The system operates as a single frequency island, i.e., all
components share the same clock frequency. To this end, an
on-chip PLL module is utilized to generate the clock signal.
The system is the interfaced with an external DDR3 memory
that stores the data required by the MBIR algorithm.

B. System Operation

First, the DDR3 memory is initialized with the input 2-D
images and other data structures (error sinograms, A matrix,
and so on) associated with the MBIR algorithm. Next, the
general-purpose processor core begins execution and generates
a random slice-id (y-coordinate of the voxel). If multiple
voxels are updated in parallel, then the slice-ids of the other
voxels are obtained by locating them equidistant from each
other, in order to maximize the distances between the voxels.
The DMA controller is then used to transfer the error sino-
grams corresponding to the slices to the VEMs in EMBIRA.
Once the transfer is complete, the general-purpose processor
core generates an (x and z) coordinate at random, and the
appropriate column of the A matrix is fetched from memory.
Note that all the VEMs in EMBIRA share this column. The
VEMs then begin to compute and write updated voxel values
to the external memory. Concurrently, the general-purpose
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TABLE I
PARAMETERS OF SYSTEM COMPONENTS

EMBIRA Configl: 1 VEM, 200 MHz frequency, 100 KB memory

Config2: 12 VEMs, 165 MHz frequency, 1.2 MB memory
Config3: 12 Vol-VEMs, 165 MHz frequency, 4 MB memory
32-bit processor, 6-stage in-order pipeline with branch prediction,
407 MIPS, 64 KB cache, 350 MHz max. frequency

3 GB, 8 banks, 400 MHz frequency

NIOS II/f core

DDR3 Memory

processor core generates the next (x and z) coordinate and
begins transferring the required column of the A matrix. Once
all the (x and z) coordinates in the slices are exhausted, the
next set of slices is determined and the process is repeated
until voxels in all the slices are updated. This completes
one full iteration of the reconstruction. The general-purpose
processor core then determines if the convergence criterion
is met and initiates the next iteration if required. Thus, the
entire 3-D reconstruction from the 2-D images is achieved
using EMBIRA.

V. EXPERIMENTAL METHODOLOGY

In this section, we describe the methodology adopted in our
experiments.

A. System Implementation Toolflow

The EMBIRA accelerator was implemented at the register-
transfer level using Verilog Hardware Description Language.
The other components in the system, including the NIOS II/f
processor core, were from the Altera IP library. The system
bus was implemented in compliance with Avalon memory-
mapped interface specifications. The external DDR3 memory
was 3 GB in capacity. The system was developed using the
Altera Qsys system integration tool and prototyped on an
Altera DES FPGA platform [22] with a Stratix V GX FPGA.
The parameters associated with the key system components
are listed in Table I. Quartus was used to synthesize, map,
and place-and-route the design to obtain the FPGA bitstream.
We used Altera’s NIOS II IDE to generate the application
software that executes on the NIOS II/f processor. Finally, a
JTAG interface was used to download the bitstream on to the
Stratix V FPGA, and was further utilized for evaluation and
debug purposes.

The sequential and multithreaded software baselines of the
MBIR algorithm were adopted from [7]. The software was
implemented in C++ and executed on a server with 48 AMD
Opteron cores operating at 2.3 GHz and 196-GB memory.

B. Runtime, Energy, and Quality Evaluation

To measure runtime, we instrumented the EMBIRA system
and the software implementation with performance counters.
The number of clock ticks for the full 3-D reconstruction was
obtained in both the cases. We utilized the Quartus PowerPlay
Analyzer to measure the power consumed by the full system
after place-and-route of the design. In the case of the software
implementation, we obtained the power consumed by the
processor chip used in the server from its datasheet. The
energy was then computed as a product of the runtime and
power. Since we slightly modify the original MBIR algorithm
(by constraining the order in which the voxels are updated)
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Fig. 9. Comparison of EMBIRA runtime with sequential and multithreaded
software.

to improve the efficiency of the implementation, we quantify
the quality loss incurred in the execution by computing the
root mean square error (RMSE) between the outputs produced
by the sequential software implementation and the EMBIRA
implementation.

