
636 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 5, MAY 2005

Direct Reconstruction of Kinetic Parameter Images
From Dynamic PET Data

M. E. Kamasak*, C. A. Bouman, E. D. Morris, and K. Sauer

Abstract—Our goal in this paper is the estimation of kinetic
model parameters for each voxel corresponding to a dense
three-dimensional (3-D) positron emission tomography (PET)
image. Typically, the activity images are first reconstructed from
PET sinogram frames at each measurement time, and then the
kinetic parameters are estimated by fitting a model to the re-
constructed time-activity response of each voxel. However, this
“indirect” approach to kinetic parameter estimation tends to
reduce signal-to-noise ratio (SNR) because of the requirement that
the sinogram data be divided into individual time frames.

In 1985, Carson and Lange proposed [1], but did not implement,
a method based on the expectation-maximization (EM) algorithm
for direct parametric reconstruction. The approach is “direct” be-
cause it estimates the optimal kinetic parameters directly from the
sinogram data, without an intermediate reconstruction step. How-
ever, direct voxel-wise parametric reconstruction remained a chal-
lenge due to the unsolved complexities of inversion and spatial reg-
ularization.

In this paper, we demonstrate and evaluate a new and efficient
method for direct voxel-wise reconstruction of kinetic parameter
images using all frames of the PET data. The direct parametric
image reconstruction is formulated in a Bayesian framework, and
uses the parametric iterative coordinate descent (PICD) algorithm
to solve the resulting optimization problem [2]. The PICD algo-
rithm is computationally efficient and is implemented with spa-
tial regularization in the domain of the physiologically relevant
parameters. Our experimental simulations of a rat head imaged
in a working small animal scanner indicate that direct parametric
reconstruction can substantially reduce root-mean-squared error
(RMSE) in the estimation of kinetic parameters, as compared to
indirect methods, without appreciably increasing computation.

Index Terms—Dynamic PET, iterative reconstruction, kinetic
modeling, regularization, tomography.

I. INTRODUCTION

POSITRON emission tomography (PET) is a powerful
molecular imaging technique with the sensitivity to detect

picomolar quantities of a labeled tracer with reasonable (sec-
onds to minutes) temporal resolution. Through the application
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of kinetic models, the dynamic PET data can be transformed
into physiological parameters that indicate the functional state
of the imaged tissue. Ideally, one would like to reconstruct
parametric images from PET data i.e., images which specify
the estimated kinetic parameters for each voxel in the imaged
volume. Such parametric images could serve many uses. For
example, they may be particularly desirable when testing a
new tracer whose sites of action are not completely known.
In the brain, parametric images might be useful in identifying
new brain circuits or discovering unsuspected connectivity
between disparate brain regions. As new tracers continue to be
developed with greater specific to nonspecific binding ratios,
the impetus grows for looking at their uptake in all regions of
the brain, rather than in a few preselected regions of interest.
For example, -fallypride, a high affinity dopamine tracer,
can be used to image dopamine receptors outside the striatum
because the nonspecific background is low [3].

This paper introduces a novel algorithm for directly re-
constructing parametric images from PET sinogram data. We
demonstrate that this method can generate parametric images
with superior quality; and, perhaps surprisingly, we also show
that it has computational requirements that are similar to a
two-step approach of iterative reconstruction followed by
kinetic parameter estimation.

Kinetic compartmental models are often used to describe the
movement of a tracer between different physically or chemically
distinct states or compartments [4]–[6]. The exchange of tracer
between these compartments can be modeled by a system of
first-order ordinary differential equations (ODEs) whose coef-
ficients are the kinetic parameters. The resulting kinetic models
have been validated as producing reliable quantitative indexes
of various clinically and scientifically important physiological
processes [7]–[17].

In some cases, a single set of kinetic parameters can describe
the tracer behavior in a homogeneous region of tissue such as the
myocardium or perhaps the entire striatum in brain images. If
the region of interest can be delineated using some form of seg-
mentation, then the PET activity can be averaged over the region
at each time frame and a single set of kinetic parameters can be
estimated by fitting a single kinetic model to the time sequence
of average activities. This case is illustrated in Fig. 1. The PET
data are first reconstructed into time frames, then a region of
interest (ROI) is segmented from each frame, and a single set of
kinetic parameters is fit to the regional-average time sequence.
These ROI-based methods may be further classified into linear
methods and nonlinear methods. Linear techniques [18]–[23]
transform the data, so that the parameters of interest can be esti-
mated by linear regression methods, while nonlinear techniques
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Fig. 1. ROI-based kinetic parameter estimation methods.

[5], [6] generally estimate the kinetic parameters by iteratively
minimizing a properly weighted distance metric between the re-
constructed time-activity curves and the model output.

