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Nonparametric Extraction of Transient Changes
in Neurotransmitter Concentration

From Dynamic PET Data
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Abstract—We have developed a nonparametric approach to the
analysis of dynamic positron emission tomography (PET) data for
extracting temporal characteristics of the change in endogenous
neurotransmitter concentration in the brain. An algebraic method
based on singular value decomposition (SVD) was applied to
simulated data under both rest (neurotransmitter at baseline)
and activated (transient neurotransmitter release) conditions.
The resulting signals are related to the integral of the change in
free neurotransmitter concentration in the tissue. Therefore, a
specially designed minimum mean-square error (MMSE) filter
must be applied to the signals to recover the desired temporal
pattern of neurotransmitter change. To test the method, we simu-
lated sets of realistic time activity curves representing uptake of
[11C]raclopride, a dopamine (DA) receptor antagonist, in brain
regions, under baseline and dopamine-release conditions. Our
tests considered two scenarios: 1) a spatially homogeneous pattern
with all voxels in the activated state presenting an identical DA
signal; 2) a spatially heterogeneous pattern in which different
DA signals were contained in different families of voxels. In the
first case, we demonstrated that the timing of a single DA peak
can be accurately identified to within 1 min and that two distinct
neurotransmitter peaks can be distinguished. In the second case,
separate peaks of activation separated by as little as 5 min can be
distinguished. A decrease in blood flow during activation could not
account for our findings. We applied the method to human PET
data acquired with [11C]raclopride in the presence of transiently
elevated DA due to intravenous (IV) alcohol. Our results for an
area of the nucleus accumbens—a region relevant to alcohol con-
sumption—agreed with a model-based method for estimating the
DA response. SVD-based analysis of dynamic PET data promises
a completely noninvasive and model-independent technique for
determining the dynamics of a neurotransmitter response to
cognitive or pharmacological stimuli. Our results indicate that the
method is robust enough for application to voxel-by-voxel data.

Index Terms—Dopamine, positron emission tomography, sin-
gular value decomposition.

I. INTRODUCTION

DYNAMIC positron emission tomography (PET) scans
with radiolabeled receptor tracers have been used to

detect the time-averaged effect of the transient elevation
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of an endogenous neurotransmitter in response to stimulation.
In 1995, Morris et al. used a model to predict that the activa-
tion of dopamine (DA) could be detected by estimating binding
of a reversible tracer such as [11C]raclopride using PET [1],
[2]. As DA is released by the presynaptic neuron (i.e., synaptic
DA increases), there is increased competition for binding sites
between DA and radiotracer, and specific binding of the radio-
tracer declines.

Subsequent studies were successful in using PET to detect
and quantify transient changes in DA following the adminis-
tration of drugs [3], [4] or a cognitive or motor task [5]–[7].
Most of the PET methods for detecting changes in neurotrans-
mitter concentration have relied on estimation of parameters of
a compartmental model, and therefore have been parametric.
Apparent change in the compound parameter, binding potential
(steady state ratio of bound to free tracer), has been used most
often [8], [9]. However, our colleagues have shown recently that
this index of change conflates two distinct aspects of neurotrans-
mitter release, magnitude and timing [10]. Extended compart-
mental models have been created to explicitly account for tran-
sient effects of the endogenous neurotransmitter. In one such
model proposed by Endres et al., DA changes are accounted
for by time-varying kinetic rate constants [11], [12]. They also
established mathematical relationships between the measurable
parameters of tracer binding and the DA change. Friston et al.
used a single PET scan design and combined time-dependent
compartmental model analysis with linear statistical modeling
to detect time dependent displacement of receptor ligands [13].
In a similar approach, Alpert et al. linearized a simplified refer-
ence region model of Gunn et al. [14] and allowed select kinetic
parameters to vary in time in order to detect statistically signifi-
cant DA transients [15]. All of the aforementioned studies were
concerned with detection of change in DA, which includes mea-
surement of the magnitude of DA change. However, it is impor-
tant to recognize that previous measurements of magnitude were
a complex average over the whole scan duration. The previous
studies were not concerned with temporal characterization of
the change.

Because the dynamics of drug-induced increases in DA may
be associated with the rewarding properties of drugs of abuse
[16]–[18] there would be great value in being able to recover
the temporal pattern of DA increases in specific brain regions,
or, in other words, in being able to characterize temporally the
change in DA concentration.

A parametric approach has recently been proposed by Morris
et al. [19] to characterize the transient changes in neurotrans-
mitter concentration by extending the standard compartmental
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models of tracer uptake to include a parameterized description
of an endogenous competitor’s transient change. However, a
nonparametric approach has certain advantages. It is indepen-
dent of any assumptions about curve shape that describe the
time-course of the neurotransmitter. In other words, one need
not pre-assume a particular functional form for the change in
neurotransmitter over time.

Singular value decomposition (SVD) has proved to be an ex-
cellent tool in signal analysis to estimate spatially-independent
sources and to extract the signals from noisy data [20]. In func-
tional imaging, SVD is also used in conjunction with principal
component analysis (PCA) in multivariate analysis of brain im-
ages acquired with PET and fMRI [21]–[24]. The only assump-
tion that one must make is that the system is described by a linear
model.

In this work, we describe a SVD-based method for extracting
the time profile of the change in free (as opposed to receptor-
bound) DA concentration using dynamic PET scans acquired in
two conditions: the resting (“R”) state and the activated (“A”)
state (e.g., following pharmacological challenge). The present
study seeks to determine the validity of the method for distin-
guishing distinct neurotransmitter release episodes in time using
voxel-based dynamic data.

II. METHODS

The implementation and testing of our analysis method con-
sists of three main operations: 1) simulation of realistic PET
data based on tracer kinetic parameters previously estimated
from experimental data; 2) algebraic manipulation of both “R”
and “A” state data using singular value decomposition (SVD)
in order to extract components of the PET data that are exclu-
sively related to the neurotransmitter activation; 3) application
of a minimum mean square error (MMSE) filter that applies a
derivative-like operation to the results of the SVD step, 2.

In the SVD step, we enforce a presumed orthogonality be-
tween the signals describing the “R” state and the signals caused
by a DA response in the “A” state. We also assume that the sig-
nals associated exclusively with the “A” state can, in turn, be
entirely explained as linear combinations of distinct temporal
features associated with the time-varying neurotransmitter acti-
vation.

A. Simulated Data

1) Synthetic PET Time-Activity Curves: PET time-activity
curves (TACs) were simulated with a modified version of the
standard 2-tissue compartment model [1] which accounted for
the release of an endogenous neurotransmitter (e.g., DA) and its
competition for available receptor sites with an exogenous tracer
(e.g., [11C]raclopride) (see Appendix, Fig. 8). The duration of
each PET scan session was assumed to be 60 min, and each time
frame was set to 1 min, resulting in data points per sim-
ulated TAC. The tracer kinetics used for this study were those
of [11C]raclopride, a dopamine D2/D3 receptor antagonist. The
model parameter values (see Appendix) describing the tracer ki-
netics were selected by fitting the 2-tissue compartment model
to experimental data acquired in our laboratory. The parameters
for endogenous DA kinetics were chosen from literature [2].

