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Abstract—Dual-energy X-ray CT (DECT) has the potential to
improve contrast and reduce artifacts as compared to traditional
CT. Moreover, by applying model-based iterative reconstruction
(MBIR) to dual-energy data, one might also expect to reduce noise
and improve resolution. However, the direct implementation of
dual-energy MBIR requires the use of a nonlinear forward model,
which increases both complexity and computation. Alternatively,
simplified forward models have been used which treat the ma-
terial-decomposed channels separately, but these approaches do
not fully account for the statistical dependencies in the channels.
In this paper, we present a method for joint dual-energy MBIR
(JDE-MBIR), which simplifies the forward model while still
accounting for the complete statistical dependency in the mate-
rial-decomposed sinogram components. The JDE-MBIR approach
works by using a quadratic approximation to the polychromatic
log-likelihood and a simple but exact nonnegativity constraint in
the image domain.We demonstrate that ourmethod is particularly
effective when the DECT system uses fast kVp switching, since
in this case the model accounts for the inaccuracy of interpolated
sinogram entries. Both phantom and clinical results show that
the proposed model produces images that compare favorably in
quality to previous decomposition-based methods, including FBP
and other statistical iterative approaches.

Index Terms—Computed tomography (CT), dual-energy CT
(DECT), model-based iterative reconstruction (MBIR), spectral
CT, statistical reconstruction.

I. INTRODUCTION

D UAL-ENERGY computed tomography (DECT) scan-
ners, which acquire X-ray projections with two distinct

spectra, are of great interest in applications such as medical
imaging [1], [2], security inspection [3], [4], and nondestruc-
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tive testing [5]. The objective of DECT reconstruction is to
determine the energy-dependent attenuation at each voxel.
Fortunately, for most materials, the energy-dependent atten-
uation is accurately approximated as a linear combination of
two basis functions corresponding to photoelectric absorption
and Compton scattering [6]. In practice, it is usually more
convenient to reparameterize the energy-dependent attenuation
as a linear combination of two basis materials or components
[7] such as water and iodine. So in this case, our objective is
then to accurately reconstruct cross sections corresponding to
the equivalent densities of, say, water and iodine.
Early work on dual-energy reconstruction focused on decom-

posing the dual-energy measurements into two independent
sinograms, each of which corresponds to a basis component
or material. This can be done by first applying a material-de-
composition function to the two energy measurements. This
material-decomposition function then produces two sinograms
corresponding to the two basis materials. Many methods have
been proposed over the years for experimentally determining
this function. Alvarez andMacovski [6] proposed the numerical
inversion of a polynomial approximation to the polychromatic
measurement process. Other approaches directly approximate
the material-decomposition function as a polynomial [7]–[12],
or compute the decomposition through an iterative estimation
process [4], [13]–[15].
Alternatively, other approaches to dual-energy reconstruc-

tion work by first reconstructing images from the low- and
high-energy sinograms using filtered back projection (FBP)
method, and then performing image-domain material decom-
position [16]–[19]. However, while sometimes effective, this
type of image-domain reconstruction makes substantial ap-
proximations, particularly when the X-ray spectrum for each
measurement is broad. So the resulting reconstructions may be
quantitatively inaccurate and suffer from artifacts. Recently, an
iterative FBP method [20] has been proposed to account for
the polychromatic spectra. It repeats the process that performs
back projection, image-domain material decomposition, and
forward projection of the decomposed results with a calibrated
nonlinear model. This method can be applied to the case where
one of the dual-energy measurements is missing for each ray.
Recently, statistical reconstruction based on iterativemethods

has been found to be very effective in single-energy CT recon-
struction [21]–[24]; and in particular, model-based iterative re-
construction (MBIR) methods [21], [24]–[26], which incorpo-
rate an accurate system model, statistical noise model, and prior
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model, have demonstrated the ability to reduce noise and im-
prove resolution [27]–[31].
Several statistical iterative approaches have been proposed

for DECT reconstruction. These methods can be mainly classi-
fied into two categories, the direct-inversion methods and the
decomposition-based methods. The direct-inversion methods
reconstruct images directly from dual-energy measurements
[32]–[36]. In particular, Fessler et al. [33] formulated the
likelihood function of the detector output by using a Poisson
model. Huh and Fessler [35] applied a penalized weighted least
square (PWLS) approach to DECT with fast kVp switching
acquisition and used an approximate Gaussian noise model for
the log-transformed measurements. These approaches gener-
ally include a highly nonlinear forward model in the likelihood
function to model the polychromatic measurement process,
so this formulation increases complexity and consequently
complicates the optimization.
Alternatively, decomposition-based statistical approaches

reconstruct images from material-decomposed sinograms
[37]–[39] with a simplified forward model. Fessler et al.
[37], [39] applied PWLS approaches with diagonal weighting
matrices for the pair of decomposed sinogram entries. These
methods, which we refer to as independent dual-energy MBIR
(independent DE-MBIR), model the decomposed sinogram
entries as statistically independent when conditioned on image
content. The independent DE-MBIR methods are computa-
tionally simpler than the direct-inversion methods, but the
decoupled likelihood functions ignore the correlation in sino-
gram entries that are caused by the decomposition process [40],
[41]. Perhaps the most closely related work is Kinahan, Alessio,
and Fessler’s [38] method for dual-energy PWLS reconstruc-
tion in PET/CT attenuation correction. This framework also
allowed for the potential correlation of sinogram entries, but
left open the specifics of how the entries should be weighted.
In this paper, we develop a novel joint dual-energy MBIR

(JDE-MBIR) method to reconstruct basis material densities
from the decomposed sinograms. In Section II-C, we introduce
a key novelty of the JDE-MBIR method, which is a quadratic
approximation to the joint likelihood model. This quadratic
approximation weights the decomposed sinogram entries by
nondiagonal matrices that explicitly model the noise correla-
tion in the decomposition domain. The proposed method also
incorporates a prior model that accounts for the separation
into materials and introduces a simple but exact nonnegativity
constraint that accurately reflects the true physical constraint of
nonnegative X-ray attenuation. We use the iterative coordinate
descent (ICD) algorithm to compute the solution. We note
that a preliminary version of this method was presented in the
conference paper of [42].
An important novelty of JDE-MBIR is that it achieves com-

putational efficiency by reconstructing from material-decom-
posed sinograms while retaining an accurate forward model and
noise model in the decomposition domain. In particular, the
JDE-MBIR models the interdependence in decomposed sino-
gram entries that result from the decomposition process. This
model leads to reconstructions with less noise than those of the
independent DE-MBIR methods.