Recently, there has been increasing interest in the formation
of parametric images which model the kinetic behavior of each
voxel individually. This approach is more appropriate when the
volume cannot be effectively segmented into homogeneous re-
gions that would be modeled with a single kinetic parameter set.
Existing approaches to the creation of parametric images can be
roughly categorized as “indirect,” “semi-direct,” and (our new
method) “direct” [24] reconstruction.

Indirect methods work by first reconstructing the PET emis-
sion images for each of the measurement times, and then
estimating the kinetic parameters at each voxel. The primary
difficulty of the indirect approach is that the low signal-to-noise
ratio (SNR) of the time-activity curve (TAC) for each voxel
makes accurate estimation of parameters difficult. To improve
estimation accuracy, O’Sullivan et al. [25] applied ridge re-
gression techniques to regularize the parameters using prior
knowledge of their means and variances derived from the anal-
ysis of a reasonably large patient group. Huang et al. [26]
applied a spatial smoothing step between the iterations of a
nonlinear estimation process at each voxel. Later, Zhou et al.
[27], [28] developed a two-stage algorithm whereby the ki-
netic parameters were estimated first using standard nonlinear
techniques. In a second step the initial results were smoothed
spatially and used to constrain the final estimates. (This method
is further discussed in Section IV-B.) Kimura et al. [29] and
Zhou et al. [30] have developed algorithms that cluster the
images before estimation and regularize the data within the
clusters.

Semi-direct algorithms, as they are sometimes named, at-
tempt to improve the SNR by constraining the possible choices
of time-courses for each voxel via signal sub-spaces or splines.
Kao et al. [31] and Narayanan et al. [32] used principal com-
ponent analysis (PCA) to decorrelate the sinograms in time.
Similarly, Wernick et al. [33] applied PCA decomposition of
PET data followed by reconstruction of tracer concentrations
in the principal-component space. Nichols et al. [34], and
Reutter et al. [35], [36] proposed reconstruction methods that
use a b-spline specification of the time-activity curves. Kinetic
parameters must then be estimated from the b-spline represen-
tation. It is important to note that spline-based methods have
certain computational advantages when processing list mode
data. However, the two-step process of first computing spline
coefficients and then kinetic parameters still results in a loss
of optimality, particularly if the number of spline coefficients
is much larger than the number of kinetic parameters.

Fig. 2. Two-tissue compartment model with four kinetic parameters.

Ideally, one would like to estimate directly the space-domain
kinetic parameters from the measured sinogram data. In fact,
Carson and Lange [1] proposed direct estimation of kinetic
parameters from PET data in 1985. In that paper, the authors
outlined a general framework for a direct reconstruction algo-
rithm based on expectation-maximization (EM) [37] iterations.
Unfortunately, the Carson and Lange direct parametric recon-
struction algorithm has never, to our knowledge, been fully
implemented for nonlinear estimation of a dense set of voxels.
Limber et al. [38] proposed an algorithm for direct parametric
reconstruction using maximum likelihood (ML) estimation
of kinetic parameters from PET data, but only demonstrated
the algorithm for an 8 8 array of voxels. A number of au-
thors have implemented direct nonlinear parameter estimation
methods that were designed for segmented ROIs [39]–[44]
rather than a dense set of voxels. In an alternative approach,
Meikle et al. [45] first precomputed the time-activity curves for
a range of possible nonlinear parameters and then directly re-
constructed the linear weights for each of the nonlinear “basis”
curves. Similarly, Matthews et al. [46] obtained predefined
time-curves from other patients’ reconstructions and used the
EM algorithm to compute the weights of each curve. In other
work, Carson [47] proposed an ML framework to estimate the
ROI values from the projections, and Farncombe et al. [48]
estimated organ uptake parameters that were incorporated into
the reconstruction algorithm for dSPECT applications.

In this paper, we present an algorithm for direct nonlinear es-
timation of space-domain kinetic parameters in a dense volume
of voxels. Our novel parametric reconstruction algorithm,
which we call parametric iterative coordinate descent (PICD)
[2], is in the spirit of Carson and Lange’s method. However,
PICD is a completely specified and implemented algorithm
(see the Appendix) which we show to be computationally
efficient with robust convergence properties. In fact, the com-
putation required for parametric reconstruction using PICD is
comparable to that required for more conventional maximum
a posteriori (MAP) reconstruction of an image sequence from
PET sinogram data. In other words, it is our claim that direct
parametric reconstruction can have comparable computational
requirements to indirect methods (recall that indirect methods
require an initial reconstruction of all the data). The key to
computational efficiency of the PICD method is the use of state
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variables and nested optimization to decouple the nonlinearities
of the forward tomographic model, the nonlinear kinetic model,
and the Bayesian prior model. Notably, PICD is designed to
compute the MAP estimate of the kinetic parameters using a
prior distribution defined on any well-behaved transformation
of the parameter space. This allows the regularization to be
applied to the parameters that are deemed to be physiologically
important. Simulation results, presented below, indicate that the
PICD-generated parametric reconstructions have lower mean
squared error and better visual quality than the best indirect
methods.