We refer to all these model parameter values as our canonical
values. Multiple sets of noisy TACs were generated by repeat-
edly solving the model with randomly varying tracer parame-
ters, and adding independent
noise realizations. For each generated TAC, was chosen
from uniform distributions on an interval 10% around each
canonical value. The association and dissociation rates ( ,

) of DA at the D2/D3 receptors were not allowed to vary [2].
The resulting curves can be thought of as TACs from non-
identical regions (i.e., voxels) in the brain with a high amount
of specific binding of the tracer to the receptors. In any data set,
half the TACs were in the “R” state and half were in the “A”
state. In the “A” state, the free DA concentration was
time-varying.

In the present work, we considered two scenarios for the
change in the “A” state: a spatially homogeneous pattern of DA
release (i.e., the same time profile for all voxels) and a spa-
tially heterogeneous pattern (i.e., different time profiles at
different groups of voxels). In the “R” state, the concen-
tration was kept constant at a baseline value of 100 pmol/ml
throughout the scan. The tracer parameters were chosen inde-
pendently in each condition (“A” or “R”). Gaussian noise was
added to the curves according to the model

, where is the variance at a given
time point of the simulated PET image data. repre-
sents the activity concentration at time , and is the length
of the time frame. The parameters were esti-
mated from voxel-based TACs derived from our experimental
data acquired during human PET scans with [11C]raclopride.
Details are presented in the Appendix C. Using the fitted noise
parameters, , we were able to generate realistic noisy data with
a noise level matching that of our experimental data at the voxel
level. The % noise at 60 min reached approximately 25% of
the mean. At the maximum value of the TAC, it was approxi-
mately 6.3% of the mean. Since PET measures the total radioac-
tivity, the TACs were in units of activity concentration (see Ap-
pendix B). All TACs were converted from activity/volume units

to molar concentration units (pmol/ml) and by cor-
recting for radioactive decay and dividing by the specific ac-
tivity, SA measured at the time of tracer injection.
For the sake of simplicity, we will refer to these curves in molar
units as “PET signals” for the rest of this text. The signals de-
scribed in this section were also called “test” signals since we
used them to test our method.

2) Null Data: We sought a means of assessing the statis-
tical validity of our recovered signals. To determine the statis-
tical significance of any recovered signals we needed to compare
them with recovered signals in the absence of DA activation. We
simulated additional “R” and “A” PET signals using the same
canonical values for tracer kinetics as for the test signals, except
that the was held to 100 pmol/ml throughout both scans. In
this case, the data under the two conditions differed only in their
noise realizations and in their tracer kinetics. The PET signals
generated in this way were called null data. The signals
extracted from the simulated null data were referred to as null

signals.
3) Endogenous Input Curves, : The noiseless time

course of , , during the activation was simulated
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Fig. 1. An example of simulated TACs from 25 different voxels created for “R” and “A” conditions. The TACs were generated with randomly varying tracer
kinetic parameters (for [11C]raclopride). Each curve has 60 data points, acquired over 60 min, with 1 min time frames. The data were simulated using the FDA(t)
input curves shown below each set of TACs. The curves in the top panel of (a) and (c) represent the simulated data for the unimodal DA activation case and the
curves in the top panel of (b) and (d) display the simulated data for the bimodal activation study. The TACs on the left [upper plots of (a) and (c)] were generated
under the “R” condition and the curves on the right [upper plots of (b) and (d)] were generated under the “A” condition. The TACs are not corrected for radioactive
decay. The flat lines [bottom of (a) and (c)] displayed under the “R” state TACs reflect the assumption that FDA is constant (we used 100 pmol/ml) throughout the
rest scan. In the “A” state the FDA(t) curve consisted of either a single gamma-variate function [bottom panel of (b)] for the unimodal activation case, or of two
overlapping gamma-variate functions [bottom of (d)] with two peaks separated by 15 min for the bimodal activation.

using gamma-variate functions as follows:

(1)

where is either 1 or 2 depending on whether the response
is unimodal or bimodal, respectively. is the offset param-
eter (baseline DA concentration), defines the curve’s power
ascent, defines the curve’s exponential descent, are the
magnitude coefficients, and represent the delay between the
start of the scan and the initiation of the th response. The ratio

defines the time at which the curve reaches its peak value.
We introduce the notation for the en-
tire set of DA parameters. In all simulated cases, the responses
start after the [11C]raclopride injection . To simulate a
homogenous DA activation we used either, a unimodal response
[see Fig. 1(b)], or a bimodal response [see Fig. 1(d)] with an
offset parameter. The values of for the two types of re-
sponses are given in Table I. The rationale for the use of the
gamma-variate function was based on observations from micro-
dialysis on nonhuman primates and rodents that have shown var-
ious DA responses characterized by a rise and then a fall in DA
concentration, reasonably described by a gamma-variate func-
tion [25]–[27].

TABLE I
TRUE PEAK POSITIONS AND THE MEAN DETECTED POSITIONS FOR TWO

DIFFERENT SIMULATED CASES OF SPATIALLY HOMOGENEOUS DA ACTIVATION.
THE STANDARD DEVIATIONS ARE GIVEN IN PARENTHESIS. THE PARAMETERS

[SEE (1)] THAT DEFINE THE TRUE F RESPONSES ARE GIVEN FOR EACH

CASE

To simulate an heterogeneous pattern of DA activation across
voxels, the was simulated as follows:

(2)
where can take on different values corresponding to different
classes of PET signals. In our simulations, we combined four
classes of signals, three differed in their time delay
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TABLE II
TRUE PEAK POSITIONS AND THE MEAN DETECTED POSITIONS FOR THREE DIFFERENT SIMULATED CASES OF SPATIALLY HETEROGENEOUS DA ACTIVATION. THE

STANDARD DEVIATIONS ARE GIVEN IN PARENTHESIS. THE PARAMETERS [SEE (2)] THAT DEFINE THE TRUE F RESPONSES ARE GIVEN FOR EACH CASE

and the fourth was comprised of only the concentration
. The first three classes represent true DA activation.

The fourth class simulates the null DA activation. The parame-
ters of used in our simulations are given in Table II.

4) Exogenous Input, : The delivery of tracer to the
tissue is governed by the time-varying concentration of tracer
in the plasma compartment, [see Appendix, (A1)–(A3)],
also known as the exogenous input function. For our simula-
tions, we used bolus delivery as our exogenous inputs. Data
from actual blood samples measured during experiments with
[11C]raclopride (described in the next section) were used. Al-
though the radioactivity concentration was measured in arterial
blood, realistic (molar) plasma curves were constructed from
arterial blood curves by assuming a specific activity (SA) value
of 1 and a constant hematocrit of 39%.