C. Application Benchmarks

We evaluate EMBIRA using two representative bright-field
electron tomography (BF-ET) data sets. In BF-ET, a sequence
of images are obtained by repeatedly tilting and imaging a
sample about a single axis in an electron microscope (EM).
The goal of BF-ET is to reconstruct the 3-D volume of the
sample from the set of acquired images. The first data set
contains 47 images with dimensions 512 x 512 obtained by
simulating the measurement process of aluminum nanoparti-
cles in an EM [6]. A 3-D volume of size 512 x 512 x 256
voxels is reconstructed using the 2-D images. The second data
set is from the electron microscopy of gold nanoparticles [23].
It contains 28 2-D measurements of size 1024 x 1024, from
which a volume of size 1024 x 1024 x 200 is reconstructed.

VI. RESULTS

In this section, we present the results of various experiments
that demonstrate the benefits of EMBIRA. All the results were
obtained by implementing the EMBIRA system (Section IV)
on the Altera DE5 FPGA platform and executing the entire
reconstruction application on the same.

A. Runtime and Energy Improvement

First, we compare the runtime and energy of EMBIRA
with sequential and multithreaded software implementations.
Fig. 9 shows the runtime? of three different EMBIRA con-
figurations normalized to the sequential software implementa-
tion across both the applications. We note that the runtime
includes the execution time for a complete reconstruction,
including the times taken by the control software on the
NIOS processor and DDR3 memory transfers. We find that
the multithreaded software implementation with 12 threads

2The runtime is measured in absolute wall-clock seconds required for the
entire 3-D reconstruction, without any normalization for the different operating
frequencies of FPGA versus server. An Application Specific Integrated Circuit
implementation of EMBIRA would achieve higher improvements.
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Fig. 10. Power and energy benefits using EMBIRA.

is ~9x faster than the sequential implementation. We do not
increase the thread count beyond 12, as it yields no further
improvement in performance due to limited memory band-
width, increased synchronization overheads, and other factors.
The first EMBIRA configuration is the pipelined single VEM
design that updates one voxel per execution. We achieved a
frequency of 200 MHz when the design was synthesized on
the FGPA. Even at 200 MHz, the 1-VEM design is ~4.75x
faster than the sequential implementation that is operated
at 2.3 GHz. The speedup stems from the specialized process-
ing units used in the design of VEM and the two-level
nested pipelined operation. However, the 1-VEM configuration
is ~1.9x slower than the multithreaded implementation.

The second EMBIRA configuration utilizes 12 VEMs with
the shared A-matrix memory, with each VEM evaluating a
single voxel. In this case, the maximum operating frequency
of the FPGA implementation was reduced to 165 MHz
due to increased design complexity. The 12-VEM design
yielded 28.33x and 3.16x improvement in performance
compared with sequential and multithreaded software imple-
mentations, respectively. The final configuration is the
12-Vol-VEM design, in which the VEM array is comprised of
12 lanes and each VEM evaluates nine voxels in sequence. The
reduced neighborhood data transfer time in Vol-VEMs yields
an additional ~1.9x performance improvement compared
with the 12-VEM configuration. Overall, the performance
improvement is 51.8 x compared with the sequential software,
and 5.8x compared with the multithreaded software imple-
mentation. Thus, the architecture and optimizations proposed
in EMBIRA can yield significant improvement in the runtime
of the MBIR algorithm.

Next, Fig. 10 compares the power and energy of the
EMBIRA and software implementations. The benefits are
normalized to the sequential software implementation. The
1-VEM configuration is 10.5x more power efficient than the
sequential software, and combined with its 4.75x performance
improvement, yields a significant 49.15x improvement in
energy. The 12-VEM and the 12-Vol-VEM are more energy
efficient, as their power grows only by 1.35x and 1.52x,
respectively, than the 1-VEM design, while they achieve
larger performance improvements. Overall, the energy of the
12-VEM and 12-Vol-VEM configurations is 215x and 355x
lower, respectively, than the sequential software implemen-
tation. The multithreaded software implementation is ~2x
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more energy efficient than its sequential counterpart, as the
improvement in performance outweighs the increase in power.
Accordingly, the 1-VEM, 12-VEM, and 12-Vol-VEM config-
urations are 27.4x, 120.1x, and 199x more energy efficient
than the multithreaded software implementation, respectively.