Section II reviews the two-tissue compartment model and the
set of ODEs that govern a tracer’s kinetics. Section III intro-
duces the PICD algorithm for direct parametric reconstruction
and gives a detailed description of its implementation. Sec-
tion IV first reviews some existing methods for image domain
parameter estimation, and then suggests a useful method for
regularization of pixel-wise approaches. Section V compares
the computational complexity of the proposed methods. Sec-
tion VI presents simulation results. Discussion and Conclusion
follow the results.

II. TWO-TISSUE COMPARTMENT MODEL

In this paper, we used a two-tissue compartment model
to describe the kinetic processes that are represented by the
signal from each voxel of a reconstructed image. This model
is commonly used to describe the uptake and retention of an
analog of glucose, 2-deoxy-2- fluoro-D-glucose (FDG).
The model can also be properly applied to receptor ligand
studies provided that there is no nonspecific binding and that
the tracer has been administered at sufficiently high specific
activity. Fig. 2 illustrates the model: (pmol/ml) is the molar
concentration of tracer in the plasma, (pmol/ml) is the
molar concentration of unbound tracer, and (pmol/ml) is
the molar concentration of metabolized or bound tracer. The
model depends on the kinetic parameters, , , , and ,
which specify the tracer exchange rates between compartments
in units of inverse minutes. The parameters , , and are
first-order rate constants, and is an apparent first-order rate
constant describing a process (metabolism or receptor-binding)
that proceeds in proportion to the concentration of the labeled
tracer only, as long as the number of sites available for binding
do not become rate-limiting.

In addition to the above-stated parameters, there are two com-
pound parameter groups that have ready physiological interpre-
tations and practical application, particularly for receptor-ligand
imaging: binding potential , and total volume of distribu-
tion . is proportional to the number of receptors and

represents the steady state distribution of tracer between
the plasma and tissue. and can be expressed in terms
of the aforementioned kinetic parameters

(1)

(2)

In applying the model in Fig. 2 to all voxels, we assume that
the delivery of tracer is the same to all regions being imaged. In

TABLE I
FORWARD AND INVERSE TRANSFORMATIONS FROM STANDARD KINETIC

PARAMETERS [k ; k ; k ; k ] FOR THE VOXEL s TO NEW PARAMETERS

[a ; b ; c ; d ]. NOTE THAT c = � AND d = � GIVEN IN (7)

other words, the value of is not a function of voxel position.
However, the values of the kinetic parameters will be allowed
to vary for each voxel location, . Using these assumptions, the
time variation of the concentrations for a single voxel are gov-
erned by the following ODEs:

(3)

(4)

In this paper, is assumed known. In practice, it can be
measured directly from arterial plasma samples during the
imaging procedure [6], or it may be estimated from imaged
volumes that consist primarily of blood [49]–[53]. The solution
to the ODEs in (3), (4) is given by

(5)

(6)

where indicates continuous-time convolution, and are
real valued constants that result from the subtraction and addi-
tion of terms in (7) respectively, and is the unit step function

(7)

Next, we transform the kinetic parameters
to form the new parameters as shown in Table I.
This transformation is important because while the parameters

are well suited for optimization, are
physiologically more relevant. We use to
denote the parameter vector for each voxel .

The total activity concentration (e.g., in nCi/ml) for voxel
at time is denoted by

(8)
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Fig. 3. Model used for direct parametric reconstruction of images.

where is the initial specific activity of the tracer (nCi/pmol),
is the decay rate of the isotope , is a known

constant for the volume fraction of the voxel that contains
blood, and (nCi/ml) is the tracer activity concentration
in whole blood (i.e., plasma plus blood cells plus other partic-
ulate matter).1 We can simplify the expression for by
defining the following functions:

(9)

(10)

(11)

With these definitions, can be written as

(12)

We next define some vector and matrix notation that will be
useful in discretization of the problem.2 Let be the

discrete times at which the tissue is imaged. Then, we may
construct the vectors

(13)

(14)

(15)

Using this notation, the activity at each time for voxel is given
by the row vector

(16)

Let the voxels be indexed by the values ,
and let denote the matrix of
parameters at all voxels. With this, we define the function

...

which maps the parametric image, , to the activity of each
voxel at each time. Finally, let denote the th column
of , so contains the activity for each voxel at time

.

1Notice that both f(' ; t) and C (t) include the attenuation due to decay.
Therefore, the sinogram data should not be decay corrected for the implemen-
tation of this method.

2This discretization approach is equivalent to interpreting the measured con-
centrations as representing instantaneous concentrations measured at midframe.