B. Experimental Test Data

The experimental data that we used to test our method were
acquired from one human subject in an ongoing research study.
The experimental protocol is described in detail elsewhere
[28]. In brief, the first scan was in the “R” state: the subject
was scanned while resting (eyes open) in the scanner. The
second scan was an “A” scan: the subject was shown visual
cues related to alcohol, exposed to odors of alcohol bever-
ages, and administered alcohol intravenously with the intent
of provoking a dopaminergic response. Dynamic PET data
were acquired (ECAT EXACT HR+ PET scanner), following
administration of 15.93 mCi (first scan) and 16.64 mCi (second
scan) of [11C]raclopride. The tracer specific activities at time
of injection were 1.173 and 1.234 ,
respectively. The cues were shown starting 2 min before the
tracer injection. The intravenous infusion of alcohol started at
3 min post-[11C]raclopride injection, reached the target of 60
mg% breath alcohol concentration (BrAC) after 10 min and
was clamped at this BrAC ( 5 mg%) for 30 min [29], [30]. The
total duration of each dynamic scan was 60 min, and was made
up of 61 acquisition frames (10 30 s, 50 1 min, and 1 5
min). The images were reconstructed using filtered backprojec-
tion with a 5 mm Hanning filter. Full-width at half-maximum
(FWHM) was 9 mm. The subject also received a T1-weighted
MR image with a 1.5T GE Echospeed LX scanner. The PET
images were motion-corrected using the SPM2 package by

1http://www.fil.ion.ucl.ac.uk /spm

co-registration of each image to an early (10 min) summed
image. The summed PET image was then co-registered to the
subject’s MR scan and the resulting transformation matrix was
applied to each PET image. The MR image was normalized
to a standard MNI space and the resulting transformation
matrix was applied to the motion-corrected, co-registered PET
data. The final voxel size of the transformed PET images was

. Twenty-four spherical regions of
interest (ROI) were drawn on three major regions of the basal
ganglia: the Nucleus Accumbens (NAcc) (12 ROIs, 264
each), the putamen (6, 648 ), and the caudate nucleus (6,
648 ), divided equally between the two hemispheres of
the brain. NAcc is known as an area of the brain prone to DA
activation in response to rewarding stimuli [27], [31], [32].

The 24 ROIs were then projected onto the 61 dynamic PET
images. TACs were constructed using the average signal in each
ROI over each timeframe. The TACs were decay corrected and
then converted to molar quantities. All data were interpolated
using cubic splines to 1 min frames since, as currently config-
ured, the present application requires data sampled at equally-
spaced time intervals. Usable curves were limited to the first 55
min of scan duration since the last image in the dynamic series
was taken over 5 min, and could not be used.

In addition to the method described in the next section, the
time profile was estimated from a model-based method,

, as introduced in [19]. Briefly, the method em-
ploys the enhanced tracer kinetic model (Appendix, Fig. 8) that
describes the uptake of a D2/D3 tracer in the presence of a
time-varying change in DA. This change is assumed to be de-
scribed by a gamma-variate function, whose parameters are es-
timated from fitting the model to all the data (i.e., both condi-
tions) simultaneously using a constrained, weighted objective
function. As with the current method, requires data ac-
quired during rest and activation (transient DA change) condi-
tions.

C. Mathematical Algorithm

1) SVD Analysis: We use convenient matrix notation to rep-
resent the data. The “A” and “R” PET signals were collected,
respectively, into two matrices and . In each matrix,
the number of columns, M, equals the number of PET signals.
The number of rows, , equals the number of time samples in
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each signal. The SVD [20] of is given by the following matrix
equation:

(3)

where is an orthonormal matrix with columns
representing the left singular vectors in the “R”-signal space,

, is a orthonormal matrix with
columns representing the right singular vectors in the time
samples space and is a diagonal
matrix containing the singular values of , .

We assume, without loss of generality, that the number of sig-
nals is smaller than the number of samples (i.e., ). Fol-
lowing the Matlab convention, we used the economy size de-
composition, which means that only the first columns of ma-
trix are computed, and is , instead of commonly
seen .

After decomposing the matrix according to (3), we form
a new lower dimensional representation of , designated

, which is an matrix whose columns con-
tain the most significant singular vectors in the “R”-signal
space, . A scree plot [33] of relative variances

is used for determining the number of sig-

nificant vectors, , to be retained in matrix . Next, we
find the vectors that are unique to the “A” state. Effectively, we
subtract the “R” state contribution from the “A” state signals,
by projecting onto the subspace described by the K orthonormal
vectors of the reduced “R” space and then subtracting
that projection from matrix, . The result is a new
matrix

(4)

where is the identity matrix . The matrix is further
decomposed as

(5)

where and are matrices containing the left and right sin-
gular vectors, , and ; is the
diagonal matrix containing the singular values. We will refer
to the signals held in as the difference signals. The matrix

, representing the difference between rest and activation, is
further replaced by the closest rank- matrix to in a least
squares sense that would only retain the components associ-
ated with activation while eliminating those considered to be
noise. The criterion for choosing the components was, again,
based on the analysis of the scree plot of relative variances

. The new reduced rank matrix is given
by

(6)

is an array that retains the most significant com-
ponents of the PET signals that can be attributed to activation.

Matrices, , , and are truncated versions of, ,
, and , obtained by retaining only the largest singular

values and the singular vectors that correspond to them. We will
refer to the signals held in as the activation signals.

2) Scree Plot Analysis: Following the decomposition in
(3) and (5), we used the scree plot combined with a statistical
method for objectively deciding which components represent
the structured signal and which are associated with noise.

The scree plot, which sorts the components’ relative vari-
ances in the order of importance, typically drops, then reaches
a turning point and finally levels off. Using a semi-logarithmic
scale, we retained the number of components preceding the
turning point and discarded the rest, which we considered
to represent noise. In order to determine the position of the
turning point, we employed a novel discrimination method. We
assumed that the variances associated with the noise should
follow a straight line in the scree plot and treat the variances
associated with the structured signals as “outliers” from that
line. Let , be the base 10 logarithm of relative
variances, represented on the scree plot. The following steps
were followed to determine the number of significant singular
values.
Step 1) Fit a line to the last (smallest) values,

;
Step 2) Use the regression line parameters to predict the

value of the ( - )th component, ;
Step 3) Calculate a -score for the ( - )th component;

where are the values predicted by the regres-
sion line.

Step 4) If declare an outlier. This is
equivalent to saying that the does not follow
the linear trend set by the last components (i.e.,
those associated with the noise).

Step 5) Increase by 1 and repeat Step 1) to Step 4)
The first components that satisfy the -score criterion are

taken to be significant. We used a starting value for equal to
, rounded up towards nearest integer.

3) MMSE Filter Design: The signals asso-
ciated with each voxel and held in the columns of matrix
must be further processed to yield the desired output, namely
the time-courses of change in free endogenous dopamine,

. Preliminary work with idealized curves (e.g.,
a delta function) led to the observation that the activation
signals are related to a time integral of at every
voxel. In other words

(7)

where is a scale factor that depends mostly on the
tracer kinetic parameters. The integration in (7) is an operation
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on column, , of matrix . Said another way, differentia-
tion of the columns of with respect to time yields the time
profiles of at each voxel included in the analysis. Since
an increase in DA concentration leads to a decrease in tracer
binding, a change of sign is also required. With this in mind, the
estimates of the are formally given up to a scale factor
by

(8)

where is an matrix with the columns

, representing the estimated signals.

