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Quality and Precision of Parametric Images Created
From PET Sinogram Data by Direct
Reconstruction: Proof of Concept

Mustafa E. Kamasak*, Bradley T. Christian, Charles A. Bouman, and Evan D. Morris

Abstract—We have previously implemented the direct recon-
struction of dense kinetic model parameter images (“parametric
images”) from sinogram data, and compared it to conventional
image domain kinetic parameter estimation methods [1]–[3]. Al-
though it has been shown that the direct reconstruction algorithm
estimates the kinetic model parameters with lower root mean
squared error than the conventional image domain techniques,
some theoretical obstacles remain. These obstacles include the
difficulty of evaluating the accuracy and precision of the estimated
parameters. In image domain techniques, the reconstructed time
activity curve (TAC) and the model predicted TAC are compared,
and the goodness-of-fit is evaluated as a measure of the accuracy
and precision of the estimated parameters. This approach cannot
be applied to the direct reconstruction technique as there are no
reconstructed TACs. In this paper, we propose ways of evaluating
the precision and goodness-of-fit of the kinetic model parameters
estimated by the direct reconstruction algorithm. Specifically,
precision of the estimates requires the calculation of variance
images for each parameter, and goodness-of-fit is addressed by
reconstructing the difference between the measured and the fitted
sinograms. We demonstrate that backprojecting the difference
from sinogram space to image space creates error images that
can be examined for goodness-of-fit and model selection purposes.
The presence of nonrandom structures in the error images may
indicate an inadequacy of the kinetic model that has been incorpo-
rated into the direct reconstruction algorithm. We introduce three
types of goodness-of-fit images. We propose and demonstrate a
number-of-runs image as a means of quantifying the adequacy
or deficiency of the model. We further propose and demonstrate
images of the F statistic and the change in the Akaike Information
Criterion as devices for identifying the statistical advantage of
one model over another at each voxel. As direct reconstruction
to parametric images proliferates, it will be essential for imagers
to adopt methods such as those proposed herein to assess the
accuracy and precision of their parametric images.

Index Terms—Akaike information criterion, compartmental
models, error images, F statistic, four-dimensional (4-D) positron
emission tomography (PET) reconstruction, goodness of fit, resid-
uals, runs test, variance images.
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I. INTRODUCTION

P OSITRON emission tomography (PET) imaging is
unique among medical imaging modalities because of

its molecular specificity. To realize this unique power of PET
often requires the application of sophisticated kinetic model-
ling. Dynamic PET data represent a combination of emissions
from all states of the radioactive tracer. Modelling and param-
eter estimation facilitate extracting the contribution to the data
attributable solely to a particular state of the tracer. Depending
on the tracer and kinetic model parameters, the contribution of
the tracer in a certain state can be interpreted physiologically.
Conventional kinetic model parameter estimation techniques
require the reconstruction of the acquired sinogram data into
emission-time images. Voxel-based time activity curves (TAC)
are then extracted from the reconstructed images, and the model
parameters are estimated using linear [4]–[9] and nonlinear
methods [10], [11]. Linear techniques transform the data, so that
the parameters of interest can be estimated by linear regression
methods, while nonlinear techniques generally estimate the ki-
netic parameters by iteratively minimizing a properly weighted
distance metric between the extracted TACs and the model.
These image domain methods are common because they are
simple and intuitive. However, the signal-to-noise (SNR) ratio
of the reconstructed PET images is usually not high enough
for voxel-by-voxel-based kinetic model parameter estimation
except in the case of certain simplified models which yield
compound parameters. In other words, if it is desired to estimate
every model parameter at each voxel, image domain methods
may suffer high spatial variance. Therefore, in the conventional
image domain techniques, the TAC is not extracted from indi-
vidual voxels but from a region of interest made up of multiple
voxels that are assumed to be physiologically similar. High
noise at individual voxels in the emission-time images had
led to another approach for the solution of the problem: direct
reconstruction of kinetic model parameters from the sinograms.
Direct reconstruction was proposed earlier for single positron

emission tomography (SPECT) [12], [13] and PET [14]–[17].
Computational complexity and lack of other technologies (i.e.,
inter-frame registrationmethods) limited the use of direct recon-
struction. After computationally efficient algorithms were de-
veloped, direct reconstruction was applied to different imaging
modalities [18], [19], to different compartment models [1], [20],
[21]. The direct reconstruction of kinetic model parameters were
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later improved by many studies [22]–[28]. Refer to [24], [29],
[30] for surveys of the direct kinetic model parameter estima-
tion techniques.
There are many factors that may affect the reliability of

the estimated kinetic model parameters. Among them are low
signal-to-noise ratio (SNR) of the measured data, convergence
to a local minima, and an inadequate kinetic model. There-
fore, we seek ways to assess the reliability of the estimations.
In image domain parameter estimation techniques, the re-
constructed and model-predicted TACs are compared. This
comparison often yields multiple measures of the precision
of the estimated parameters. During the direct reconstruction
procedure, there are neither reconstructed TACs nor explicit
model-predicted TACs. The estimation is performed on the
sinogram data without the reconstruction of images over time
(and hence without any voxelwise TACs). Therefore, we cannot
assess the model fit to the data in the conventional ways.
In this paper, we analyze the estimation reliability of the di-