III. PARAMETRIC RECONSTRUCTION FROM SINOGRAM DATA

In this section, we describe our method for directly recon-
structing the parametric image, , from sinogram data. We will
do this by first formulating a conventional scanner model under
the assumption that the sinogram measurements are Poisson
random variables. We will then use the kinetic model of Sec-
tion II as the input to the scanner model as shown in Fig. 3.
Once the complete forward model is formulated, we will present
an iterative algorithm for computing the maximum a posteriori
(MAP) estimate of the parametric image from the sinogram
data. Once is computed, the activity images can be computed
at any time simply by evaluating using the kinetic
model equations of (8).

A. Scanner Model

Let denote the sinogram measurement for projection
and time frame , and let be the

matrix of independent Poisson random variables that form
the sinogram measurements. Furthermore, let be the forward
projection matrix, with elements (counts-ml/nCi), and let

be the number of accidental coincidences. Then the expected
number of counts for each measurement at a given time, is
given by

(17)

This relationship can be compactly expressed using matrix no-
tation as

(18)

It is easily shown that under these assumptions the probability
density for the sinogram matrix is given by [54]

(19)

where is the th row of the system matrix, . The log
likelihood of the sinogram matrix is then given by

(20)

This is a very general formulation. For specific scanners, the
form of the system matrix may vary considerably, and accu-
rate determination of the matrix can be critical to obtaining
accurate tomographic reconstructions [55], [56].
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B. MAP Estimation Framework

We will use MAP estimation to reconstruct the parametric
image. For this purpose, a cost function is formed by negating
the log likelihood given in (20) and adding a stabilizing function

(21)

The MAP reconstruction, , will be the parametric image that
minimizes this cost function

(22)

The stabilizing function can be obtained from an assumed
prior probability distribution for the parametric image. In this
work, we model the distribution of the parametric image as a
Markov random field (MRF) with a Gibbs distribution of the
form

(23)

where is the normalization constant, is the set of all neigh-
boring voxel pairs in , is the coefficient linking voxels
and , is a constant parameter that controls the smoothness of
the edges in the parametric image, is a transform function,
and is the diagonal weighting matrix.

In this paper, we will assume and that is formed
with voxel pairs using an 8-point neighborhood system. In this
case, the probability density function corresponds to a Gaussian
Markov random field, and we choose the negative logarithm of
this function as our stabilizing function

(24)

By choosing an appropriate transform function, , the reg-
ularization can be done in the space of the physiologically
relevant parameters. Typically, we will select to transform
from the , , , space to the , , , as show in
Table I; however, any well-behaved one-to-one transformation,

, is suitable for our algorithm.

C. Parametric Image Reconstruction Using PICD

The MAP reconstruction described in (22) is computed
efficiently by an algorithm which we call parametric itera-
tive coordinate descent (PICD). This algorithm is similar to
the iterative coordinate descent (ICD) algorithm used in con-
ventional PET image reconstruction [54], but it is adapted
to account for the nonlinear parameters of the compartmental
model. PICD sequentially updates the parameters of each voxel
thereby monotonically decreasing the cost function given in
(22). When is a nonlinear function, the PICD algorithm
reduces computation by decoupling the dependencies between
the compartment model nonlinearities and the forward tomog-
raphy model.

In order to compute a PICD voxel update, we must compute

(25)

To do this efficiently, we use the second-order Taylor expansion
of the change in the cost function.

Suppose we are updating the parameters of voxel from
to , and that we represent

the change in the time response function of voxel by the
vector function

We next define a simplified cost functional

(26)

Notice that since is equal to the change in the cost
functional within a constant, so it may be used to com-
pute the voxel update of (25). The value of can then
be locally approximated with a second-order Taylor series as

(27)

where denotes the set of voxels that are 8-neighbors of voxel
, is a vector, is a diagonal matrix, and

. Here, the values of and consist of the
first and second derivatives respectively of the log likelihood
function evaluated at each time frame. These derivatives at time
frame can be iteratively updated using the equations of the
conventional ICD algorithm [54], given in (28) and (29).

(28)

(29)

Using the notation defined in (13)–(15), the PICD update can
then be expressed as

(30)

where

(31)

We have found that the PICD update is best implemented using
two-stage nested optimization shown in (32) at the bottom of the

(32)
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previous page. This nested optimization strategy is very impor-
tant in reducing computation and assuring robust convergence.
The inner optimization over and must be performed many
times since this result is required for each update of outer opti-
mization over and . Fortunately, optimization over and

can be done very efficiently with a simple steepest descent
algorithm because this optimization does not require updating
of , , , or . Optimization with respect to
is done using iterative one-dimensional golden section search
along the and directions. This method assures the
convergence is to a local minimum that meets the Kuhn–Tucker
conditions [57]. The Appendix contains pseudocode that specify
details of the algorithm.

D. Multiresolution Initialization

It is well known that for the tomographic problem the ICD
reconstruction algorithm tends to have slow convergence at low
spatial frequencies [58]. Normally, this problem is solved by ini-
tializing the ICD iterations with a FBP reconstruction. In this
case, most of the residual error is only at high frequencies, so
the ICD iterations converge quickly. However, for parametric re-
construction there is no simple direct reconstruction algorithm,
such as FBP, to use as an initialization for the PICD iterations.