The JDE-MBIR also allows for accurate modeling of DECT
data collected using fast kVp switching techniques. Fig. 1 illus-
trates a model for the fast kVp switching technique, in which the
system alternates between low- and high-energy measurements
from view to view. In this case, each view contains either low-
or high-energy measurements, whereas the material decompo-
sition requires both to be available. Although the angular differ-
ence between the low- and high-energy measurements is small,
an additional interpolation step needs to be performed for the
traditional decomposition-based approaches to ensure perfect
registration. The JDE-MBIR method also exploits sinogram in-
terpolation; however, the reconstruction principally depends on
only the real measurements, which makes it robust to interpola-
tion error and capable of preserving more resolution than other
decomposition-based approaches.
We also propose a novel nonnegativity constraint for the

DECT reconstruction. Previous approaches have enforced
nonnegativity constraints directly on reconstructed material
densities [32], [35], [43], which is not generally physically
correct. We proposed a nonnegativity constraint that is applied
in the attenuation space. This constraint can be enforced as two
simple linear constraints on the material images and accurately
reflects the true physical constraints of X-ray attenuation.
In our experiments, we evaluate the performance of the JDE-

MBIR by using phantom and clinical data. The experimental re-
sults show that the JDE-MBIR significantly improves resolution
and reduces noise in the reconstructed material density images
and the synthesized monochromatic images.
The paper is organized as follows. Section II describes the

formulation of the JDE-MBIR. Section III gives the ICD solu-
tion to the optimization problem. Section IV presents the exper-
imental results on phantom and clinical data to demonstrate the
image quality improvement achieved by JDE-MBIR as com-
pared to FBP and independent DE-MBIR.

II. MAP RECONSTRUCTION FRAMEWORK

Let be the set of dual-energy CT measurements,
where each row, , specifies the low- and high-en-
ergy projection measurements for the th ray. We use subscript
“l” for “low-energy” and subscript “h” for “high-energy.” Fur-
thermore, let be the reconstructed density images
of the scanned object for the selected material basis pair, where
each row, , represents the water- and io-
dine-equivalent densities for the th voxel. We use subscript
“W” for “water” and subscript “I” for “iodine.” In this paper,
we choose water and iodine since they are frequently used as
basis materials for separation into low and high X-ray attenua-
tion characteristics, respectively. However, the use of other ma-
terial pairs is equally valid. The integer specifies the number
of distinct ray paths during data acquisition, and specifies the
number of voxels in the reconstructed volume.
Our goal is to reconstruct the material density images, ,

from the measurements, . One typical approach is to compute
the maximum a posteriori (MAP) estimate of given by

(1)
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where is the conditional distribution of given ,
is the prior distribution of , and is the constraint set

for the reconstruction.
The following sections develop the theoretical framework

for the JDE-MBIR algorithm from the basic physical models.
Section II-A presents a noise model for the dual-energy de-
tector measurements based on photon statistics. Section II-B
then derives the forward model for the dual-energy data using
widely accepted models of polychromatic X-ray attenuation
through materials. With this framework in place, Section II-C
then introduces the primary innovation of our technique, which
is a quadratic approximation to the log-likelihood function
in the projection domain. Section II-D then shows how this
innovative model can be applied to the important problem of
fast kVp switching data and provides a theoretical analysis of
JDE-MBIR’s advantages in this application.

A. Measurement Preprocessing

In the X-ray transmission problem, we measure the photon
flux after object attenuation, which is denoted by for ray
and source spectrum , where . We also measure the
air scan photon flux, , which counts the detected photons
with no object present. The air scan counts can be calibrated
accurately by repeated scans and therefore are assumed noise-
less. The projection measurement, , is then computed as the
negative log of the photon measurement normalized by the cor-
responding air scan photon count

(2)

We model as the summation of a Poisson random vari-
able with conditional mean and a Gaussian random variable
with mean zero and variance . In fact, is the conditional
mean of given the image , and the Gaussian random vari-
able presents additive electronic noise in the detector system.
From this, the conditional mean and variance of are given
by

(3)

(4)

Then we approximate the conditional mean of as

(5)

To compute the conditional variance of , we first perform a
first-order Taylor series expansion to the expression of in
(2) about

(6)

which yields the approximation we will use for the conditional
variance of [44]

(7)

where is approximated by its observation, . Thus, we
will model the conditional mean and covariance of as

(8)

(9)

Note that the off-diagonal elements of the covariance matrix are
zeros since we assume that the low- and high-energy measure-
ments are made independently.
Assuming is conditionally Gaussian with mean and covari-

ance given by (8) and (9), the distribution of is given by

(10)
where is a normalizing constant, and is the inverse co-
variance of

(11)

where

(12)

(13)

With the assumption of measurements at distinct projections
being conditionally independent, the distribution of the data
given the object information is given by

(14)
However, this function is still a nonlinear function of because
the conditional expectation, , is in general a nonlinear
function of the argument . In Section II-C, we will use this
result to construct a fully quadratic approximation to the log-
likelihood in (14).