We note that our estimate does not contain any in-
formation on baseline concentration of in the “A” state
since the baseline DA level is common to both “R” and “A”
states. Therefore, must be considered an estimate
of the change in . Theoretically, this change could be
either negative or positive. In order to perform the action in
(8), which consists of a differentiation-like operation plus a
change in sign, the signals in the columns of matrix were
filtered with a MMSE linear filter [34]. The filter minimizes
the mean square error between the desired signal and

the estimated signal, through the selection of optimal
filter parameters, . The filter parameters, , are given by the
following vector:

(9)

where represents the value at the discrete time, , of
the desired signal from a voxel , and

is the value at time s of the estimate from the same
voxel, is a row vector made from samples in a symmetric
window

surrounding the sample , of the signal associated
with the voxel , and is the total number of time samples
from all signals used for the filter training. The filter vector
contains parameters, where is half the width of the
filter. The MMSE filter parameters were derived from a training
data set consisting of solutions of the SVD step ( signals)
and noiseless, but fully characterized functions (see
below).

D. MMSE Filter Training

Training of the filter with simulated data was required to se-
lect . The training data consisted of 10 000 ( , )
signal pairs. This required noisy simulations (trials)
of (“A” and “R”) PET signal pairs. We refer to these
signals as training signals, to distinguish them from the test sig-
nals, explained earlier. The training PET signals were made of
60 (i.e., ) 1-min time samples. Similar to the analysis
of the test data with homogeneous activation, all noisy PET
signals were solutions of the model (Appendix, Fig. 8) using
a noiseless, analytically described curve. The

curve was a unimodal function given by parameters . With
each trial, a unique set of parameters , were drawn from a
uniform distribution around the mean values:

. The
resulting set of unimodal curves had different heights
and widths spanning the scan duration. The kinetic parameters
used to generate PET data for filter training were drawn from
the same distribution as the parameters used for the synthetic
PET data used as test signals. We chose the tracer parameters to
simulate realistic intrasubject and intersubject variability. In ad-
dition to the 10% within trial (akin to intrasubject) variability
for the tracer kinetic parameters, , we introduced an ad-
ditional 20% inter-trial (akin to intersubject) variability. The
activation signals, associated with activation were
extracted from the simulated PET signals by using (3)–(6). All

signal estimates and their desired counterparts, ,
were used to estimate the optimal filter parameters, [see (9)].
The number of trials, , was chosen to be large enough to en-
sure that the filter was not undertrained. An estimated filter with
a fixed kernel size was applied to all test signals presented in the
Results section. Adaptive kernel sizes were used at the ends of
each signal to avoid having to pad the signal.

E. Correlation Plot Analysis

In the case of simulations with heterogeneous DA activation,
we also used correlation scatter plots as an indication that each
of the extracted signals was associated with a unique temporal
feature [35]. The signals were sorted based on similarity in tem-
poral pattern shown by the left singular vectors,
from (5). The correlations of the first singular vector, with
each signal , , were plotted versus the corre-
lations of the second singular vector with each signal ,

.

F. Effects of CBF Change

We also tested for evidence that the extracted signals could
be caused by a decrease in CBF, absent any true DA activa-
tion. If CBF is lower during the “A” scan, and , will be
lower and may cause a false positive result. In order to asses
the impact of a drop in CBF on our ability to detect changes in

, we simulated a “flow-change only” case. In this case, the
“A” PET signals were characterized by a 20% drop in the mean

parameter and 10 % drop in mean starting at 16.5 min
after the beginning of the scan, but no DA change. and
are both functions of CBF. Although it is unlikely that and

would change disjointly, it has been shown previously that
change in and without changing the distribution volume,

, has little or no effect on PET curve shape [6],
[15]. Nevertheless, to check the effect of equal change in ,

, we simulated a physiologically realistic case in which ,
both dropped by 15%, i.e., CFB change without change.
A multiple two-sample, one-sided -test at 0.05 significance

level was employed to determine whether the pseudo
signals, recovered in the presence of CBF change, could be dif-
ferentiated from null signals recovered in the absence of CBF
change. A group of 25 “R” and “A” simulated PET signal pairs
along with their null data counterparts were used for testing.
The kinetic parameters, , for simulations were chosen
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Fig. 2. The recovered activation signals from 25 different simulated PET TACs, representing different voxels, shown in Fig. 1. The upper panels [(a) and (b)]
display the recovery of unimodal activation signals and the lower panels [(c) and (d)] show the recovery of bimodal activation. The curves on the left are the
rank-L approximation of the activation-only signals, X(L), L = 1 (before MMSE filtering) given in arbitrary units (a.u.). The scree plots of relative variances in
orthogonal space of the “activation-only” signals, X (log scale) are shown in the inset. The curves on the right are the estimated signals F̂FF (t) (in a.u., left-hand
y-axis) (post MMSE filtering). The thick dotted curves (in pmol/ml, right-hand y-axis) are the true FDA(t) signals used to create the simulation of the activation
condition after subtracting the basal concentration. The central 50 min of the recovered signals are displayed in the figure. The thin dotted curves represent the
error envelope, extending two standard deviations (point-by-point) above and below the mean estimated F̂FF (t) curve for the period 5-55 min.

from uniform distributions on an interval 10% around each
canonical value. The mean of the estimated signals
was compared point-wise (for every time frame) with the mean
of similarly estimated null signals. The number of de-
grees-of-freedom of the statistics was 23 (25 voxels–2 sam-
ples). The alternate hypothesis was that some part (i.e., time

points) of the mean of the pseudo signals caused by the
CBF change should be statistically larger than the mean of the
null signals. To be able to perform the -tests we forced
the retention of at least one component in the activa-
tion signals in all cases, disregarding the result of the scree plot
analysis.

III. RESULTS

A. Recovery of Homogeneous DA Response From Multiple
PET Signals

Fig. 1 depicts an instance of 25 noisy TACs simulating the
[11C]raclopride kinetics for a study with spatially uniform,
time-varying . The top plots represent the TACs under
the “R” Fig. 1(a) and “A” Fig. 1(b) conditions created with
unimodal activation. The corresponding , used
as an input to the compartmental model (see Appendix) is
shown below each plot. In the left-hand side bottom half of

Fig. 1(a), the straight line represents the assumption that under
the “R” condition, DA is constant throughout the scan and is
equal to the baseline concentration (100 pmol/ml). The curve
in the right-hand side bottom half of Fig. 1(b) illustrates the
DA curve used to simulate the “A” state PET signals. DA
elevation was initiated at 16.8 min after the start of the scan
(i.e., ) and reached a peak value at 20.7 min.
At its peak, the increase in DA caused 56% occupancy of the
receptors. The occupancy is conventionally reported as relative
to the available number of receptors at rest. The lower TACs
in Fig. 1 correspond to the “R” Fig. 1(c) and “A” Fig. 1(d)
signals created using bimodal (shown at bottom, right).
In this case, in the “A” state, the DA elevation began 16.8 min
after the start of the scan, reached its first peak at 20.2 min, and
its second peak at 35.2 min. The occupancy of the receptors
reached 60.2% at the first DA peak and 57.2% at the second
peak.