rect reconstruction technique. That is, how precise are the es-
timated parameters at each voxel? How can we know that a
selected kinetic model is appropriate? How can we know that
a particular model is better than an alternative model? To an-
swer these questions, we have adapted some standard practices
from image domain parameter estimation to image reconstruc-
tion. First, we present variance images for each parameter based
on Monte Carlo simulations. The images of the variance—or
a related error index—provide an estimate of the precision of
the voxelwise parameter estimates. Without such estimates, it is
impossible to say definitively that one image is statistically dif-
ferent from another. Second, we introduce a new type of image
upon which assessments of precision and goodness-of-fit can be
made. These new images are based on filtered backprojections
of the residual error from the sinogram domain into the image
domain. Similar to our work, Votaw et al. [15] backprojected the
residual sinograms, however they did not compare model fits to
data and did not analyze the goodness-of-fit. We evaluate the
potential of error images for visualizing the goodness-of-fit of
the model to the data over time and space, simultaneously. With
the images of the filter backprojected residuals, an adequate ki-
netic model can be distinguished from a deficient one. That is,
the residual images are proposed as a tool for proper model se-
lection in direct reconstruction. Three established indexes, the
number-of-runs, the F statistic, and the Akaike Criterion, are ex-
tended from standard 1-D parameter estimation to evaluate the
error images that we create.

II. METHODS

Fig. 1 shows the three domains of parametric image genera-
tion. The parameter domain refers to the kinetic model param-
eters that we seek to estimate, the image domain refers to the
emission values of the voxels, and the sinogram domain sig-
nifies the projections of the emission values. These domains
are connected to each other via the compartment and scanner
models, respectively.
The compartment model uses the parameters at each voxel to

compute the value of the emissions (radioactivity concentration)

Fig. 1. Domains of the kinetic model parameter estimation problem—alterna-
tive algorithmic paths of direct versus indirect estimations. Conventionally, pa-
rameters are estimated indirectly (green paths). The indirect estimation has two
steps: first, emission images are estimated from the sinogram data (solid green)
and second, kinetic parameters are estimated from the emission images. The
latter process is iterative (dashed green path) if the model is nonlinear. Alterna-
tively (Kamasak, 2005), kinetic parameters can be estimated directly from the
sinogram data (blue path) via an iterative procedure. The image domain (emis-
sion image) is skipped in the direct estimation.

from each respective voxel at a given time. The computed emis-
sion images are the inputs to the scanner model, which com-
putes their projections according to the characteristics of the
scanner. In the parameter estimation problem (to produce para-
metric images), sinograms are the measured data acquired by
the PET scanner. The scanner model and compartment model
must be chosen carefully to yield physiologically meaningful
estimates. The scanner model is chosen based on the geometry
and response characteristics of the PET scanner. An appropriate
kinetic model is selected by considering the underlying physi-
ology and properties of the tracer.

A. Experimental Data Acquisition

A healthy male rhesus monkey (Macaca mulatta; 7 kg.) was
scanned using a Siemens EXACT HR+ scanner. The animal
was anaesthetized using ketamine (10 mg/kg) and subsequently
maintained on 0.5%–1.5% isoflurane. A 5-min transmission
scan using Ge/ Ga rod sources was acquired prior to ad-
ministration of the radiopharmaceutical. F-fallypride was
administrated as a bolus injection (90 MBq) through an i.v.
catheter placed in the saphanous vein. The data were collected
into 40 time frames consisting of 6 0.5 min, 7 1 min, 5 2
min, 4 5 min, and 18 10 min frames for a total acquisition
time of 220 min. The acquisition of the data was performed
in 3-D mode (septa retracted) using angular compression,
span of 9 and a maximum ring difference of 22, resulting in a
3-D sinogram with five segments .
During the acquisition, arterial blood samples were collected

from an arterial catheter placed in the femoral artery. Com-
mencing with injection of F-fallypride, 1 mL samples were
initially drawn at 10-s intervals for the first 3 min, 5 min-inter-
vals for 15 min, and 30-min intervals until the end of the study.
The arterial plasma input function of parent radioligand was ob-
tained using the method of ethyl acetate extraction as previously
reported [31].
After data acquisition, the subject was removed from anaes-

thesia and continuously monitored until fully alert. The experi-
mental procedures were in accordance with institutional guide-
lines.
The 3-D sinogram was corrected for random coincidences,

deadtime losses, scatter, attenuation, and scanner normalization
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Fig. 2. Schematic diagram of two-tissue compartment, four parameter model.
Plasma radioactivity (red box) is measured and therefore not a compartment in
the mathematical sense.

[32]. The sinogram was not decay corrected as it was handled
in the kinetic model (see Section II-B). To facilitate the imple-
mentation of our algorithm, the raw 3-D sinogram was rebinned
into a 2-D matrix using the Fourier rebinning algorithm (FORE)
supplied by the vendor (ECAT ver. 7.2) [33].