B. Energy Breakdown and Analysis

Fig. 11 shows the power and FPGA resource utilization of
the different system components. We utilize EMBIRA with
12 Vol-VEMs for this analysis. We find that EMBIRA is
the most dominant component of the design, consuming
over 34% of the overall power and a significant fraction of
the lookup tables, DSP units, and embedded memory blocks
on the FPGA. The NIOS II/f processor and its caches amount
to 25% of the system power. The memory controllers and the
data I/O peripherals also account for a considerable fraction
of the system power. The remaining power is expended in
other components, such as the system bus. Note that in all our
experiments, we limit the number of VEM lanes to 12, as it
exhausts all the DSP resources on the FPGA.

Next, we examine the energy breakdown within the different
modules of EMBIRA in greater detail. Fig. 12 shows the
power and energy distribution of the three processing elements
in EMBIRA. From the power distribution, we find that the
TEM is the most complex of the processing elements, followed
by NPE and VUE, respectively. The other components, such
as memory and control, also contribute a significant fraction
of the total power. An interesting aspect of the design is
that its latency and energy for voxel evaluation are a strong
function of the number of nonzero entries in the A-matrix
column corresponding to the voxel. Therefore, Fig. 12 shows
the energy distribution for various values of A-matrix column
length. We observe that the proportion of energy consumed
by the TEM increases with the length of A-matrix column,
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from 38% at a length of 60 to 52% at a length of 120. Since
the TEM and NPE operate in parallel, we need to balance their
latencies to maximize throughput. However, this may not be
always possible, as the A-matrix column length dynamically
differs based on the voxel being processed. Therefore, we
examined the distribution of the A-matrix column length
(Fig. 12) for our application and optimized the design for its
most common range (95-105). In this region, we find that the
ratio of the TEM and NPE energies is roughly equal to the ratio
of their powers, indicating that their latencies are balanced.

C. Design Space Exploration

One of the key attributes of the EMBIRA architecture is that
its performance and energy can be easily scaled by modulating
its microarchitectural parameters. The EMBIRA architecture
has three key parameters: 1) number of VEM lanes; 2) number
of slices within each Vol-VEM; and 3) number voxels per slice
within the Vol-VEM. In this section, we perform a design
space exploration by varying these parameters and studying
their impact on performance and energy.

Fig. 13 shows the performance, power, and energy of
EMBIRA with increasing VEM lanes. The performance is
also compared with the multithreaded software baseline, in
which the number of threads is increased. In the case of the
software implementation, we find that the runtime improves
for smaller thread counts, but increases beyond 12 threads
due to various parallelization bottlenecks. Similarly, the per-
formance of EMBIRA improves with increased VEM lanes.
However, the rate of increase saturates beyond a point as
the contribution of the A-matrix column data transfer to
the overall runtime grows progressively smaller. Clearly, the
neighborhood data transfer dominates the runtime, and this
underscores the need for the Vol-VEM optimization. Fig. 13
also shows the power and energy of the overall system as
the VEM lanes are increased. We observe that the increase
in power consumption is outweighed by the improvement
in performance, which results in significant improvement in
energy efficiency. However, beyond a point, the benefits in
energy also saturate.