Fig. 2 shows the corresponding estimation of DA signals in
the two cases of spatially uniform activation. The curves in
Fig. 2(a) represent activation signals extracted from the 25 pairs
of PET signals of the type shown in Fig. 1(a) and Fig. 1(b).
In both cases of homogeneous DA response, it was necessary
to retain either one or two components of the decomposed “R”
signals. One or two components typically accounted for greater
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than 99% of the total variance in the matrix. The bar graph
(inset Fig. 2(a)) shows the relative variance of each of the com-
ponents that result from the decomposition of the difference ma-
trix in (5). Analysis of the bar graph indicated that one compo-
nent should be retained in the activation signals for
these data. We note that the retained component accounted for
44% of the total variance in . Fig. 2(b) shows the 25 esti-

mates of DA curves, following filtering of the 25 curves
shown in Fig. 2(a). A MMSE filter with 10 min kernel
width was used. Based on 100 trials of this case with 10% vari-
ability in tracer kinetics within a trial and 20% between trials,
the estimated DA peak time was 21.7 1.2 min. The true DA
change (true ) is displayed, for com-
parison, as the thick dotted line in Fig. 2(b). On the same figure,
the thin dotted curves represent the error envelope, which ex-
tends two standard deviations above and below the mean esti-
mated DA curve for the period 5–55 min. Fig. 2(c) shows the
activation signals derived from the 25 pairs of PET signals cre-
ated with bimodal activation [see Fig. 1(c) and (d)]. Again,
the bar graph [inset Fig. 2(c)], indicates that only one compo-
nent need be retained from a decomposition of the dif-
ference signals. The retained component accounts for 73.1% of

the total variance in . The curves in Fig. 2(d) are the
signals recovered by filtering the signals in Fig. 2(c) with a 10
min wide MMSE filter. The estimated times of the early
and late peaks were 22.3 1.6 min and 35.9 1.6 min, respec-
tively. The true DA change curve [thick dotted, Fig. 2(d)] is also
shown for comparison.

These figures suggest that we are able to extract a DA signal
from dynamic PET data in brain regions in the case where all
regions contain a common DA signal, whether unimodal or bi-
modal. The estimated time of the peak(s) did not vary by much
across different voxels (regions) within a given trial (25 “A”
25 “R” signals) even though each voxel was simulated with dif-
ferent tracer kinetics. We note that within each trial, the esti-
mated time interval between peaks for the recovered bimodal
DA signal was preserved. The estimated peak times for these
two cases are summarized in Table I.

B. Recovery of Heterogeneous DA Response From Multiple
PET Signals

Fig. 3 shows results for analysis of 100 PET signals under
both “R” and “A” conditions for which the “A” state was simu-
lated with a “robust” but realistic DA response (peak-to-baseline
ratio 8.31:1). The response was initiated at either 20, 25, or 30
min for each set of 25 signals (Table II). The remaining 25 PET

signals were null data. The 100 estimates of DA curves,
are the result of filtering with a 10 min wide filter.

The MMSE filter was the same as that used to analyze the
homogeneous activation case. The top three plots [(a)–(c)] de-
pict the extracted DA signals overlaid on their corresponding
(dotted) true input DA change curves. The bottom plot [(d)] rep-
resents the extracted signals from the null data simulations. On
this plot, the null is represented as a flat dotted line passing
through zero (no DA change). Based on 100 trials of 100 voxels
each, with 10% variability in tracer kinetics within a trial and
20% between the trials, the mean estimated peak times of the

Fig. 3. Example of recovered change in free DA (F̂FF (t)) signals (solid
curves, in a.u., left-hand y-axis) from 100 different simulated PET TACs
created for “R” and “A” conditions. The TACs were generated with randomly
varying tracer kinetic parameters for [11C]raclopride. three sets of 25 “A”
state TACs were created with a unique F (t) gamma-variate function (thick
dotted lines, in pmol/ml, right-hand y-axis) rising from baseline value at 20,
25, and 30 min, respectively. 25 of the “A” state TACs were created with no
DA activation. The signals recovered from the voxels with no activation (“null
F signals”) are plotted in the bottom panel. The plots display the central 50
min of the recovered signals.

DA curves were 26.0 0.7 min, 30.7 0.8 min, and 34.4 0.9
min, respectively. By comparison, the true peak times were 23.8
min, 28.8 min, and 33.8 min. Fig. 4 shows the partition of vari-
ances as determined by SVD in (3) and (5) of the rest signals, ,
and difference signals, . The scree plot in Fig. 4(a) shows the
relative variances in the decomposed rest signals, . Based on
this plot and the algorithm described in the Section II-C, we re-
tained components, which accounted for more than 99%
of the variance in . In Fig. 4(b), the bar graph shows the contri-
butions to total variance of the difference signals. Based on
this graph, the activation signals were constructed with

significant components. These components accounted
each for 44.7%, 13.6%, 4.7%, and 2.9% of the total variance,
respectively.

To demonstrate that distinct families of signals can be reli-
ably differentiated, we present a correlation plot for this case.
Fig. 5 shows the correlations of signals with the first sin-
gular vector, versus the correlations of all signals with
the second singular vector, . Note that the clusters allow us
to sort the signals according to their distinct temporal features.
The 25 recovered signals corresponding to the null signals
clustered separately from the signals representing true DA acti-
vation. The null signals represent temporal patterns not related



CONSTANTINESCU et al.: NONPARAMETRIC EXTRACTION OF TRANSIENT CHANGES 367

Fig. 4. Scree plots (logarithmic scale) showing the partition of variance of sim-
ulated, (a) rest signals,R and, (b) of activation-only signals,X. Variances cor-
respond to the decompositions leading to the signals shown in Fig. 3. Note three
largest singular values [shown in (b)] needed to describe activation signals made
up of three different peak times. The fourth singular value accounts for the dif-
ference in the initial tracer uptakes between the “R” and “A” scan.

Fig. 5. Correlation of estimated activation-only signals, X, with the first sin-
gular vector (component), u versus that with the second, u for the sim-
ulated case with the results presented in Fig. 4. The clusters correctly identify
four types of temporally distinct components of the data shown in Fig. 4 three
activation profiles (corresponding to top three panels) and one family of null
F signals. Peak 1 refers to early, peak 2 refers to middle, and peak 3 refers
to late peaking F (t) signals.

to DA activation. This example suggests that we are able to dis-
criminate between voxels that display temporarily distinct DA
activation patterns, including differentiating bona fide activation
from absence of activation.