B. Kinetic Model

The kinetic model that we have used in our estimation frame-
work is the standard four parameter, two-tissue compartment
model used commonly to describe the uptake and retention
of high specific activity receptor-ligand tracers in PET. This
model, shown in Fig. 2, has four parameters representing the
rate of tracer exchange between possible states. Depending
on the nature of the injected tracer, these kinetic parameters
would represent the rate constants of meaningful physiological
processes such as metabolism or receptor-ligand association.
The model requires a measured plasma input function and can
be solved via numerical convolution of the input function with
the impulse response function.1 The predicted emissions, ,
at voxel , over time-frame are a function of kinetic
parameters (where is the number
of parameters in the model) that are unique to voxel , and are
given generically as

(1)

where is the time-varying specific activity of the tracer,
is activity concentration in the blood, is the blood

volume fraction of the tissue, is the number of tissue com-
partments, and is the molar concentration of the th compart-
ment of the kinetic model (depicted in Fig. 2). 2

C. Direct Reconstruction of Parametric Images

Classical kinetic parameter estimation techniques in PET use
a two-step approach. First the measured sinograms are recon-
structed to emission images using a tomographic reconstruction
technique. The compartment model parameters are then esti-
mated at the region or voxel level by comparing the compart-
ment model output to the TACs. In the direct reconstruction

1Some kinetic models (i.e., ones with nonlinear components) may not have
closed form solutions and may require other forms of solution.
2This equation assumes that the tracer is not restricted from any part of the

voxel. This may not be correct for all tracers and tissue types. In those cases,
can be changed by a new weighting coefficient. However, parameter

identifiability should be considered whenever new parameters are added to the
model.

technique, the compartment model and the scanner model can
be combined in order to estimate kinetic model parameters di-
rectly from the measured sinograms [1].
Direct reconstruction of parametric images from sinogram

data has certain advantages over indirect estimation methods as
all the available data are used simultaneously and spatial regu-
larization is performed in the kinetic parameter domain.
Within the iterative direct reconstruction algorithm, the emis-

sions map is projected to sinograms via the scanner model

(2)

where are the predicted sinograms, are the emission
images, are the parametric images, and is the projection
matrix (also known as the scanner model). The parametric im-
ages are reconstructed by minimizing the cost function given as

(3)

where LL is the log likelihood, are the measured sinograms,
represents the regularization kernels that are applied locally to

each of the parametric images on each iteration of the minimiza-
tion procedure, and is a constant that determines the amount
of regularization. At the end of each iteration, the parametric
images are updated until the convergence criteria are met.
The minimization of (3) was implemented using the “para-

metric iterative coordinate descent” (PICD) algorithm that was
introduced in [1]. PICD is an adaptation of the iterative coordi-
nate descent (ICD) algorithm where each voxel’s parameters are
updated sequentially (while other voxels’ parameters are kept
constant) in order to minimize (3). In PICD, the kinetic param-
eters are transformed into linear and nonlinear parameters that
are not coupled with each other. These nonlinear and linear pa-
rameters are then updated using a nested optimization approach
which is computationally efficient.
Direct reconstruction was compared extensively to indirect

estimation methods in our previous work [1]. More recently, di-
rect reconstruction has been applied to different imaging modal-
ities [18], [19], using different compartment models [20], [21].
In addition, a number of similar studies confirmed our results
and demonstrated the advantages of the direct reconstruction ap-
proach [22]–[24], [26]–[28], [34], [35]. These studies indicate
that the direct parametric reconstruction can substantially re-
duce estimation error in kinetic parameters compared to the in-
direct estimation methods. Direct reconstruction methods were
reviewed in a survey paper by Tsoumpas et al. [29].
Choice of Spatial Regularization: As indicated by (3), direct

reconstruction includes spatial regularization in one or more
of the parameters. The degree of spatial regularization can be
different for each parameter and has been initially computed
according to the method of Saquib et al. [36]. In brief, this
method includes maximum likelihood (ML) estimation of
Markov random field (MRF) parameters from incomplete
observations. The amount of regularization for all kinetic
parameters is manually adjusted by scaling the in (3) with a
single scale factor.
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Fig. 3. Schematic diagram of one-tissue compartment, two parameter model.
Plasma radioactivity (red box) is a measured function. This model was incorpo-
rated into direct reconstruction in order to test the use of backprojected residuals
for kinetic model selection.

Volume of Distribution: Images of the distribution volume of
the tracer can be calculated directly from the individual para-
metric images. The distribution volume for a two-tissue com-
partment model is given by

(4)

The distribution volume of the tracer is expected to be the
highest in the striatum coinciding with the highest density of
D2 receptors (largest ).

D. Backprojection of Residuals From the Sinogram Domain

In direct reconstruction, the kinetic model parameter estima-
tion is performed by minimization of the objective function in
the sinogram domain. Creation of emission images and TACs
are bypassed. For direct reconstruction, a conventional good-
ness-of-fit analysis on each of the projections is not practical as
it would not be possible to visualize the result of the analysis
in the image domain. Therefore, we adapted the goodness-of-fit
concept.
In sinogram space, we fit the model prediction to the acquired

data for every time-frame and angle as a single fitted (4D) curve
of events. However, to visualize all the fits collectively in image
space, we have chosen to backproject the residuals between the
fitted (predicted) and measured projections for all angles using
filtered backprojection. Thus, let denote the residual
sinogram

(5)

where is the measured sinogram and is the
fitted sinogram at time frame . Furthermore, let
be the filtered backprojection of for time frame . In
the case of an ideal model fit to the data, the and

would be zero mean Gaussian distributed for all
time frames.
Utility of ImRes Images: In order to evaluate the utility of the

backprojected residuals as a means of model selection, we re-
constructed the parametric images using two different compart-
ment models. First, we performed a direct reconstruction that
incorporated the four parameter, two-tissue compartment model
(shown in Fig. 2) and second, we performed a direct recon-
struction with a two parameter, one-tissue compartment model
(shown in Fig. 3). The two parameter model is likely inadequate
(or at least inferior to the four parameter model) in describing
the uptake of a tracer that binds to a receptor site (requiring a
binding compartment), therefore we expected some visual indi-
cation of model deficiency in the backprojected residual images,

.