To solve this problem, we use a multiresolution reconstruction
scheme, which first computes coarse resolution reconstructions
and then and proceeds to finer scales. The coarsest resolution
reconstruction is initialized with a single set of parameters
obtained by weighted least squares curve fitting to the average
emission rate of each time frame. Importantly, the average
activity of each time frame can be calculated directly from the
sinogram data with little computation. Finer resolution recon-
structions are then initialized by interpolating the parametric
reconstruction of the previous coarser resolution. This recur-
sive process reduces computation because the computationally
inexpensive reconstructions at coarse levels provide a good
initialization for finer resolution reconstructions.

IV. IMAGE DOMAIN PARAMETER ESTIMATION METHODS

For purposes of comparison, we will also consider image do-
main methods which estimate parameters at each voxel from
reconstructed images at each time. Each of these methods re-
quires that the sinogram at each time frame be reconstructed
using conventional reconstruction methods. For these methods,
let denote the reconstructed activity of voxel at time
frame collected at time , and let

denote the activity of voxel at all time frames.

A. Pixel-Wise Weighted Least Square (PWLS) Method

The pixel-wise weighted least squares method estimates the
parameters of each voxel by iteratively minimizing the weighted
square error between the reconstructed time response of the
voxel and the model output.

The parameters of voxel are estimated as

(33)

where is the diagonal weighting matrix for voxel
. The weight of each time frame is chosen to be inversely pro-

portional to the variance of the voxel activity in that time frame.
This variance can be approximated by the activity estimate of
this voxel, normalized by the duration of the time frame. In this
case, is a diagonal matrix with diagonal elements given by

(34)

where is the duration of time frame , and controls
the maximum allowable value for the weights.

The parameters are estimated using the same nested optimiza-
tion strategy as specified in (32). In fact, this algorithm differs
from the parametric reconstruction in only two respects. First,
the data derivatives of (28) and (29) are replaced by

(35)

(36)

and second, the stabilizing functional is set to 0.

B. Pixel-Wise Weighted Least Square Method With Spatial
Regularization

The spatial variation of the PWLS parameter estimates can be
reduced by adding a stabilizing function to (33). The resulting
estimate is given by

(37)

where is the spatial stabilizing functional [25], [26].
In the first method, which we call the pixel-wise least squares

regularized (PWLSR) method, the stabilizing function has the
form specified in (24). This is the same stabilizing function as
was used for direct parametric reconstruction.

For the second method, which we call the PWLSZ method,
we implemented the stabilizing functional described in [26].
This method smooths the PWLS estimate and uses it in the stabi-
lizing function. Let be a smoothing operator and be the
PWLS parameter estimate. The constrained parametric image is
then given by

Next, a weight is calculated for each voxel. For voxel the cor-
responding weight is

Using the constraint images and weights, the stabilizing func-
tion is given by

(38)

Notice that the stabilizing function of (38) penalizes the differ-
ence between the parameters and a smoothed version of the pa-
rameters. Alternatively, the more traditional stabilizing function
of (24) penalizes the spatial derivatives of the parameters.
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TABLE II
COMPUTATIONAL COMPLEXITY FOR A SINGLE FULL ITERATION OF PICD, PWLS, PWLSR, AND ICD

Notation:N = number of voxels;M = is average number of projections per voxel;K = is the number
of time frames;K = number of time points in the time-convolution kernel; L = number iterations re-
quired for each update of (~a;~b);L = number iterations required for each update of (~c; ~d). Expressions
do not include the computational cost of regularization.

For both of these methods the solution to (37) is computed
using the nested optimization strategy specified in (32) and the
data derivatives specified in (35) and (36).

C. Linear (Logan) Method

Kinetic parameter groups can sometimes be easily estimated
by properly transforming the data. The Logan plot is a popular
integral transform of the model given in (3), (4), and (8). This
transformation can be expressed as follows:

(39)
When the transformed variables (quantities in square brackets
above) are plotted against each other, the resulting line has a
slope equal to the compound parameter which is defined
in (2).

To calculate the brain is segmented into a target re-
gion and a reference region. The target region consists of voxels
within the brain that contain receptors for the tracer; and the ref-
erence region consists of the voxels that do not contain receptors
for the tracer (i.e., ). Let, be the set of voxel indexes
from target region, and be the set of voxel indexes from ref-
erence region.

For a voxel (from reference region), the distribution
volume is

For each voxel (from target region), the distribution
volume ratio is

(40)

where denotes the number of voxels in the region . Hence,
the binding potential for the target region can be calculated as

.
The assumptions that are used in the derivation of (39) and

(40) are as follows.

• ratio is constant for every voxel in the brain (i.e.,
both target and referenced regions).

• The tracer has high specific activity (so binding can be
described as an apparent first-order process).