We now analyze the impact of the Vol-VEM optimization,
in which each VEM updates a volume around a selected
voxel. The number of voxels in the volume is the prod-
uct of the number of slices in the Vol-VEM (length of
the y-direction) and the number of voxels in each slice.
Fig. 14 shows the normalized runtime obtained by varying
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these parameters. We observe a 2.65x improvement in
performance as the number of voxels in the volume is
increased from 1 (1, 1) to 25 (5, 5). Fig. 14 also reveals
another interesting trend. We find that the improvement in
performance is more significant (larger slope) if the number of
slices in the Vol-VEM is increased compared with the number
of voxels in each slice—1.9x versus 1.46x. This stems from
the fact that voxels in a slice index different A-matrix columns.
Therefore, if the number of voxels in the slice is increased,
multiple A-matrix columns corresponding each voxel should
be transferred from the external memory. On the other hand, if
the number of slices is increased, adjacent voxels will automat-
ically lie along the same xz line, and therefore, share the same
A-matrix column. In summary, increasing slices enables shar-
ing of both the neighborhood as well as the A-matrix column,
whereas increasing voxels in a slice allows only the neigh-
borhood to be shared. Hence, it is preferable to increase the
number of slices rather than the number of voxels in a slice.
However, it is noteworthy that increasing both the parameters
simultaneously allows for better sharing of the neighborhood
from all the directions. Therefore, it is key to holistically
evaluate these factors in determining the dimensions of the
volume updated within the Vol-VEM to achieve the best
performance.

D. Impact of Constrained Voxel-Update Order and
Fixed-Point Implementation

In this section, we evaluate the impact of constraining the
order in which voxels are updated on the final 3-D reconstruc-
tion quality. Due to limited resources on the FPGA, the MBIR
algorithm was implemented using fixed point representation.
We also quantify the impact of fixed point implementation
on the output quality by comparing it with a floating point
baseline implemented in software. Note that the output quality
is measured as the RMSE between the actual output and the
output produced using EMBIRA.

First, we study the impact of fixed point representation on
the output reconstruction quality. We individually optimized
the precision of each data structure in the MBIR algorithm to
minimize power (and FPGA resources), with negligible loss in
reconstruction quality. The fixed-point number format used to
represent the key data structures in MBIR is shown in Table II.

Fig. 15 shows the RMSE of the sequential fixed point
and floating point implementations after each iteration of
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TABLE II

DATA PRECISION AND FIXED-POINT NUMBER FORMATS
OF THE DIFFERENT DATA STRUCTURES IN MBIR

Data Structure | Data Bitwidth | Fixed-point Format
2D images 8 0.8
3D volume 16 0.16
A matrix 8 35
Error sinogram 24 321
01, 05 36 24.12
0.09
0.08
0.07 ——Seq-Float
N 0.06 ——Seq-Fixed
E 0.05
£
w 0.04
2 0.03 Final RMSE
0.02 Floating-Point = 3.6e-4
0.01 Fixed-Point = 6.4e-4
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Fig. 15. RMSE after each iteration with sequential floating point and fixed

point implementations.
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Fig. 16. RMSE deviation due to constrained order of voxel evaluation.

the algorithm. In this context, one update of all voxels in
the entire 3-D volume constitutes an iteration. As observed in
Fig. 15, the RMSE decreases exponentially with the number
of iterations. The difference between the fixed and floating
point implementations is noticeable in the initial iterations.
However, the fixed point implementation quickly converges
and achieves an RMSE very similar to the floating point case.

Next, we compare the RMSE deviation from the sequential
fixed point implementation when the order of voxel updates
is constrained. In particular, Fig. 16 considers three different
cases: 1) parallel random, in which multiple voxels are updated
in parallel but are chosen independent of each other; 2) parallel
line, in which the voxels updated in parallel are constrained to
lie on along an xz line (12-VEM EMBIRA configuration in
Section VI-A); and 3) parallel volume, in which the voxels lie
on a straight line, and a volume around each voxel is updated
(12-Vol-VEM configuration in Section VI-A). We find that in
all the three cases, the final RMSE deviation is quite small,
and is over an order of magnitude smaller than the actual
RMSE value.

3253

Slice 140

Slice 120 Slice 160

-

Baseline

EMBIRA

W

e

Baseline

=z
\-‘\\\\‘
\f

WY

EMBIRA

Fig. 17. Selected slices of 3-D volume reconstructed using different
implementations. (a) Aluminum. (b) Gold.

Finally, Fig. 17 shows the selected slices of the 3-D volume
reconstructed using the baseline and EMBIRA implementa-
tions in the context of both the applications. These images
visually reaffirm the fact that constraining the order of voxel
updates has virtually no impact on the reconstruction quality
of the MBIR algorithm.

In summary, the above results demonstrate the efficiency of
the architecture and optimizations proposed in EMBIRA.