B. Forward Model

We next need to formulate a physical model for .
Given the linear attenuation coefficients, , the conditional
mean of is computed by integrating the photon attenuation
over the source spectrum

(15)

where (keV) is the photon energy, is the normalized
photon energy distribution for source spectrum , and
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is the linear attenuation coefficient as a function of lo-
cation and energy , representing X-ray photon absorption per
unit distance. Since and contain the same information, note
that .
If we discretize , then this leads to the expression

(16)

where is the projection matrix, with its element,
(cm), representing the intersection of ray with voxel .

We use the distance driven approach [45] to compute . Then
from (5), the conditional mean of the projection measurement
is given by

(17)

where and .
Moreover, the linear attenuation coefficient can be expressed

as a linear combination of the mass attenuation functions of two
or more basis materials [7]. With water and iodine as the basis,
the linear attenuation function can be decomposed as

(18)

where mg/cm is the equivalent density for basis ma-
terial at voxel , where , and
is the known energy-dependent mass attenuation function for
basis material , which represents the photon absorption per
unit distance for the particular material with 100% concentra-
tion under standard temperature and pressure. Note that the re-
constructions, and , do not depend on energy.
Then, by substituting (18) into (17), we have

(19)

where , and mg/cm is the material
density projection defined as

(20)
The quantity represents the line integral of material densities
along ray . We then define a vector-valued function,
, as

(21)

which models the nonlinear relationship between the material
density projections and the expected photon attenuation. From
this, we have

(22)

The function does not depend on particular ray paths gener-
ally; however, it can be a function of the ray index, , if the
source spectrum, , varies among rays. This is the case in
practice with systems including bowtie filters to shape the X-ray
beam to a particular scanned object.
Thus, substituting (22) into (14), we have the negative log-

likelihood function

(23)

This is the likelihood function used in the direct-inversion
methods.
While the forward model of (23) could be used directly for

MBIR reconstruction, it is not practical for a number of reasons.
First, the function is generally not measured on real CT sys-
tems. In practice, real CT systems require a knowledge of the
material decomposition function, , as described in the fol-
lowing section. This is because is required for implementa-
tion of standard direct reconstruction methods such as FBP; so it
is accurately measured using calibration procedures. However,
is not easily computed from and would require a com-

pletely separate calibration procedure. Second, direct nonlinear
optimization of the MAP cost function using (23) would be very
complex and potentially very computationally expensive since
it does not have a quadratic form. So our goal will next be to
derive a quadratic function that accurately approximates (23).

C. Quadratic Joint Likelihood Model

In this section, we introduce a quadratic approximation to the
negative log-likelihood function, , which reduces
the complexity of the reconstruction algorithm while still re-
taining an accurate model of the noise correlation in the decom-
position domain.
We first define the inverse function, , as

(24)

In practice, the function is called the “material decompo-
sition function.” There are a variety of means to determine this
function. One may employ a polynomial approximation to the
function and then solve numerically for [6], or directly ap-

proximate the function as a polynomial [7]–[12]. The co-
efficients of the polynomial approximations can be determined
empirically by system calibration. Possible calibration methods
include a projection-domain calibration [11], [46], or an image-
domain approach [12]. One may also compute the decomposi-
tion through an iterative estimation process [4], [13]–[15]. In
practice, we approximate the function as a high order poly-
nomial through calibration, which will be described in detail in
Section IV.
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With the function, we can then compute the decomposed
sinogram entries, , as

(25)

with an estimate of the material density projection, . Per-
forming a Taylor series expansion of at yields

(26)

where is the gradient of function at . For our
problem, is a 2 2 invertible matrix. This results in
the linear approximation we will use in the model

(27)

Thus, by substituting (27) into (23), we approximate the true
log-likelihood function in (23) by

(28)
where the estimated material projection, , is given by (25),
and the statistical weighting matrix, , is given by

(29)

Each is a 2 2 symmetric matrix representing the inverse
covariance of the decomposed sinogram entries, . Each is
therefore also positive semi-definite and has a zero eigenvalue
if and only if the diagonal matrix, , has a zero eigenvalue,
which implies that in (12) or in (13).
The (28) gives the likelihood model we use in the proposed

JDE-MBIR method. In contrast to the direct-inversion methods,
our model has a simple quadratic form, so it allows for direct
application of existing quadratic optimization methods for the
computation of the MAP reconstruction.
It should also be noted that our weighting matrix, , is in

general nondiagonal for every projection. The off-diagonal el-
ements of provide significant information about the noise
correlation between distinct decomposed sinogram entries.

D. Likelihood Model for Fast kVp Switching Modality

Our proposed model is particularly well suited for CT sys-
tems that use fast kVp switching to acquire dual-energy data.
Fig. 1 graphically illustrates a model for the fast kVp switching
technique, in which the system alternates between low- and
high-energy measurements between adjacent views. Fast kVp
switching requires high-speed detectors and X-ray sources and
generators that allow for fast switching, but it offers the ad-
vantage that low- and high-energy measurements are interlaced
closely in time and space so that misalignments due to motion
or other effects are minimized. Notice that a fast kVp switching
system has the capability of varying the duty cycle between
low- and high-energy views to optimize dose. This is graphi-
cally depicted by the fact that the low-energy (orange) line may
be longer than the high-energy (green) line. For typical scans,
the low-energy dwell time is greater than the high-energy dwell

Fig. 1. This figure illustrates a model for fast kVp switching technique. Single
X-ray tube alternates the voltage between low- and high-kVp from view to view.
Thus, each view contains only one measurement, either low- or high-energy.

time, but this depends on many details of the scan parameters.
While the dwell time may be different from view to view, data
acquisition still results in consecutive views alternating between
low- and high-energy measurements. Dwell time characteris-
tics are taken into account in by calibration. The dwell
time of the view generally will affect the resulting noise vari-
ance, with longer dwell times reducing noise variance and short
ones increasing variance. However, this change in variance is
fully accounted for by the estimates of noise variance given in
Section II-A and more specifically by (7).
For fast kVp switching, each projection contains either low-

or high-energy measurements. Therefore, for each projection,
either or is missing. In the case of the true likelihood of
(23), this missingmeasurement can be accommodated by setting
the weighting matrix to be

for low-energy projections

for high-energy projections.
(30)