Fig. 4. Single-slice rat phantom. Regions of the rat phantom were derived
from a segmented MR image. Different fill patterns indicate kinetically distinct
tissue regions. Striatum is a region containing specific receptors for the tracer.
Nonspecific-gray matter is tissue containing no specific binding sites for
tracer but comparable blood flow parameters (k , k ) to striatal area; cortex is
modeled as containing low concentration of binding sites; white matter in our
dynamic phantom contains no specific binding sites and low flow; non-brain,
which comprises much of the slice has fast influx and efflux of tracer. Solid
white areas in figure represent a mixture of background regions that do not
contain any activity over time. The small white areas dorsal to (above) the
striatum are ventricles that contain cerebral spinal fluid and no tracer. White
areas surrounding brain correspond to skull which does not take up appreciable
amounts of tracer.

• Blood volume fraction, , is zero inside the target and
the reference.

• for all the voxels in the reference region.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

In order to better understand the computational requirements
of parametric reconstruction, we derive expressions for the
computational complexity of a number of parameter estimation
algorithms.

First, consider the PICD algorithm. For each voxel update, the
data derivatives, and , are computed once. The complexity
of this computation is , where is the number of time
frames, and is the average number of nonzero projections
per voxel. Assume the nested search described in (32) requires

evaluations of nonlinear parameters and . Furthermore,
assume that each update of or requires evaluations of
linear parameters and .

Each evaluation with respect to or requires a convolu-
tion with the plasma input function and evaluations with
respect to and . Let be the number of time points in
the time-convolution kernel. Then the convolution requires

operations, and the evaluation with respect to and
requires operations; so the total complexity of a voxel
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TABLE III
KINETIC PARAMETERS USED IN THE SIMULATIONS FOR DISTINCT TISSUE REGIONS OF THE RAT HEAD

update is given by , and the
total complexity of PICD per full iteration for an voxel image
is given by . The complexity
of PWLS, PWLSR, and ICD, given in Table II, are then derived
by removing the terms corresponding to operations that are not
performed.

VI. SIMULATIONS

Sections VI-A–VI-C compares the accuracy and computa-
tional burden of direct parametric reconstruction and image
domain estimation methods.

A. Phantom Design

Our simulation experiments are based on a phantom of a rat’s
head. Fig. 4 shows a schematic representation of the rat phantom
and its constituent regions. The phantom has 7 regions including
the background. These regions were obtained by segmenting an
MRI scan of a rat through automated and manual techniques
[59]. The regions and their corresponding parameters [60] are
given in Table III, and their time activity curves are shown in
Fig. 5. Time frames of emission images are generated using
these parameter images and the two-tissue compartment model
equations, and the plasma function, , is generated using
(2) from [53]. In order to achieve sufficient accuracy, the con-
volution is implemented with sample points. The
blood contribution to the PET activity is assumed to be zero,
and the tracer is assumed to be raclopride with , which has a
decay constant of . Total scan time is 60 min.,
divided into 18 time frames with 4 , 4 , and
10 . The phantom had a resolution of 128 128 with
each voxel having dimensions of mm .

The rat phantom image at each time frame is forward pro-
jected into a sinogram using a Poisson model for the detected
counts with a background (accidental coincidence) level of

. Each sinogram consists of 180 angles and 200 radial bins
per angle. This results in a value of . A triangular
point spread function with a 4 mm base width is used in for-
ward projections. The blood function, is scaled so that
the total number of counts in all sinogram frames is approxi-
mately 10 million.

B. Algorithm Implementation

Direct reconstructions were computed using the PICD algo-
rithm with three levels of multiresolution optimization corre-
sponding to resolutions of 32 32, 64 64 and 128 128. The
reconstructions used and . In most cases,

Fig. 5. Time-activity curves for five distinct tissue regions in rat brain
phantom.

regularization was applied directly to the , , , and pa-
rameters; so the stabilizing functional had the form

(41)

where the function is inversely proportional to the dis-
tance between the voxels and and normalized to sum to 1,
and the constants control the regularization for each of the
four parameters. The maximum likelihood (ML) estimate of
was computed for each parameter from the original parametric
image using the formula [61]

(42)

In the original formula, is the number of voxels in the image;
however some parameter images have very few nonzero voxels,
so we choose to be the number of nonzero voxels in the
image. These ML parameters are then linearly scaled all to-
gether to find a set of regularization parameters that minimize
the RMSE of the estimated kinetic parameters. The resulting
diagonal weighting matrix, , from (24) has diagonal entries
given by where is the scaling factor that
minimizes the parameter RMSE. Some results use regulariza-
tion in the , , , and parameters. In this case, scaling
parameters are selected similarly using the appropriate param-
eter values.