VII. RELATED WORK

Tomographic reconstruction is key to several impor-
tant application domains viz., medical imaging, electron
microscopy, nondestructive testing, and explosive detection.
Realizing the compute intensive nature of the algorithms
involved, the previous research efforts have proposed differ-
ent optimizations to improve their implementation efficiency.
In this section, we present a brief overview of related efforts
and highlight the distinguishing features of this paper.

A number of previous works have been devoted to devel-
oping custom accelerators for tomographic reconstruction in
the context of medical imaging. These efforts target different
algorithms, all of which are used for CT. The first class of
efforts [24] focus on noniterative reconstruction algorithms,
i.e., a closed form solution is used to evaluate the value of each
voxel. The second class of approaches, such as [25] and [26],
utilizes iterative algorithms, such as expectation maximization,
that are not fully model-based. Studies have shown that
both the noniterative and nonmodel-based approaches are less
robust and yield poor reconstruction quality [4].

The final set of efforts [27], [28] employs a model-based
method, whose cost function is similar to the one shown in (1).
However, they differ in the type of optimization algorithm used
to minimize the high-dimensional cost function. In particular,
they employ the so-called simultaneous methods [10], [12],
such as gradient descent, conjugate gradient, and so on, which
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are computationally quite different from the ICD approach
considered in this paper. A comprehensive comparison of both
the approaches is provided in [29]. Both the optimization
strategies theoretically yield similar reconstruction qualities
as they minimize the same cost function. However, their
computational patterns and convergence rates are quite dif-
ferent. In the case of simultaneous methods, all the voxels
in the volume are updated in parallel, and therefore, the
forward/back projection steps resemble a large matrix-vector
product, which parallelizes well on commercial multi/many
core platforms. On the other hand, in the coordinate descent
approach, only voxels that are far away from each other can
be updated in parallel and these voxels are selected at random.
Therefore, the processed voxels do not share any data, and as
explained in Section I, the implementation quickly becomes
memory bandwidth-limited when parallelized on multi/many
core platforms. Thus, due to the fundamental differences in the
computation patterns between the two optimization methods,
the strategies employed in [27] and [28] cannot be leveraged
in the context of ICD-MBIR, and hence, EMBIRA.

The key advantage of coordinate descent approaches is
that their rate of convergence is faster than the simultane-
ous methods. As demonstrated in [29], coordinate descent
approaches require ~6x fewer number of iterations to con-
verge, and therefore, have relatively low compute complexity.
Hence, although the computation patterns are more irregular,
ICD-MBIR has the potential to yield computationally efficient
implementations. We note that we are unable to provide a
quantitative comparison between EMBIRA and [27] and [28]
as they implement only specific functions of their algorithms
(but not the entire reconstruction), and the data sets used were
quite different.

Another effort [30] implements selected commonly used
functions in the context of medical imaging. Other recent
efforts have also proposed custom architectures that enable
medical imaging with other sensing modalities. Some exam-
ples in this direction include [31]-[33], where custom architec-
tures are used to improve the efficiency of ultrasound imaging
and magnetic resonant imaging.

VIII. CONCLUSION

Inverse problems, such as 3-D tomographic reconstruction,
find wide applicability in many imaging systems. The MBIR
algorithm, which iteratively reconstructs a 3-D volume from
multiple 2-D observations, places significant compute and
data demand, leading to its general-purpose software imple-
mentations yielding poor performance and energy efficiency.
We address this important problem by proposing EMBIRA,
an efficient hardware accelerator that implements the MBIR
algorithm. The key compute element of EMBIRA is the VEM
that consists of three specialized processing elements, and
is operated as a two-level nested pipeline. Multiple VEMs
are arranged as a 1-D array to enable voxels to be updated
concurrently. To further improve efficiency, we constrain the
order in which the voxels are updated by EMBIRA to enhance
data reuse within the accelerator and reduce the number of
external memory accesses. We prototyped EMBIRA on an
FPGA platform and demonstrated significant improvements in
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both performance and energy over well-optimized software
implementations. We believe that such efficiency improve-
ments can greatly facilitate the adoption of MBIR algorithms
in commercial applications.
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