So in this case, the missing measurement is always weighted by
zero.
However, in the case of the joint approximation in (28), we

still must determine a value for the weighting matrix from
(29) and the estimated projection, , from (25). Unfortunately,
both these values depend on the missing measurement. In order
to solve this problem, we interpolate the missing value of ,
and use this interpolated value to compute both the gradient
of used for the weight matrix , and the projection .
While this interpolation process does introduce error, this error
is relatively minor when the joint log-likelihood approximation
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Fig. 2. Plots of the true log-likelihood function, the independent approxima-
tion, and the proposed joint approximation, with contours plotted underneath.

is used, which allows using relatively straightforward interpo-
lation techniques without significant concern for the quality of
the reconstructed images. In order to see this, consider the plots
of Figs. 2 and 3.
Fig. 2 graphically illustrates the importance of using the

joint log-likelihood approximation rather than the simplified
independent approximation using some typical values of

at 80 and 140 kVp. In the independent
approximation, the off-diagonal entries of are set to zero,
so the errors in and are modeled as independent, and
the approximated log-likelihood function has ellipsoidal level
curves. This is a very poor approximation of the true log-likeli-
hood and artificially imposes a penalty for any deviation from
its unique maximum. With incorporation of the off-diagonal
terms in , the joint approximation is much more accurate.
The joint approximation appropriately retains the under-spec-
ified nature of the maximum-likelihood projection estimate,
allowing it to move along its level lines without change in cost.
Fig. 3 illustrates more precisely the effect of interpolation

error in the joint and independent log-likelihood approxima-
tions. The figure shows contour plots of the log-likelihood func-
tion of Fig. 2, but also shows the effect of a 5% interpolation
error in the missing sample. The interpolation error has a rel-
atively minor effect on the joint approximation, while shifting
quite significantly the maximum of the independent model. In-
tuitively, the joint approximation is very robust to interpolation
error because the weighting matrix, , has a zero eigenvalue
in the direction of any interpolation error. This is due to the fact
that the underlyingmatrix of (29) has a zero in the location of
the missing sample. In practice, we will see that the independent
approximation results in reconstructions which lose resolution
due to the interpolation process. Alternatively, the joint approx-
imation approach preserves resolution by primarily depending
on only the uninterpolated samples in the reconstruction.

Fig. 3. This figure plots the contours of the true log-likelihood function
and different approximations. We compare the independent model and the
joint model within three different attenuation levels. Within each figure, we
plot the contours of the true log-likelihood (blue), approximation without
interpolation error (red), and same approximation with 5% interpolation
error present (green). Without loss of generality, we fix the air scan photon
flux to be , and then simulate the low, medium,
and high attenuation cases with photon measurements equivalent to
[2500,2650], [500,550], and [100, 110], respectively. Each plot covers two
standard deviations of water and iodine projections.

Fig. 4 provides a pseudocode of the joint log-likelihood ap-
proximation for fast kVp switching. First, the missing measure-
ment is interpolated, and then the interpolated value is used to
compute the material decomposition estimate, , and the pro-
jection weighting matrix, .

E. Prior Model

We model the reconstructed density image as a Markov
random field (MRF) with the following form:

(31)

where is the index of material type, specifies a neigh-
boring pair consisting of voxel and voxel , represents the
set of all such voxel pairs, is the prior strength for voxel
pair and material , and is the potential function. We
choose to be inversely proportional to the distance between
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Fig. 4. Pseudocode of JDE-MBIR for DECT that uses fast kVp switching.
First, we interpolate the missing sample for each projection. Second, we per-
form material decomposition and also compute the statistical weighting matrix.
Finally, we use the decomposed sinograms and weighting matrices to recon-
struct the images iteratively. Subroutine ImageRecon is described in Fig. 8.

voxel and voxel , and the scale of can be further adjusted
to balance between noise and resolution in the reconstruction.
By choosing this model, we perform the regularization indepen-
dently on each of the material components in the image domain.
Our particular choice of potential function is the -general-

ized Gaussian MRF ( -GGMRF) of the form

(32)

with . This type of prior has shown to be
effective in many tomographic reconstruction studies [21], [24],
[47]–[49]. With , the potential function is strictly
convex [21], which guarantees global convergence of the cost
function and produces reconstruction as a continuous function
of the data [50].
We set and in our application, since this par-

ticular setting has shown a desirable compromise between noise
and resolution in similar clinical studies [21]. With , the
potential approximates a quadratic function for small voxel dif-
ferences, which preserves details in low contrast regions. The
value, , approximates the behavior of a generalized
GaussianMRF [50] for large voxel differences, which preserves
edges in high contrast regions. The parameter models the tran-
sition between low and high contrast contents. In practice, we
choose mg/cm for water image and mg/cm
for iodine image.