The image domain parameter estimation methods of Sec-
tion IV require that the image be reconstructed for each time
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Fig. 6. Parametric images of k , k , k and k estimated by the algorithms; (a) original (b) PWLS (c) PWLSZ (d) PWLSR (e) PICD1: PICD reconstruction (new
method) regularized on k , k , k , and k (f) PICD2: PICD reconstruction (new method) regularized on k , k , BP , and V D.

frame. For this purpose, we used MAP image reconstruction
with a quadratic prior (41) and a single fixed regularization
parameter for all frame times. This single fixed parameter
was chosen to minimize the total mean square error of the
reconstructed emission image frames. The weighting matrix
required for the PWLS, PWLSZ, and PWLSR algorithms was
computed using (34) with .

In order to compute the PWLSZ reconstruction as described
in Section IV-B, we smoothed the result of PWLS reconstruc-
tion with a 3 3 equal weight filter to calculate the constraints
and weights. The weights were then scaled to minimize the MSE
of the parameter estimates.

The PWLSR method was computed using a prior model on
the , , , and parameters in a manner similar to that
used for parametric reconstruction. As with parametric recon-
struction, the constants were first selected using the ML es-

timation method described above, and then scaled to yield the
minimum RMSE estimates of the parameters.

For the linear (Logan) method, the cortex and striatum re-
gions are selected as target regions, and the nonspecific-gray
matter was used as the reference region. Since these regions
were selected precisely from simulated data, all assumptions of
this method are perfectly satisfied.

A fixed number of iterations is used for each method. The
multiresolution PICD method uses 30 iterations at 32 32 res-
olution, 20 iterations at 64 64 resolution, and 20 iterations at
128 128 resolution. Image domain methods use 15 iterations.

C. Results

Fig. 6 shows the reconstructions of the kinetic parameters.
The first row contains the original parametric images. The re-
maining rows are respectively the reconstructions of PWLS,
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Fig. 7. Normalized RMSE for the reconstructed parametric images. PICD1
denotes the PICD reconstruction regularized on k , k , k , and k . PICD2
denotes the PICD reconstruction regularized on k , k , BP , and V D. Notice
that PICD2 produces the lowest RMSE.

PWLSZ, PWLSR, PICD reconstruction regularized on , ,
, and , and PICD reconstruction regularized on , , ,

and .3 In addition, the normalized RMSE of parameters ,
, , and estimated by these algorithms are listed in Fig. 7.

The normalized RMSE of a parameter is computed as

where is the domain where RMSE is computed, is the
number of voxels in this domain, is the original value,

is the PWLS estimate of the parameter, and is
the estimated value of the parameter for voxel . The RMSE of

is calculated over the whole image. The RMSE of parameters
and are calculated over the support of , and the RMSE

of is calculated over the support of .4

For the nonlinear parameters and , the PWLS and
PWLSZ methods both produced reconstructions which are
very noisy, and this is reflected in the RMSE calculations. The
PWLSR method with the GMRF prior produces lower RMSE
reconstructions with more visually acceptable results for
and ; however some details in these nonlinear parameters
are lost. The parametric reconstruction regularized on , ,

, and produces higher SNR reconstructions than any of
the image domain methods, and the reconstructed images are
visually similar to the original phantom. However, the para-
metric reconstructions with regularization on , , , and

yield the best quality results judging from both the visual
quality and the computed RMSE.

For the comparison of parameters and , spatial reg-
ularization is applied on , , , and . In this case, the
scaling of the four regularization constants are chosen to mini-
mize the RMSE of the and estimates alone. The results

3A very small amount of regularization was also used for k and k (i.e.,
� = 1 min � = 0:1 min ) to suppress impulsive noise in these
reconstructions.

4When k is zero, then k and k are not defined. Similarly, when k is zero,
k is not defined.

are shown in Fig. 8 and the normalized RMSE of the estimates
of all methods are given in Fig. 9. The RMSE of is estimated
over the support of , and the RMSE of is estimated over
the support of . Again, parametric image reconstruction pro-
duces the lowest RMSE estimation for both and .

Once the parametric image is reconstructed, the ODEs can be
solved for any particular time to reconstruct the corresponding
emission image. Fig. 10 compares these reconstructions to the
conventional reconstructions computed using FBP and MAP re-
construction for time frames 5, 10, and 15. The FBP reconstruc-
tions use a Hamming filter with cutoff at the Nyquist frequency.
The RMSE of these reconstructions for each frame and for total
RMSE of all frames are given in Fig. 11.

Finally, the convergence speed as a function of CPU time for
all algorithms is given in Fig. 12. The time needed to reconstruct
emission images required by image domain methods is included
in this figure. As can be seen from this figure, the convergence
speed of direct parametric reconstruction is comparable to the
pixel-wise methods. It has been shown that ICD has more rapid
convergence at high spatial frequencies and relatively slower
convergence at low spatial frequencies [58]. Therefore, we used
multiresolution initialization to speed the convergence of lower
frequency components in the parametric image. Table IV lists
the CPU time required for a single iteration of each method.
Notice that direct parametric reconstruction using PICD does
not require substantially more computation per iteration than
the image domain methods, and the image domain methods re-
quire that the images first be reconstructed. This result is consis-
tent with the complexity listed in Table II since in this example,

; so
the computational complexity of the time convolution required
for kinetic parameter estimation dominates the computations re-
quired for the tomographic reconstruction.