E. Residual Image and Quantitative Measures of
Goodness-of-Fit

1) Number-of-Runs Images and Runs Histograms: The ade-
quacy of any fit of amodel to data can be tested by examining the
nonrandomness of the residuals using a runs test [37]. Assuming
that residuals have zero mean, a “run” is defined as a subse-
quence of residuals having the same sign (the number-of-runs
is equal to one plus the number of zero crossings of the resid-
uals plotted versus an independent variable such as time). A very
small number-of-runs is an indication of nonrandomness in the
residuals and thus an inability of the model to describe fully
all the components of the data. While a large number-of-runs
is generally desirable, an extremely large number may be an
indication of periodicity in the data that is not accounted for
in the model. In the present work, we used distribution of the
number-of-runs in image space, (i.e., an image of runs in time
at every voxel in ) as an image of the goodness-of-fit
which can be used to assess the local performance of a given
model. We also examined the histogram of the number-of-runs
across all voxels as an indicator of the relative goodness-of-fit of
two candidate models, globally. While the number-of-runs will
vary from voxel to voxel for any model, a histogram of runs
values with a higher mean for model A as compared to model
B is an image-wide indication of a better fit with model A.
2) F Statistic: The F statistic can be used to compare nested

compartment models [38], [39]. Let and denote the
number of parameters in one and two-tissue compartment
models, respectively, and denotes the number of time frames.
The F statistic for voxel is computed as

(6)

where and are the sum of squares of the
residual values of voxel that are computed from ImRes images
corresponding to one- and two-tissue compartment models. The
residual sum of squares for voxel is computed as

(7)

where is a weight constant for time frame and
is the residue value of voxel obtained

from the filter backprojected error image for compartment
model at time frame . These coefficients for time
frames can be used to weight the image value according to the
variance of the measurement error. The weights are typically
chosen as the inverses of the noise variances. Although the
noise variance cannot be known, it is commonly assumed to
be inversely proportional to frame duration. Other weighting
choices are available in the literature [40], [41]. In this study,
no weighting was applied in the computation of (
for ).
From the F-distribution with degrees-of-

freedom, it is possible to find the ratio that corresponds to a par-
ticular significance level. For a two-tissue compartment model

, whereas for a one-tissue compartment model .
With 40 time frames, the F distribution with (2; 36) degrees-of-
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freedom, an F-ratio that is higher than 5.3 corresponds to a sig-
nificance level of , and a ratio higher than 3.3 cor-
responds to . Therefore, for the voxels whose F-ra-
tios are higher than 5.3, there is a probability of 99% or greater

that the improved fit thanks to the two-tissue com-
partment model over the one-tissue compartment is not a chance
happening.
3) Akaike Information Criteria: The Akaike information cri-

teria (AIC) can be used to compare both nested and nonnested
models [38], [42], [43]. The AIC for voxel can be computed
as follows:

(8)

where denotes natural logarithm and is the number
of parameters (degrees-of-freedom) for compartment model .
Let and denote the AIC for one and two-
tissue compartment models respectively for voxel . The AIC
difference for voxel can be computed as

(9)

For the voxels whose values are negative, the two-
tissue compartment model is better compared to the one-tissue
compartment model. Conversely, the one-tissue compartment
model is better for voxels with positive values. The prob-
ability of the TAC being consistent with a two-tissue compart-
ment model is given as [38]

(10)

The probability of a voxel TAC being consistent with a two-
tissue compartment model is shown in Fig. 4(b). values
that are smaller than correspond to a significance level of

, and values smaller than correspond to .

F. Monte Carlo Simulations

Parametric images of the uptake and retention of F-fal-
lypride into a monkey brain were reconstructed using the
parametric iterative coordinate descent (PICD) algorithm [1].
For the purpose of calculating the variance images, the para-
metric images were assumed to be ground truth. Using the
four parameter two-tissue compartment model that is described
in Section II-B, the voxel emissions at different times were
computed. Using the Siemens HR+ EXACT scanner model
[44], the emission images were forward projected into 25
different sets of sinograms to which distinct instantiations of
identically distributed Poisson noise were added. The number
of noise realizations was chosen such that the final change in
mean parametric images was below a certain percentage. Next,
parametric images were directly reconstructed from these sim-
ulated sinograms. The absolute bias and coefficient of variance
(CV) of each parametric image was calculated voxel by voxel