F. Constrained Optimization

In X-ray tomographic reconstruction problems, an important
physical constraint to the reconstruction is that the linear attenu-
ation of any material at any photon energy must be nonnegative.
More precisely, for all keV, we know that

(33)

Fig. 5. This figure illustrates the feasible values of a voxel,
, where is the water-equivalent density and is

the iodine-equivalent density. Yellow region shows the constrained solution
set, which is formed by the intersection of only two half planes, one defined
by and the other by . Green arrows show the attenuation vectors at
intermediate energies.

where the photon energy range [40, 140] keV is of particular
interest for medical imaging and is above the -edge of iodine.
Let be the constraint set of a single voxel value, as

(34)

where is the normalized mass attenua-
tion vector. In this way, is formed by the intersection of an
infinite number of half planes. However, the form of can be
dramatically simplified by observing that the direction of
moves continuously with . As a consequence, the constraint
can be represented muchmore simply by the intersection of only
two planes corresponding to the minimum and maximum values
of , as and

(35)

Fig. 5 illustrates the constraint set and the associated mass at-
tenuation vectors. Then the constraint set for the entire image,
denoted by , is given by

(36)

where is the number of voxels in the reconstructed volume.
Clearly, is a convex set and so is .
The proposed constraint allows negative values for the re-

constructed densities of water and iodine. This is because the
reconstructed densities are only some coefficients for the linear
combination that produces the equivalent attenuation. However,
in the attenuation domain, the combination of the reconstructed
material densities should remain nonnegative.
Combining the log-likelihood in (28) and the prior in (31)

with the constraints in (36) yields the expression for the MAP
reconstruction of (1)

(37)
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III. OPTIMIZATION ALGORITHM

There are a wide variety of techniques that can be used to
solve the optimization problem in (37), from which we choose
the iterative coordinate descent (ICD) algorithm. The ICD algo-
rithm has the advantages that it has rapid convergence at high
spatial frequencies [25], especially when initialized with FBP to
obtain a good original estimate of low frequencies. Moreover, it
can easily incorporate the proposed nonnegativity constraint.
The ICD algorithm sequentially updates voxels of the re-

constructed image. Within each ICD iteration, every single
voxel is updated with remaining voxels fixed so as to minimize
the total cost function. Within each ICD update, we compute
the exact solution to the constrained voxel update with the
Karush–Kuhn–Tucker (KKT) condition.
More precisely, by changing only one voxel while fixing the

rest of the image, we compute the voxel update, , from the
current image, , by

(38)

We denote for simplicity. We introduce a
dummy variable to represent the voxel value
being updated, to distinguish from its current value, . Define

the error sinogram, . Then intuitively, the first term
in (38) describes the change in the error sinogram introduced
by the change in the voxel value. Equivalently, (38) can be
written as

(39)

where and are the first and second derivatives of the log-
likelihood function, which are given by

(40)

(41)

where is the th row of the error sinogram, and
is a scalar representing the intersection of ray with voxel

.
Solving the 2-D optimization problem in (39) simultaneously

for both material components may be difficult, since the prior
term cannot be explicitly expressed as a function of . To ad-
dress this problem, one may use a functional substitution ap-
proach [24], [51]–[54]. In this problem, we introduce a quadratic

Fig. 6. This figure illustrates the desired substitute function. The substitute
function, , equals the true function, , at , and upper
bounds the true function everywhere else. Thus, the true function is guaranteed
to decrease when the substitute function is minimized.

substitute function for the potential function. More precisely, let
and . Then we define the sub-

stitute function, , as

(42)

with

(43)

where is an offset constant and therefore can be ignored
during optimization. This function, , satisfies the
following two constraints for a valid substitute function [24],
[51]–[53]

Intuitively, a valid substitute function for minimization should
equal the true function at the current point and upper bound the
true function everywhere else. Fig. 6 illustrates the desired sub-
stitute function, . It is important to know that replacing
the true potential function with the substitute function still guar-
antees monotone convergence of the cost function [24], [53].
Replacing the potential function in (39) with the substitute

function yields a quadratic cost function of

(44)

where

(45)
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Fig. 7. Pseudocode for solving the quadratic minimization problem in (48) with
the KKT condition. We first test the KKT condition on the unconstrained solu-
tion. If it fails, we solve the minimization problem on either boundary of the fea-
sible set, and then we test the corresponding solution with the KKT condition.
Once the KKT condition is met, the particular solution becomes the updated
value. Origin will be the only feasible solution if no qualified solution is found
in the previous cases. Derivation for the solution is provided in the Appendix.

Furthermore, define

(46)

(47)

By using and , we rewrite (44) into a standard form

(48)

This is a standard quadratic minimization problem with two
linear constraints. It can be solved exactly by applying the KKT
condition following a standard procedure [55]. Fig. 7 shows the
procedure for computing the solution. We first test the KKT
condition on the unconstrained solution. If it fails, we solve
the minimization problem on either boundary of the feasible
set by rooting the derivative of the resulting 1-D cost function,
and then test the corresponding solution with the KKT condi-
tion. Once the KKT condition is met, the particular solution be-
comes our updated value. This is because the KKT condition is
both necessary and sufficient in this problem, given that the cost
function and the constraints are continuously differentiable and
convex [56]. The origin will be the only feasible solution if no

Fig. 8. Pseudocode for reconstructing the image by using generic ICD algo-
rithm. We initialize with the raw FBP images and also initialize the error
sinogram. Within each iteration, for each selected voxel, we first compute the
column of the forward projection matrix. Second, we compute first two deriva-
tives of the log-likelihood function. Third, we compute the coefficients for the
surrogate prior. Fourth, we compute the first two derivatives of the quadratic
cost function. Fifth, we solve the optimization problem with the KKT condition
to obtain the voxel update. Finally, we update the error sinogram and the image.
We define as an vector that is 1 for element and 0 otherwise. Sub-
routine KKTSolve is described in Fig. 7.

qualified solution is found in the previous cases. The derivation
of the solution is provided in the Appendix.
The pseudocode in Fig. 8 summarizes the procedure for re-

constructing the image from the decomposed sinograms. We
initialize the image and the error sinogram with the raw FBP
images. Then within each iteration, for each selected voxel ,
we first compute the th column of the forward projection ma-
trix, which is , by using the distance driven method [45].
Second, we compute the first two derivatives of the log-likeli-
hood function, and . Third, we compute the surrogate prior
coefficients, , for each of the neighboring voxels by using
(43) and (45). Fourth, we compute the first two derivatives for
the quadratic cost function, and , by using (46) and (47).
Fifth, we solve the optimization problem in (48) by using the
KKT condition to obtain the voxel update. Finally, we update
the error sinogram by forward projecting the voxel update and
update the image as well.