Two more cases (see Table II) of simulated spatially hetero-
geneous activation were considered. The second case, deemed
“mild” DA activation (Case 2, Table II), used true DA curves of
lower magnitude (peak-to-baseline ratio 3.45:1) than in the first

Fig. 6. Example of recovered change in free DA (F̂ (t)) signals (solid
curves, in a.u., left-hand y-axis) from 100 different simulated PET TACs
created for “R” and “A” conditions. The TACs were generated with randomly
varying tracer kinetic parameters for [11C]raclopride. three sets of 25 “A”
state TACs were created with a unique F (t) gamma-variate function (thick
dotted lines, in pmol/ml, right-hand y-axis) rising from baseline value at 20, 25
and 30 min, respectively. Twenty-five of the “A” state TACs were created with
no DA activation. The signals recovered from the voxels with no activation
(“null F signals”) are plotted in the bottom panel. The plots display the
central 50 min of the recovered signals. The vertical lines mark the location of
the mean estimated peak times for each distinct group of five signals.

case (described in Figs. 3–5). The 100 estimates of DA curves,

, following filtering with a 10 min wide filter, are shown
in Fig. 6. In this case, we retained significant compo-
nents in the activation signals. The retained components
accounted each for 27.4%, 8.5%, and 4.6% of the total variance,
respectively. The fourth component, which accounted for 3.3%
of the variance, was not retained. A correlation plot (not shown)
of signals with the first singular vector, versus the
correlations of all signals with the second singular vector,

did not separate the signals into distinct clusters.
A third case (Case 3, Table II), also of “mild” DA activa-

tion, was created from DA curves separated by 10 min. In this
case, we retained components in the activation
signals with the components accounting for 24%, 11%, 5.9%,

and 3.9% of the total variance ( estimates not shown).
As in the second case, a correlation plot (also not shown) did
not present a clear separation between signals representing dis-
tinct patterns of activation nor between those signals and no re-
sponse. The first two recovered DA responses were temporarily
distinct, while the third response, occurring late in the scan was
not clearly distinct from the cluster representing the null signals.
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C. Effects of CBF Change

The apparent activation caused by an unequal drop in and
(decrease in ) values proved to be significant

between 16 min and the end of the scan (i.e., during the entire
period of altered blood flow). By contrast, any apparent activa-
tion caused by an equal drop in both and (no change in

) was not statistically significant (data not shown). It is im-
portant to note that the analysis of the scree plot according to
the procedure described in the Methods indicated that no com-
ponent should be retained in the activation signals for both the
null case and the case of no change in . In contrast, the anal-
ysis of the case with decrease in revealed one significant

component associated with the pseudo signals.

D. Experimental Results

The analysis of our human PET data set revealed two major
components in the difference signals. All NAcc and caudate re-
gions in the left hemisphere and all putamen regions in the right
hemisphere produced a distinct and similar response. An ex-
ample of such response is shown in Fig. 7. The recovered DA
signal shown is from the left NAcc of the brain of a human
subject undergoing IV alcohol infusion after being presented al-
cohol cues. The MMSE filter that was used previously with the
simulated data was also applied to the human activation signals.

The curve (dashed line) recovered by [19] is
presented as percentage of the baseline value, and is shown for
comparison with the result of the present nonparametric method.
Note that the time of the peak response detected with the non-
parametric method precedes the model-based finding by about
2 min. This difference is consistent with test results based on
applying both methods to simulated data. In the current paper
a bias of about 1 min was found in the recovery of peak time
of a single DA response, whereas showed a bias of
about 3 min when applied to comparable test data [36]. The
model-based method produces a smooth prediction of
because it specifies a functional form that is smooth. We also
note a few smaller negative peaks that could represent theoret-
ically either a decrease in dopamine concentration or just the
effect of increased noise during the late part of the scan.

IV. DISCUSSION

In this study, we demonstrate a new application of singular
value decomposition to extract temporal patterns of neurotrans-
mitter change from pairs of dynamic PET data sets acquired
under different conditions. Our long term goal is to recover tem-
poral features of the response of a neurotransmitter to a drug
challenge. The system of a neurotransmitter in competition with
a PET tracer at a limited number of binding sites is inherently
nonlinear; nevertheless the application of a linear technique ap-
pears to be a fruitful exercise. By making use of two PET scans,
we make the implicit assumption that the “R” PET signals con-
tain all the information in the “A” signals that is not related to
DA activation. Using linear algebra, this assumption was imple-
mented by retaining the components of the “A” signals that are
orthogonal to the “R” subspace determined by the SVD of the
R signals.

Fig. 7. Estimate of alcohol-induced F̂FF (t) in a human subject’s nucleus ac-
cumbens (solid curve, with open circles, in a.u.). Overlaid dashed curve is the
F (t) estimate using a parametric approach (ntPET) [19]. The parametric
approach yields data in terms of fraction of baseline (right-hand y axis).

We determined that the difference signals must be propor-
tional to the integral of the time course. The major com-
ponents of the difference, referred to as activation, suggested
that a derivative-like operator applied to the activation signals
would provide a good approximation to the profile. The
need for a derivative can also be inferred from previous simu-
lation studies of 11Craclopride uptake by Endres and Carson
[11], [12]. They demonstrated that the decrease in tracer con-
centration in the tissue due to the binding of DA to receptors
is linearly proportional to the integral of the curve. In-
stead of a simple derivative, we chose to design an MMSE filter
to perform the derivative-like operation without amplifying the
noise. The advantages of using a MMSE filter are that it can be
designed by training with data that behaves in a predictable way,
and it performs well on noisy data. The scale of the MMSE filter
is largely dependent on the choice of kinetic rate constants for
the simulation of training data and less on the scale of the
functions. Ideally, the filter would need to be retrained if it were
to be applied to signals from a displaceable tracer with kinetics
substantially different than those of [11C]raclopride.

A. Recovering Neurotransmitter Timing (Homogeneous
Activation)

We first tested our algorithm on a simple case in which a
small group of simulated voxels in the “A” condition were char-
acterized by a single DA response. The simulated voxels took
into account intrasubject variation in PET tracer kinetics. De-
spite this variation, we were able to recover takeoff and the
peak times precisely. Two peaks of a bimodal DA pattern could
also be recovered precisely. In the bimodal case, both the time
interval between the peaks and the ratio of their heights were
preserved. The observed variance in the detected peak times ap-
pears to be introduced by the noise and not by variation in tracer
kinetics. On one hand, analysis of simulations containing kinetic
variation but no noise produces variation in scale but no varia-
tion in the peak time across voxels. On the other hand, noisy
data with unchanging tracer parameters produces variable peak
times across voxels. These findings suggest that the method will
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be robust in the face of naturally occurring variation in tracer ki-
netics across brain regions.

B. Heterogeneous Timing Recovered

We also demonstrated, in a less idealized scenario, that one
can discriminate and identify multiple different time-varying
DA responses. In fact, at the noise level present in our simu-
lations, DA responses separated by as little as 5-min intervals
could be distinguished. In separate, noise-free simulations, not
reported in this paper, responses separated by as little as 1 min
could be separated. There was a consistent bias between the
true and detected peak times and this bias appears to be largest
at early times. Further investigation is needed to determine the
source of this bias. In the case of strong DA activations sepa-
rated by 5-min time intervals, a correlation plot was definitive
in identifying temporarily distinct peaks. Mild signals that were
inadequately spaced in time could not be definitively separated
via the correlation plot. However, in all three cases of hetero-
geneous activation, our analysis recovered groups of DA peaks
that were easily distinguished visually.