Fig. 4. (a) Probability of a voxel TAC being better modelled with two-tissue
compartment model than one-tissue compartment model. The F ratio that is
higher than 5.3 corresponds to , higher than 3.3 corresponds to

based on an F distribution with (2, 36) degrees-of-freedom. (b) Proba-
bility of a voxel TAC better modelled with two-tissue compartment model than
one-tissue compartment model. Two-tissue compartment model is more suit-
able than one-tissue compartment model for voxels with negative AIC values.

that is smaller than corresponds to level , and smaller
than corresponds to a significance level of .

from these 25 sets of reconstructed parametric images. The
absolute bias of parameter for voxel is computed as

(11)

where is the mean value and is the correct value of
parameter of voxel . Furthermore, the coefficient of variation
of parameter for voxel is computed as

(12)

where is the standard deviation of parameter of voxel
. The mean and standard deviation of parameter
of voxel are computed from multiple noise realizations as
follows:

(13)

and

(14)

where is the number of noise realizations and is the esti-
mated value of parameter for voxel of noise realization .

III. RESULTS

Parametric images resulting from application of the direct re-
construction approach with a two-tissue compartment model to
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Fig. 5. (a) Sinogram data; time frame 30, angle 80 is identified by horizontal
line through all distances. (b) Measured sinogram projection versus distance
(red) is overlaid on the predicted sinogram projection (green). (c) Residuals of
fit in (b). Residuals shown in (c) are one line of the residual sinogram that is
filter backprojected to create error images. (d) Sinogram data; time frame 30,
angle 80, radial distance 64 is marked by a plus sign. (e) Measured sinogram
projection versus time (in minutes) is overlaid on the predicted sinogram pro-
jection (green). (f) Residuals of fit in (e).

F-fallypride data acquired in a monkey were created. The im-
ages were estimated directly from measured sinograms via (3);
no intermediate TACs or emission images were created. Spatial
regularization for each parameter [shown as in (3)] was
incorporated into reconstruction as described in Section II-C.

A. Residuals in Sinogram Domain

An example fit to the recorded counts in the sinogram domain
(at a single projection angle and time) versus radial distance is
shown in Fig. 5(a)–(c). The selected projection angle is indi-
cated in Fig. 5(a) by a horizontal line across the sinogram. The
measured and fitted curves at this particular time and projection
angle are shown in Fig. 5(b). The selected residual plot is dis-
played in Fig. 5(c) as the error between the measured and fitted
curves. The error shown in Fig. 5(c) appears uncorrelated in ra-
dial distance which suggests that the kinetic model (in this case
a two-tissue compartment model) was adequate to fit the data.
Had the residuals been distributed nonrandomly, we would have
taken that as one indication of a deficiency of the kinetic model.
Similarly, it is possible to investigate the fit of a certain voxel

in the sinogram over time frames as shown in Fig. 5(d)–(f). The
fit of a certain voxel in the sinogram [marked with a plus sign
in Fig. 5(d)] at different time frames is shown in Fig. 5(e). The

Fig. 6. Residual sinograms of (a) two-tissue (b) one-tissue compartment model
for time frame 25.

residual in time of this sinogram voxel is shown in Fig. 5(f);
again there is no apparent correlation in time.
The residual sinograms for time frame 25 corresponding to

two-tissue and one-tissue compartment models are shown in
Fig. 6(a) and (b), respectively. The range of residuals is larger
for the one-compartment model than for the two-tissue compart-
ment model. The residual sinogram for the one-tissue compart-
ment model appears to have a more definite form as well.

B. Error Images

The error images, reconstructed via filtered back-
projection from the residual sinograms (see Fig. 6) are shown in
Fig. 7. The left-hand column of Fig. 7 shows the emission image
at various time frames from the same slice. The middle and
right-hand columns show for the models shown in
Fig. 2 (two-tissue compartment, four parameter) and Fig. 3 (one-
tissue compartment, two parameter), respectively. In a given
row, corresponds to a single time-frame, indicated
at the left. All error images, , are displayed using
the same grayscale. Purely randomly distributed residuals in
the sinogram domain should correspond to filter backprojected
residual images with no visible structure (i.e., “white”).3

In the backprojected residual images , objects for
the one-tissue compartment model are more apparent than for
the two-tissue compartment model. These visually apparent
structures are the results of large residuals clusters that are
visible in Fig. 6(b). We interpret the residual images of the
one-tissue compartment model as being less random than the
corresponding residual images of the two-tissue compartment
model.

C. Quantitative Analysis of Error Images

1) Runs Histogram: We can compare the behavior of the two
models, globally, by examining a histogram of all the runs for
all the voxels inside the brain (i.e., over multiple slices). The
histograms in Fig. 8 corresponding to the application of the two
models are clearly different. The shift of the mean number-of-
runs from a lower value (for the one-tissue compartment model)
to a higher value for the two-tissue compartment model [from
Fig. 8(a) to (b)] is another indication of the superior description

3Due to varying variance in the residuals, some structure may be visible even
in the case of purely randomly distributed residuals.



KAMASAK et al.: QUALITY AND PRECISION OF PARAMETRIC IMAGES CREATED FROM PET SINOGRAM DATA BY DIRECT RECONSTRUCTION 701

Fig. 7. Emission images and error images that are obtained from filter backpro-
jected sinogram residuals at different time frames. The second and third columns
show the error images that are corresponding two-tissue and one-tissue compart-
ment models, respectively.