IV. EXPERIMENTAL RESULTS

We have applied the proposed JDE-MBIR algorithm to real
3-D DECT reconstruction problems. Raw data were acquired on
a Discovery CT750 HD scanner (GE Healthcare, WI, USA) in
a dual-energy fast switching acquisition mode, with the X-ray
tube voltage alternating between 80 and 140 kVp from view to
view. This spectral CT imaging technique is also referred to as
gemstone spectral imaging (GSI). Each scan contains approxi-
mately 2500 views per rotation, with each kVp having the same



126 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 33, NO. 1, JANUARY 2014

number of views, which is approximately 1250. Each scan was
made with a large bowtie present. Each of the reconstructed im-
ages has a thickness of 0.625 mm, with 512 512 pixels. We re-
construct with water and iodine sinograms after material decom-
position, with each material having the same number of views
per rotation, which is approximately 2500. The reconstructed
images represent the cross sections corresponding to water- and
iodine-equivalent densities in units of mg/cm . The “monochro-
matic” image, which specifies the cross section corresponding
to the attenuation given the photon energy, can then be gener-
ated by a linear combination of the reconstructed density images
as in (18). Note that we do not generate monochromatic sino-
grams for reconstruction.
The function in (25) is approximated by using a high

order polynomial with the following form:

(49)

with . The specific coefficients for the polyno-
mial, denoted by , ,

, are computed in a calibration proce-
dure for each device, as described in [57]. As described in
Section II-B, these coefficients depend on many specific details
of the device’s physics including the X-ray spectra and detector
sensitivity. The coefficients of the material decomposition
are estimated in two stages. First, a polynomial is estimated
to correct for beam hardening on a water phantom, and then
the full set of coefficients are estimated for complete material
decomposition.
We will compare the proposed JDE-MBIR method with

two other decomposition-based methods, one using FBP re-
construction and the other using independent DE-MBIR. The
FBP method consists of first obtaining two material sinograms
from the material decomposition and then performing FBP
on each sinogram with a standard reconstruction filter kernel.
Then the resulting material density images are processed by
a correlation-based noise reduction method [40], [58]. The
independent DE-MBIR was implemented in the same way as
described in Section II-D. That is, the off-diagonal terms of the
weighting matrix, , were set to 0. All of the above methods
work with the same decomposed sinograms. In practice, we
implement the interleaved nonhomogeneous ICD algorithm
[24] for both independent DE-MBIR and JDE-MBIR. This
method focuses computation where updates are mostly needed,
which consequently accelerates the convergence. Both the
independent DE-MBIR and JDE-MBIR are implemented on a
standard 2.53-GHz clock rate 8 core Intel processor workstation
with the Linux operating system. For both methods, we run 10
iterations to obtain the fully converged results.
In order to compare fairly among different reconstruction

methods, for each experiment we match the noise level in 70
keV monochromatic images. That is, the difference of the noise
standard deviation measured within a fixed ROI is less than 1

HU among different methods. We adjust the prior strength,
in (31), to match the noise level.
We first evaluate the performance of different methods using

the phantom. For quantitative assessment, we use a 20-cm-di-
ameter GE Performance Phantom (GEPP) scanned in 64
0.625 mm helical mode at pitch 0.938:1 in 540 mAs in 300 mm
field-of-view (FOV). The GEPP contains a Plexiglas insert with
resolution bars and a 50- -diameter tungsten wire placed in
water. We measure the standard deviation within a fixed ROI in
a homogeneous region of Plexiglas for noise assessment, and
also measure the modulation transfer function (MTF) by using
the wire for in-plane resolution assessment [59]. The width of
the MTF is proportional to the spatial resolution. In this paper,
10% MTF is chosen for comparison, since it generally reflects
the visual resolution of the image. In addition to the above
wire method, we also use the cyclic bar patterns to measure the
spatial resolution. Following the method described in [60], we
compute the MTF gain as the image modulation divided by the
object modulation.
The JDE-MBIR method improves the spatial resolution and

simultaneously reduces noise in the phantom study. This is illus-
trated by the GEPP reconstructions shown in Fig. 9. As shown
in the figure, JDE-MBIR provides greater noise suppression
than FBP and independent DE-MBIR in both water and io-
dine images, which leads to visually smoother homogeneous re-
gions. Meanwhile, JDE-MBIR improves the resolution by pro-
ducing a less blurred wire spot and spatially more distinguish-
able bars. One can also observe the resolution improvement in
the monochromatic images in Fig. 10, which are synthesized
using the reconstructed material densities in Fig. 9 following
(18). The increased visual separation of the bars is illustrated
by the profile plots in Fig. 11.
The visual improvement on the GEPP reconstruction is fur-

ther verified by quantitative measurements in Table I.With com-
parable noise level in 70 keV monochromatic images, JDE-
MBIR significantly reduces noise as compared to FBP and in-
dependent DE-MBIR, especially for water images. JDE-MBIR
also improves the in-plane resolution substantially as compared
to FBP and independent DE-MBIR, according to these two dif-
ferent resolution metrics.
Figs. 13 and 14 show the resolution and noise of the

monochromatic images across various photon energies, where
we match the noise level at 70 keV for different methods for
comparison. Fig. 12 presents the monochromatic images at
two distinct energies as an example. As shown in Fig. 13,
JDE-MBIR significantly raises the resolution as compared
to FBP and independent DE-MBIR. Fig. 14 also shows this
resolution improvement by investigating the bar patterns at
three different spatial frequencies. Each plot is computed using
the method described in [60]. Note that for each frequency,
the JDE-MBIR produces the largest contrast (i.e., closest to an
ideal value of 100%) across all energies. This is consistent with
the visual quality of the resolution bars in Figs. 10 and 12.
In addition, Fig. 13 shows that the JDE-MBIR monochro-