C. No Absolute Scale Recovered

We were unable to recover the absolute scale of the
change. The effect of the DA change on the PET measurement is
due to competition between the DA and the tracer. Competition
is a bimolecular and saturable process which is inherently non-
linear [see interaction term in (A3)]. Under conditions of pro-
longed receptor saturation we cannot hope to recover the proper
scale of the signal. Below saturation, by using the MMSE
filter, we had hoped to recover the scale of the . Unfortu-
nately, the MMSE filter itself is a function of tracer parame-
ters of the training set [expressed in (7)]. Applying the proper
training set would require a priori knowledge of the true tracer
parameters which, in practice, will not be known. The filter used
for the results in Fig. 2 and 3 was designed from training data
whose tracer parameters were taken from the same distribution
as the test data (e.g., Fig. 1). This explains why our recovered
DA signals appear properly scaled. Nevertheless, it appears that
DA timing information is preserved.

In simulations, we used a larger value for kinetic parameter
than that reported in literature [6],

[37], which is around 0.1 ml/min/g. We did so to be consistent
with our experimental data. However, the main effect of is
to scale the entire TAC; it is not related to the relative changes in
binding caused by DA activation [12]. By a simple analysis of
(4) we can asses that will impact the scale of the difference
signals, , mainly through its effect on PET signals contained
in matrix . The matrix has norm 1 and it is
not expected to impact the scale of , as much as . Following
this argument, we can infer that if we use a lower value, the
recovered signal would only be scaled down. In fact, we
tested this hypothesis for the unimodal case by simulating with
a value of of 0.092 ml/min/g (as in [6]) and keeping the other
kinetic parameters as described herein. We were able to recover
the same shape of response and the timing as in the example
shown in Fig. 2(b). However, as expected, the magnitude of the

signal was underestimated with respect to the true. We

also note that our value for was compa-
rable to that in literature [6], even though one might expect that,
an estimation that produces a large value for would produce
a high value for . One possible explanation for high but
moderate is that we did not account for nonspecific binding
when we modeled our TACs.

In separate simulations, we have tested the case of two scans
differing in injected doses by a factor of 2. The scale of the re-
covered signals remained unchanged. This demonstrates that the
estimation of the difference signals is unaffected by a difference
in the injected doses between the “R” and “A” scans.

D. Blood Flow Changes Will not Cause False

We specifically addressed possible confounds that could be
caused by changes in mean CBF between the “R” and “A”
scan. Previous studies with single photon emission computed
tomography (SPECT) have reported reductions in blood flow in
several brain regions, following administration of cocaine [38],
[39]. Volkow et al. demonstrated reduced blood flow in the cere-
bellum following acute alcohol intoxication [40]. If such find-
ings of decreased blood flow were to be demonstrated in DA
rich striatal regions, then these might represent a possible con-
found. To address our concerns, we investigated the possibility
of false findings being caused by changes in CBF. We showed
that simultaneous but unequal drops in , and from “R” to
“A” states, may lead to false responses. This result is con-
sistent with other findings [6], [19], [41]. Nonetheless, as others
have stated, a transient change in is physiologically implau-
sible. When we tested a more plausible case, of equal drop in

and , we detected no significant signal.

E. Advantages of the Method

A major advantage of our approach is that it is data driven.
We assume that the difference between the “R” and “A” condi-
tions could be attributed solely to increases in neurotransmitter
concentration. In addition, the nature of the SVD is to assume
that activation is added linearly to the baseline state. More im-
portantly, because it is nonparametric, the method does not re-
quire any a priori knowledge of the functional form of the
signal. The method might also be used in conjunction with a
model-based approach as a prescreening procedure to determine
a reasonable parameterization for that could then be
used for subsequent parameter estimation. Our approach does
not require arterial blood sampling and thus removes a serious
impediment to routine application to human PET studies.

F. Limitations

1) Artifacts: Let us consider the limitations of this method.
The analysis of our signal estimates revealed inaccurate re-
covery of the true at the beginning of the time course.
There is a consistent undershoot/overshoot, in the earliest
section of the data, preceding the takeoff of the true DA. We
believe that this effect is caused by the initial tracer uptake from
the systemic circulation to the free compartment. From our
studies we observed that the shape of the exogenous input,
influences the shape of the extracted DA signals at early time.
This artifact argues against the recovery of DA responses that
occur very early in a PET study. As a precaution, we decided
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to discard the first 5 min of each estimated signal.
As a possible experimental amelioration of this artifact, we
propose that a tracer be delivered as constant infusion initiated
before the start of the scan. This procedure should favor the
artifact-free recovery of DA signals and allow the DA release
stimulus be applied at anytime during the “A” scan.

The difference in the initial uptake of tracer into the tissue
during the “R” and “A” scans introduces an additional confound
in the form of slowly time-varying signals. This behavior can
be viewed in the recovered null signals in Fig. 3(d). In the
absence of the true DA signals, the fourth component of the ac-
tivation signals, , accounts mostly for these signals. The
confound was introduced by using different exogenous input
curves, , to generate realistic TACs for the “R” and “A”
conditions (see Fig. 9). The confound is eliminated if a single

input is used both for “R” and “A”. One possible solution
for reducing the impact of this confound may be further post-
processing. In the future, in order to minimize the confounding
effects, we may consider rotation of the computed singular vec-
tors in the reduced subspace spanned by the most significant
components of activation.

The recovered signals tend to take on negative values imme-
diately before and after the peak. Negative values preceding the
pulse are primarily due to effects of the MMSE filter, which adds
a negative offset. Negative values following the recovered pulse
result from the possible presence of nonlinear terms in the rela-
tionship between the difference signals, X and the true integral
of the time course. One of our premises for our analysis
method is that this relationship is linear.

2) Temporal Resolution Limitations: The simulated PET
signals were based on 1-min time frames, which established a
lower limit for the temporal resolution. The sampling rate is
determined in practice by the dynamic PET acquisition protocol
to balance signal-to-noise ratio (SNR), temporal sensitivity, and
data management. In addition to data sampling, the noise in the
PET data also limits the temporal resolution. Further improve-
ments in SNR and in the sensitivity of PET data acquisition
may make it possible to achieve better temporal resolution of
the estimated signals.

The choice of the MMSE filter kernel size can alter the re-
covery of narrow signal peaks, and therefore affect the temporal
resolution. A narrow kernel will not perform well on noisy esti-
mates. A wide kernel, will dampen down signal peaks narrower
than the kernel width, and merge peaks that are closer together
in time than the kernel width. It appears that MMSE filter is
best able to recover signal peaks with full-width at half-max-
imum (FWHM) equal to half the kernel size. In the work pre-
sented here, we used a 10 min wide filter. Given the noise level
in our data, we could satisfactorily recover signals containing
peaks with at least 5 min FWHM. At the expense of reducing
the SNR, we can adjust the filter kernel width to preserve nar-
rower peaks.

3) Sensitivity Limitations: There are two factors that may
limit the sensitivity of the method to weak DA activation occur-
ring towards the end of a scan with [11C]raclopride delivered
as bolus. First, the noise level is high during the latter part of
the 1-h scan, when there is less activity due to the short half-life
of C-11 tracers. Second, the amount of free tracer available for

competition with the endogenous DA also decreases in time due
to the clearance of tracer from the tissue. These limitations may
have been at work in heterogeneous activation Case 3. Signals
with DA peaking late in time could not be distinguished from
the signals with no activation via correlation plots.