Fig. 8. Histogram of runs for the voxels of (a) two-tissue compartment model
(b) one-tissue compartment model.

of the data by the four parameter model and thus greater ran-
domness of the residuals at all voxels. Theminimumnumber-of-
runs is 1 and highest possible run value is 40 because there were
40 time frames in the reconstruction. Although the runs his-
togram does not retain spatial information, it depicts the overall
behavior of the model across multiple voxels, simultaneously.
2) Number-of-Runs Images: Because the for all

time frames are backprojected at once, the number-of-runs in
at any given voxel is calculated from the number

Fig. 9. Number-of-runs images obtained from for (a) two-tissue
compartment model (b) one-tissue compartment model. Images correspond to
the same slice as shown in previous figures. Only the brain voxels are displayed.

of subsequences of positive and negative values over time at
that voxel. Fig. 9(a), and (b) shows the number-of-runs images
for all the voxels within the brain obtained from for
both the two and one-tissue compartment models, respectively.
A low number-of-runs at a given voxel indicates a possible
deficiency of the model for describing the temporal behavior
(uptake, retention, efflux) of the tracer at the corresponding
voxel. The “holes” in the runs image for the one-tissue com-
partment model [Fig. 9(b)] at the locations of the striata are
confirmation of the maximal deficiency of the two parameter
model in those regions where both fast and slow components
are most needed to describe the data (i.e., in areas of very
high binding). Generally higher numbers of runs in Fig. 9(a)
than (b), indicates more randomness in the error, and therefore
better fits to the data in most regions of the brain when more
parameters are added to the kinetic model.
3) F Statistic and Images: Calculation of the F

statistic at every voxel, as described in Section II-E2, creates
an image of the F-ratio values to determine the statistical im-
provement achieved by a two-tissue compartment model over
a one-tissue compartment model. As demonstrated in Fig. 10,
the F statistic image can be thresholded [Fig. 10(b)] at the
appropriate level to identify those voxels whose improved fit
satisfies the desired probability level [Fig. 4(a)].
One can use another popular index of goodness-of-fit, AIC,

for a similar purpose. AIC is a residual sum of squares index
that is adjusted for number of parameters in a given model. As
described in Section II-E3, the difference in AIC be-
tweenmodels can be related to a probability of improved fit. The

image [Fig. 10(c)], created (voxel by voxel over time)
from the images is shown for the same data as used
elsewhere in the paper. Fig. 4(b) shows the corresponding prob-
ability plot for different values of from which a desired
probability threshold can be determined. Fig. 10(d) shows the
results of thresholding the image at the level.
Comparison of Fig. 10(b) and (d) shows good agreement.

Both images indicate that statistically significant improvement
in the fits of the dynamic data via direct reconstruction occurs
primarily in the striatum and in the cortex, the areas of high
and moderate binding of F-fallypride to the dopamine D2 re-
ceptor. Looking at the particular slice shown in these images,
the F statistic appears to produce a slightly more permissive
threshold (recall both images are thresholded at ).
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Fig. 10. (a) F statistic image computed from the residual ImRes images of one
and two-tissue compartment models. (b) Voxels that exceed the 95% confidence
level (with F statistics) for use of the two-tissue compartment model are shown
in black. (c) image computed from the residual ImRes images of one
and two-tissue compartment models. two-tissue compartment model is more
suitable for voxels with negative values. (d) Voxels that exceed the 95%
confidence level (with ) for use of the two-tissue compartment model are
shown in black.

D. Monte Carlo Simulations

The parametric images shown in the first column of Fig. 11
were defined as “true” in our simulations. Monte Carlo simu-
lations were performed as described in Section II-F. The mean
of each parametric image obtained from multiple noise realiza-
tions is shown in the second column of Fig. 11.
One iteration of direct reconstruction takes about 3 min on

a computer with an Intel i7 processor and 8 GB memory. The
number of iterations required for convergence depends on the
regularization level. Typically it takes 5–15 iterations for con-
vergence. This means 15-45 min per noise realization, and ap-
proximately 6–18 h for the Monte Carlo results with 25 noise
realizations.4 With the Intel i7 processor, eight reconstructions
(one on each core) can be executed in parallel. Therefore, total
computation time for 25 noise realization is reduced to 50–140
min.
1) Precision: The coefficient of variation images corre-

sponding to each parameter are presented in Fig. 11. The
coefficient of variation (CV) for each voxel is computed by
dividing the standard deviation of voxel value (based on
multiple reconstructions) by its own mean (averaged over
reconstructions of multiple noise realizations). The coefficient
of variation images provide a means of comparing the precision
of parametric images even if the images or their variances are
on different scales. The mean, absolute bias, and CV (computed
from multiple reconstructions) are shown in Fig. 11. We can
see from this figure that is greatest in the striatum, where
there is the most D2/D3 binding. From the CV images (in the
last column) in Fig. 11, it is also apparent that is estimated

4Overhead such as sinogram creation, noise generation, etc., can be ignored
as they take considerably less time compared to the direct reconstruction of
parametric images.