matic image contains less noise than the FBP image for all
energies of diagnostic interest. It also has a more tractable noise
characteristic than the monochromatic image with the inde-
pendent DE-MBIR. More precisely, although the independent
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Fig. 9. Comparison of FBP, independent DE-MBIR (indep. DE-MBIR) and JDE-MBIR reconstructions from a GEPP scan. From top to bottom: water density
image, iodine density, and 70 keV monochromatic image. From left to right: FBP, independent DE-MBIR, JDE-MBIR, difference between JDE-MBIR and FBP,
difference between JDE-MBIR and independent DE-MBIR. Display window for water images: window width (WW) 600 mg/cm and window level (WL) 950
mg/cm ; for water difference images: WW 600 mg/cm and WL 0 mg/cm ; for iodine images: WW 15 mg/cm and WL mg/cm ; for iodine difference
images: WW 7.5 mg/cm and WL 0 mg/cm ; for monochromatic images: WW 600 HU and WL 0 HU; for mono difference images: WW 300 HU and WL 0 HU.
The white box on the 70 keV FBP image (first at the third row) indicates the region where the noise standard deviation is evaluated.

Fig. 10. Resolution bars in the 70 keV monochromatic images from a GEPP
scan reconstructed with: (a) FBP; (b) independent DE-MBIR; (c) JDE-MBIR.
Display window: WW 200 HU and WL 400 HU. Each image zooms in to the
resolution bars of the monochromatic images shown in Fig. 9 with a different
display window.

DE-MBIR monochromatic image appears slightly less noisy
than the JDE-MBIR monochromatic image for some energy
levels, the noise rises rapidly for the independent model as
energy decreases. This is because the iodine component domi-
nates the photon attenuation at low energy and the independent
DE-MBIR method tends to produce noisy iodine reconstruc-
tions. Also, optimizing the prior strength for independent
DE-MBIR becomes difficult due to this huge variation. This

result also indicates that one can further reduce noise while
still earning the advantage in spatial resolution by using the
JDE-MBIR.
We also compared the convergence speed of the JDE-MBIR

and the standard single-energy MBIR [24] with the GEPP re-
construction to measure the additional computational burden
occasioned by the dual-energy reconstruction. For single-en-
ergy MBIR, we simply took the water sinogram and weight
from the data used in the experiment of Fig. 9 and performed
the reconstruction. In this case, the data used in JDE-MBIR and
single-energy MBIR share the same scanner geometry and set-
tings such as helical pitch, rotation speed, and local statistics
for the water component. Note that the resulting single-energy
MBIR reconstruction has no particularly quantitative meaning,
but it is still useful for comparing the computation time. Both al-
gorithms were implemented on the same software platform and
run on the same hardware. Fig. 15 shows the comparison of con-
vergence speed between JDE-MBIR and single-energy MBIR.
Since these two methods do not reach the same final cost due
to different cost functions, we scale the cost of the single-en-
ergy MBIR such that it has the same final cost as JDE-MBIR,
assuming full convergence has been reached in 10 iterations as
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Fig. 11. Profile plot across the resolution bars on the GEPP 70 keV monochro-
matic images for FBP, independent DE-MBIR, and JDE-MBIR. Top: profile
line on the image; bottom: attenuations along the profile line with FBP (blue),
independent DE-MBIR (green), and JDE-MBIR (red).

TABLE I
COMPARISON OF FBP, INDEPENDENT DE-MBIR, AND JDE-MBIR FOR

MEASUREMENT OF NOISE AND IN-PLANE RESOLUTION FOR THE IMAGES IN
FIG. 9. RESOLUTION MEASURED BY USING THE CYCLIC BARS METHOD IS
MADE IN THE 70 keV MONOCHROMATIC IMAGES AT THE THREE LOWEST

SPATIAL FREQUENCIES

usually observed in practice. As shown in the figure, both algo-
rithms converge within four iterations. In this experiment, the
average total computation time per iteration for JDE-MBIR was
1.47 times the computation required for single-energy MBIR as
measured across about 9 million voxels located differently in
the 3-D FOV. The main reason for the increase in computation
stems from the fact that the sinograms for JDE-MBIR contain
twice as much data as that for single-energy MBIR because of
interpolation.
We also evaluated the reconstruction accuracy of JDE-MBIR

by using a GE GSI contrast phantom, which was scanned in 32
0.625 mm axial mode in 384 mAs in 500 mm FOV. This

phantom consists of a water phantom with several cylindrical
rods inserted, each containing known concentrations of iodine
and water. Fig. 16 shows the JDE-MBIR reconstructions of this
phantom, with the theoretical iodine and water densities given
in Table II. Fig. 16 also plots the reconstructed iodine and water
densities for FBP and JDE-MBIR. For each rod with known
iodine concentration, we calculated the average of the recon-
structed values in an ROI within the rod. As shown in the plots,
FBP and JDE-MBIR produce equally accurate material densi-
ties.
We also compared FBP, independent DE-MBIR, and JDE-

MBIR by using real clinical data, as shown in Figs. 17 and
18. The data were collected from an abdominal scan in 64
0.625 mm helical mode at pitch 0.984:1 in 540 mAs in 500
mm FOV. Fig. 17 shows that the JDE-MBIR dramatically re-
duces the noise in the homogeneous regions (e.g., liver) in both
water and iodine images. The bone structures in the JDE-MBIR
water image also suffer from less blooming and have sharper
edges than the other two methods. Meanwhile, the JDE-MBIR
improves the resolution in the iodine image as compared to the
other two methods. For example, one can see details such as
liver vessels more clearly in the JDE-MBIR image.
Fig. 18 presents the corresponding monochromatic images at

various energies. The resolution improvement can be observed
in the JDE-MBIR images as compared to the other twomethods,
with a fixed noise level in the 70 keV monochromatic image.
However, according to the resolution and noise curves shown
in Fig. 13, one can achieve less noise while still retaining better
resolution for the JDE-MBIR method as compared to the FBP
method, by adjusting the prior strength. These results illustrate
the potential diagnostic benefits of the JDE-MBIR method for
DECT reconstruction. Note that either JDE-MBIR or indepen-
dent DE-MBIR can be further improved by tuning the parame-
ters for a particular clinical application.