The choice of 25–100 TACs in our simulations was arbitrary
and does not indicate either an upper or lower limit for the ex-
traction of signals. There is no a priori limitation to
the number of independent PET signals that can/must be used.
However, in order to separate all the components contained in
the signals, the number of signals must be at least equal to the
number of components. Intuitively, we expect the following fac-
tors would place practical limits on the minimum number of
PET signals required for analysis: 1) noise, 2) strength of the
activation, and 3) number of distinct activation components in
the data.

G. Possible Applications

The most encouraging result presented here is our ability to
discern one or more temporal signatures of activation within a
brain region. The recovery of a bimodal pattern of activation is
exciting because it portends the application of our method to
data analysis from complicated, multi-component neurophys-
iological imaging studies. For example, drug-taking behavior,
which is known to be related to the dopamine system, may
be caused by multiple environmental cues and other chemical
stimuli (e.g., nicotine or alcohol). A researcher interested in
studying interaction of drugs and environment, may want to use
PET to asses the dopaminergic response to a sequence of stimuli
which could be bimodal or even multimodal. The ability of this
method to recover spatially heterogeneous patterns of activa-
tion via simple matrix computations could offer the possibility
of studying related sequences of neurochemical events. In this
study, we applied our method to the neurotransmitter dopamine
and the ligand [11C]raclopride. However, we believe that this
method could be easily extended to other displaceable ligands to
study other neurotransmitter systems. We note that we analyzed
simulations of more slowly dissociating tracers (e.g. [18F]fal-
lypride) and the method was able to extract useful time infor-
mation.

V. CONCLUSION

We have designed a non-parametric technique that can ex-
tract temporal information about neurotransmitter change in the
brain from dynamic PET data. Our method shows potential for
separating temporarily different dopaminergic responses, and
we suggest its use for the study of regional and brain-wide dy-
namics of neurotransmitter systems. Based on simulations with
appropriate noise levels, we believe this method may be robust
enough for use at the voxel level.

APPENDIX

A. The Enhanced Model Equations

The compartmental model shown pictorially in Fig. 8 is de-
scribed by a system of differential equations that represent mass
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Fig. 8. Enhanced compartmental ligand-receptor model used for the data simu-
lation. P represents the plasma input, F and B are the free and bound tracer com-
partments. F is the free endogenous dopamine input and B is the bound
dopamine compartment.B denotes the maximum concentration of available
receptor binding sites (dashed rectangle around B andB ) for which DA and
the tracer can compete. The solid rectangle around F, B and part of P shows the
relative contribution of each compartment to a PET measurement at any given
time. B stands for the available binding sites. P, F, B, F , B , and B
are time varying, K , k , k , B , k , k , and k are constants.

balances. The balance equation for the free tracer, in molar
quantities is

(A1)

The balance equation for the bound tracer, is:

(A2)
The balance equation for the endogenous DA, is

(A3)

The exogenous tracer kinetics are described by the compart-
ments for the free and specifically bound tracer in tissue. There
are four unknown kinetic parameters for the tracer: and ,
the influx/efflux rate constants between the plasma and the free
ligand compartment; and and , the ligand association
and dissociation rate constants, respectively. , the total re-
ceptor density, is also specified in the equations. , the in-
stantaneous molar concentration of tracer in plasma, can be re-
garded as the tracer input to the system. The other two time de-
pendent variables , represent the instantaneous molar
concentration of tracer in free and bound compartments, respec-
tively. The endogenous ligand is accounted for by one addi-
tional compartment (bound DA) and its kinetics are described
by two additional kinetic parameters: , and , the associ-
ation and dissociation rate constants for the endogenous ligand
(i.e., DA). , the free DA concentration in the synapse

Fig. 9. Bolus plasma curves used in simulations. The curves were derived from
measured blood curves in a human PET experiment with [11C]raclopride. The
scans were conducted with the subject at rest (filled triangles) and under a stim-
ulus condition (filled circles).

is an additional input to the system, which was simulated for
the purpose of creating test data. is the instantaneous
endogenous dopamine molar concentration in the bound state.
Equation (A3) is coupled to the rest of the model through the in-
teraction term, , which means
that binding is a bimolecular and saturable phenomenon that
depends on both concentration of available receptors,

, and free DA, . , used for
simulations, was derived from measured blood activity curves.
The input plasma curves are shown in Fig. 9. The endogenous
input is simulated using gamma-variate functions, as
described in Methods.

B. The PET Curve Output

The (A1)–(A3) were solved numerically for , ,
and . To do so we used an interactive kinetic mod-
eling package in Matlab that was written in our laboratory
using COMKAT, a library of model-related commands that
facilitate quick model construction, robust ODE solving, and
nonlinear parameter estimation [42]. The kinetic parameter
values used in simulations were ,

, , ,
. These values were estimated from the fit-

ting of a two-tissue compartment model to [11C]raclopride
TACs measured from human brain regions with high specific
binding. The PET data that were used for estimation of tracer
parameters were acquired under the rest condition. The DA
association and dissociation rates at D2/D3 receptor sites,

and
were taken from a literature review [2] and fixed. The PET
measurement of average radioactivity concentration over a
single time frame, , was constructed as

(A4)

The instantaneous concentrations of the tracer in the blood
and tissue compartments ( and ), are

summed in proportion to their respective volume fractions in
the voxel or region being measured ( for the plasma activity
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Fig. 10. The upper plot shows an example of voxel data used for estimation
of noise variance. The symbol (x) represents a TAC taken from a voxel in the
striatum of a subject scanned with [11C]raclopride under the rest condition. The
data were fit to a two-tissue compartmental model using an ELS3 cost function.
The model fit is shown as a solid curve. An example of simulated data using
the estimated variance is also shown (black dots). The lower plot shows the
normalized residuals (data-model)/model) of the fitted data.

and for the tissue activities). We accounted for
intravascular radioactivity by assuming a value of 0.04 for

represents the specific activity (in units of activity
per mole). It converts the instantaneous tissue concentrations
from molar to radioactivity concentrations, and is time-depen-
dent because of radioactive decay. represents the additive
noise term. Because the PET measurement, represented in (A4)
is taken over a discrete interval, the instantaneous quantities,
on the right, are integrated over the period from time to

. The integral is divided by total acquisition frame duration,
, to yield the average radioactivity concentration

over the frame. For the simulated data, we used a high value
of at the start of scanning, which is
consistent with tracer conditions.

C. Noise Variance Estimation

The parameters were estimated from our
[11C]raclopride data acquired under a rest condition, on a
voxel-by-voxel basis from regions with high specific binding.
Multiple fits to a two-tissue compartmental model were per-
formed using a variation of the extended least square (ELS)
technique [43], [44]. This technique uses an augmented cost
function in which the error variance depends explicitly on
model parameters. Apart from the four model parameters
(kinetic rate constants) of the compartmental model, the cost
function included three parameters (referred to as “ELS3” in
[42]), , that describe the variance. In this case we considered
the 4 kinetic rate constants as nuisance parameters. Taken
individually, the three parameters, , were not identifiable.

Following the multiple fits we retained only those values of
1, 2, and 3 for which the fit was satisfactory based on the

examination of normalized residuals. The values of from
all the retained fits were averaged to yield our estimate of the
variance . An example of
such a fit is shown in Fig. 10. The estimated values of were

, , .
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