most precisely in that same area of the brain (a region of
very low variation). By contrast, it might seem as if we have
estimated the blood flow parameters in the muscle and
skull outside the brain but the CV images for these parameters
indicate that the estimates for voxels outside the brain are much
less reliable than for those inside the brain (see especially the

image inside and outside the brain).
2) Low and High Regularization Levels: In order to provide

insight into the trade-off between accuracy and precision, the
bias and CV images are generated for low and high regular-
ization levels. In order to obtain different regularization levels,
the manually adjusted regularization parameter [ in (3)] was
scaled by a factor of 100 and 0.01 for high and low regulariza-
tion levels, respectively.
Fig. 12 shows the mean parametric images of direct re-

construction with high and low regularization on the first
and second rows, respectively. It is quite apparent that the
parametric images on the first row (high regularization level)
have little spatial variance, and most of the details and edges
are over-smoothed. On the other hand, parametric images on
the second row (low regularization level) are under-regularized
and have high spatial variance.
In Fig. 13 the absolute bias and CV of the parametric images

reconstructedwith high and low regularization levels are shown.
This figure demonstrates that the parametric images obtained
using a low regularization level have lower bias but higher spa-
tial variance compared to the parametric images obtained using
a high regularization level.

IV. DISCUSSION

Parametric images are of only limited usefulness if their bias
and precision are not known.Without a measure of precision, we
cannot say definitively that two images are different. Because
direct reconstruction produces multidimensional images of each
kinetic parameter, we claim that new evaluation and visualiza-
tion techniques are needed for representing the bias and preci-
sion of estimated images in a convenient and digestible format.
We note that, this is a proof-of-concept study in which we pro-
posed and demonstrated the applicability of multiple novel ap-
proaches to visualize the bias and the variance in kinetic pa-
rameter estimates using a single dataset and only two different
compartment models. Therefore, more rigorous tests should be
performed with more datasets and with different (and possibly
more than 2) compartment models.

A. Accuracy Versus Precision

We calculated the bias and CV images via Monte Carlo sim-
ulations. In Fig. 11, low variability is observed in the param-
eter estimates in the striatal and cortical regions that are known
to have significant amounts of F-fallypride binding to D2/D3
receptors and where we would expect reliable parameter esti-
mates. On the other hand, high variation in the image corre-
spond to the ventricles, which consist only of cerebrospinal fluid
(no brain tissue), thus estimated values in those voxels are ex-
pected to be unreliable (effectively, meaningless). Figs. 11–13
demonstrate that the well-known bias-variance tradeoff (of spa-
tial regularization levels) can be visualized using the Monte
Carlo method.



KAMASAK et al.: QUALITY AND PRECISION OF PARAMETRIC IMAGES CREATED FROM PET SINOGRAM DATA BY DIRECT RECONSTRUCTION 703

Fig. 11. Parametric images for , and . Images on column one are the true images, on column two are the recontructed mean images, on column
three are the absolute bias of parametric images, column four are the CV of parametric images.

Besides Monte Carlo methods, analytical frameworks for the
computation of bias and variance have been developed for static
PET [45] and ROI analysis of dynamic PET [46]. A similar for-
mulation was then adapted for dynamic PET reconstruction with
different amounts of spatial regularization [34]. The analytical
computation of bias and variance for kinetic parameter estima-
tions was introduced by Wang et al. [34], and it was validated
by others [47], [48]. It may be possible to develop a similar an-
alytical framework for the computation of bias and variance in
direct reconstruction of parametric images.

B. Goodness-of-Fit of a Model

We proposed a new goodness-of-fit metric for the direct
reconstruction algorithm whose fits are carried out in the
sinogram domain. To allow an imager to inspect local good-
ness-of-fit, a number-of-runs technique has been adapted from
conventional 1-D parameter estimation resulting in a new type
of image. In our adaptation, the error between the measured and
the forward projected model sinograms are filter backprojected
into error images, , in the spatial domain. We inter-
pret these filter backprojected error images as the remaining

activity that cannot be explained by the chosen kinetic model.
If such a distribution is highly nonrandom, then the kinetic
model that has been incorporated into the reconstruction must
be deemed inadequate. The structure and low number-of-runs
in the filter backrojected error images arise from nonrandom
residuals in sinogram space. In our initial test with F-fal-
lypride, the greater nonrandomness in the made
from a one-tissue compartment model confirms that a one-tissue
compartment model is inadequate to describe the uptake and
retention of F-fallypride in all regions of the monkey brain.
Our technique is a novel way to view the local goodness-of-fit,
to alert consumers of parametric images to possible limitations
in the images, and/or to select the least complicated model
necessary (model parsimony).