V. CONCLUSION

In this paper, we have presented a JDE-MBIR approach for
DECT reconstruction. The proposed method combines a joint
likelihood model to account for the noise correlation in mate-
rial-decomposed sinograms with MRF regularization, and fea-
tures a physically realistic constraint that ensures nonnegative
X-ray absorptions. We also demonstrate that the JDE-MBIR
method retains a more accuratemodel of the data likelihood than
other decomposition-based statistical iterative methods when
DECT uses fast kVp switching techniques. The experimental
results on phantom and clinical data show that the JDE-MBIR
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Fig. 12. Comparison of FBP, independent DE-MBIR (indep. DE-MBIR), and JDE-MBIR monochromatic images of the GEPP at different energies. From top
to bottom: photon energy at 50 and 130 keV. From left to right: FBP, independent DE-MBIR, JDE-MBIR, difference between JDE-MBIR and FBP, difference
between JDE-MBIR and independent DE-MBIR. Display window for monochromatic images: WW 600 HU and WL 0 HU; for difference images: WW 300 HU
and WL 0 HU. These monochromatic images are synthesized using the reconstructed material densities shown in Fig. 9 based on (18).

Fig. 13. Resolution and noise of the monochromatic images across various energy levels with different reconstruction methods.

method can reduce noise and increase resolution as compared
to the FBP method and the independent DE-MBIR method. We
expect that the improvement in terms of lower noise and higher
resolution brought by the JDE-MBIR method may potentially
reduce the CT dose required for a particular image quality. Fu-
ture investigation will assess how to further improve material
separation performance and investigate potential clinical bene-
fits.

APPENDIX
DERIVATION OF THE SOLUTION

We derive the solution to the 2-D quadratic minimization
problem defined in (48). The optimization problem is given by

where and

We solve this problem by using the KKT condition. The KKT
condition states that a valid solution should satisfy

(50)
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Fig. 14. MTF measured at the cyclic bars of three different spatial frequencies in the monochromatic images across various photon energies. JDE-MBIR produces
higher MTF values than the other two methods at all three frequencies.

Fig. 15. Comparison of the convergence speed of the JDE-MBIR and the stan-
dard single-energy MBIR with the GEPP reconstruction in Fig. 9. The cost for
the single-energy MBIR is scaled such that it reaches the same final cost as
JDE-MBIR.

TABLE II
THEORETICAL DENSITIES OF IODINE AND WATER FOR THE INSERTED
RODS IN THE GSI CONTRAST PHANTOM AS SHOWN IN FIG. 16

where and are the KKTmultipliers. Then we can compute
the solution within four different cases, i.e., ( ,
), ( , ), ( , ), and ( ,

).Within each case, we compute the solution by using the
equality conditions and then test the resulting solution with the
inequality conditions. Since the cost function and the constraints
in this problem are all continuously differentiable and convex,
the KKT condition is both necessary and sufficient [56]. Thus,
a solution becomes our updated value if and only if it satisfies
both the equality and inequality conditions.
1) , . This combination gives the unconstrained
solution, which can be computed from the first equation in
(50) as

(51)

Fig. 16. Top row shows the JDE-MBIR reconstructions of the GE GSI contrast
phantom. This phantom consists of a water phantom base and several cylin-
drical rods, each of which contains certain concentrations of iodine and water.
Display window for water image: WW 600 mg/cm , WL 1000 mg/cm ; for io-
dine image: WW 17.5 mg/cm , WL 7.5 mg/cm . Bottom two rows show the
reconstruction accuracy of FBP and JDE-MBIR for iodine and water.
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Fig. 17. Comparison of FBP, independent DE-MBIR and JDE-MBIR reconstructions for an abdominal clinical scan. From top to bottom: FBP, independent
DE-MBIR, JDE-MBIR, difference between JDE-MBIR and FBP, difference between JDE-MBIR and independent DE-MBIR. From left to right: water density
image, iodine density image, and 70 keV monochromatic image. Display window for water images: WW 300 mg/cm and WL 1000 mg/cm ; for water difference
images: WW 200 mg/cm and WL 0 mg/cm ; for iodine images: WW 17.5 mg/cm and WL 6.5 mg/cm ; for iodine difference images: WW 9 mg/cm and WL
0 mg/cm ; for monochromatic images: WW 400 HU and WL 40 HU; for mono difference images: WW 200 HU and WL 0 HU.
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Fig. 18. Comparison of FBP, independent DE-MBIR and JDE-MBIR performance on monochromatic images of an abdominal clinical scan at various ener-
gies. From top to bottom: FBP, independent DE-MBIR, JDE-MBIR, difference between JDE-MBIR and FBP, difference between JDE-MBIR and independent
DE-MBIR. From left to right: photon energy at 60, 100, and 140 keV. Display window: WW 400 HU and WL 40 HU; for mono difference images: WW 200 HU
and WL 0 HU. These monochromatic images are synthesized using the reconstructed material densities shown in Fig. 17 based on (18).
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Then, we need to test this solution with the following in-
equality conditions:

(52)

2) , . In this case, we solve the optimization
problem on the boundary with . This combi-
nation leads to the following:

(53)

The solution is given by

(54)

This solution needs to be tested with

(55)

3) , . In this case, we solve the optimization
problem on the boundary with . Similarly to
the previous case, this combination gives the solution

(56)

This solution needs to be tested with

(57)

4) , . With this combination, the only feasible
solution is .

In practice, we test the four cases sequentially. Once all the
equality and inequality conditions are satisfied, the solution be-
comes the desired voxel update. This process is shown in Fig. 7.
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