C. Model Selection

Model selection is merely an extension of goodness-of-fit. A
deficient model cannot adequately describe the data (i.e., the es-
timated parameters will be biased) and the error images will re-
flect unwanted structure. On the other hand, an over-parame-
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Fig. 12. Mean parametric images for , and in coronal perspective reconstructed high and low regularization levels on the first and second row,
respectively.

terized model will produce random error images but the kinetic
parameters will suffer high variance and poor identifiability.
1) Sinogram Domain Metrics: The residuals between the

measured and fitted sinograms can be analyzed to compare the
fits of different compartment models. This analysis, however,
will not yield any information on a particular voxel.
2) Image Domain Metrics: Another way to examine model

adequacy, at the ROI level, can be achieved by the histogram
of runs as shown in Fig. 8 (in this case the ROI is the whole
brain). If the number-of-runs for each voxel within a ROI is
computed and binned into a histogram, model sufficiency for
the ROI can be compared across models. In a direct comparison
of models, the one with uniformly higher runs is the preferred
one for the ROI or the entire image. It may even be possible
to see multiple populations of voxels with different peaks in
the runs histogram. This may be interpreted to indicate that a
ROI is kinetically heterogeneous (i.e., time activity curves of
the voxels within the ROI are dissimilar) and additionally one
model cannot adequately describe the behavior of all the voxels
in the ROI. Better fits (more runs) may be achieved at the ex-
pense of too great an increase in parameter variance, in which
case a balance must be struck between describing all the data
and estimating parameters precisely.
3) Quantitative Analysis on Image Domain: The probability

that one model fits the data better than another can be quan-
tified and used for model selection through the use of the F
statistic or .5 These indexes are ways of comparing the
residual sum of squares between model fits while accounting for
the decreased degrees-of-freedom imposed by additional model
parameters. Fig. 10 showed—as expected—that high binding
regions containing appreciable quantities of dopamine recep-
tors were statistically better fit when the direct reconstruction
algorithm incorporated the two-tissue compartment model as
opposed to the one-tissue compartment. By extending the F
statistic and indexes to 3-D images, we have introduced

5It is possible to generate p-value images using runs, , or F statistics,
where these p-value images can be thresholded to produce masks that adhere to
or violate a given model.

a theoretically based way of selecting the proper model for in-
corporation into a direct reconstruction algorithm.
Some caveats in the quantitative analysis of error images

some of which are listed below.
1) The voxels in a dataset may be modelled with multiple
(more than 2) compartment models. In these cases, the idea
presented in this work should be extended to handle statis-
tical testing to find the best model amongst multiple com-
partment models.

2) Some correction may be required to the confidence level in
Fig. 10(b) and (d) as multiple comparisons (for all voxels)
are performed to generate these statistical significance im-
ages. With the increasing number of comparisons, there
may be many voxels that appear to violate the null hypoth-
esis (i.e., supporting the two-tissue compartment model)
simply by chance.

3) is comprised of two types of error in ImRes: Error
from the model mismatch and error from measurements.
The weight coefficients in (7) should be used to nor-
malize the effects of the variance of the measurement error
to . In this work, uniform weights (i.e., )
were used. Besides the uniform weights, weights obtained
from inverse frame durations were
also tried. The results were similar. We believe for the data
used in this work the error from the model mismatch dom-
inated the error from the measurements in . Subtrac-
tion of in F-statistic and calculating the division of

in may partially cancel out the contribution
from the measurement error. If TACs of the tested models
are similar or if the data are extremely noisy, error from the
model mismatch may become comparable to the measure-
ment error term. The importance of weight coefficients in
these cases should be investigated.

D. Limitations

There are certain limitations of the direct reconstruction al-
gorithm and methods/data used in this study. In this study, it is
assumed that all voxels can be described by the selected kinetic
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Fig. 13. (a) Absolute bias and (b) CV of parametric images for , and in coronal perspective reconstructed at high and low regularization levels.

model. However, there may exist some voxels which cannot be
described with the selected or any other kinetic models. It may
be possible to detect such voxels using a preliminary segmenta-
tion in the image space and to allow for different models (or no
model at all) in different areas of the image.
A possible limitation of the direct reconstruction is its suscep-

tibility to motion artifacts. In conventional image domain esti-
mation methods, it is possible to register the emission images
at each time point for motion compensation. However, it may
be possible to record motion during acquisition and correct the
data in an automated way using external measurement devices
[49], [50]. In addition, there are direct reconstruction algorithms
that apply to listmode data [29], [51]. The listmode data can be
corrected event-by-event with the aid of high frequency motion
detectors [52], [53].

V. CONCLUSION

In this paper, we have introduced three means of verifying the
precision and validity of the parametric images created by di-

rect reconstruction from sinograms [1]. The coefficient of vari-
ation images are an essential element for assessing the accuracy
of any parametric image. As in any experiment, an acceptable
coefficient of variation can only be determined in the context
of the expected effect size, number of subjects in a study, etc.,
Monte Carlo simulations are probably too cumbersome for use
as a routine means of calculating the variability in the images,
but they will serve as a check of other methods for estimating
variance. Besides the parametric images produced by direct re-
construction, we have introduced a multi-dimensional frame-
work for exploring the reliability and adequacy of the kinetic
models that are incorporated into the reconstruction. This re-
quired a combination of innovations that extended concepts in
parameter estimation from one to three dimensions. To help in-
terpret the results, we have introduced new ways of visualizing
the metrics of goodness-of-fit by backprojecting the errors from
sinogram space to image space, and creating new numbers of
runs images. The best model produces the most valid (precise,
unbiased) parameters. Selection of the best model can be di-
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rected through the use of the F statistic and images intro-
duced here. While our immediate focus is on the validity of the
direct reconstruction algorithm that we introduced previously
[1], we believe that the concepts and the framework we have
introduced in this paper apply to the characterization and eval-
uation of other algorithms that produce parametric images from
dynamic imaging data.
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