VII. DISCUSSION

In Section VI-C, we demonstrated that the kinetic parame-
ters estimated by the direct parametric image reconstruction (ie.
the “direct”) have lower overall error as compared to those esti-
mated in the image domain (i.e., the “indirect”). The improve-
ment in the visual quality and the error of the kinetic parameter
estimation may be due to the following factors.

• All the available data are used simultaneously.
• Kinetic parameters are estimated directly from PET sino-

gram data (for which we have a very good error model).
• Nonlinear estimation methods are used (so there is no

need to linearize the model and introduce unwanted
inaccuracy).

• Spatial regularization is done in the kinetic parameter do-
main (because neighboring voxels probably have similar
function).

In contrast, the various image domain methods (described in
Section IV) depend on the quality of the tomographic recon-
structions of time-activity curves. FBP is still commonly used
to reconstruct the dynamic PET data; unfortunately, it cannot
produce the quality and the resolution achieved by the iterative
reconstruction techniques. Iterative methods (e.g., EM, ordered



646 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 5, MAY 2005

Fig. 8. Parametric images of BP and V D estimated by the algorithms; a) original; (b) PWLS; (c) PWLSZ; (d) PWLSR; (e) Logan; (f) PICD reconstruction
(new method).

Fig. 9. Normalized RMSE for the reconstructed BP and V D. PICD
reconstruction uses regularization on k , k , BP , and V D. Notice that PICD
reconstruction gives the lowest RMSE results.

subset EM [62], or MAP [54]) require that images be recon-
structed for each time frame and each slice. Therefore, direct
parametric reconstruction reduces the dimensionality of the es-
timation problem from the number of time frames to the number
of kinetic parameters in the compartment model. In our simula-
tions, the dimensionality of the estimation problem was reduced
by a factor of 4.5 (from 18 time frames to four parameters) by
the direct method.

When using an image domain approach, spatial regularization
can reduce the high spatial variance in the parametric images.
We have found that spatial regularization based on a Gaussian

Markov model produces less estimation error for all kinetic pa-
rameters except , compared with a smoothing filter-based
constraint.

The linear (Logan plot) method described in Section IV-C
is a very fast estimation technique. It tends to produce smooth
images because it involves an integral transform of the data
which suppresses noise. However, this method can only estimate
some of the (compound) kinetic parameters. In receptor-ligand
imaging, it provides no means for estimating , , , or

, individually. Furthermore, to derive from distribution
volume ratio, there must exist a reference region in the brain de-
void of receptors . For some tracers (e.g., muscarinic or
nicotinic ligands), there is no readily apparent reference region
and so the value of the Logan method is compromised. Even
when an appropriate reference region exists in theory (e.g., for
dopaminergic ligands) the validity of the parameter estimates
in the rest of the tissue can be biased by the placement of (or
spillover of activity into) the reference ROI. In our simulations,
we use the precise target (striatum and cortex) and reference
(nonspecific-gray matter) regions for this method which are se-
lected from the original image.

Another drawback to linearizations of the model is that they
achieve some of their computational simplicity by unmet model
assumptions (e.g., that the blood volume fraction in the refer-
ence and target tissues is zero over all time). These simplifica-
tions have been shown to introduce biases that are aggravated
with decreasing SNR [63]–[65]. Another common assumption
that is implicit in the use of Logan-plot methods is that the

ratio everywhere in the brain is constant (although we
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Fig. 10. Activity images. (a) Original phantom, (b) FBP reconstruction,
(c) MAP, and (d) PICD reconstruction (new method) for frames 5, 10, and 15.

TABLE IV
CPU TIME FOR A SINGLE ITERATION

satisfy this constraint in our simulated data, the direct estima-
tion method does not require it). This ratio can, of course, be
regularized spatially in the direct method. Local regularization,
however, is not nearly as rigid a requirement as expecting
to be constant everywhere.

Although direct parameter estimation from the PET sino-
grams has been proposed previously as the EMPIRA algorithm
[1], this or equivalent methods have not been fully imple-
mented. This is likely due to the computational complexity of
the M-step which was not fully specified, and the slow conver-
gence of conventional EM iterations. With the development of
computationally efficient and rapidly converging methods such
as have been demonstrated in this paper, direct reconstruction
to parametric images should become widely applied to dynamic

Fig. 11. Normalized RMSE of emission image reconstructions (a) frame by
frame and (b) total. Notice that images generated using PICD reconstructed
parameters have the lowest RMSE.

Fig. 12. Convergence curves for the estimation algorithms. Notice that the
parametric reconstruction method with multiresolution initialization converges
much faster than fixed resolution parametric reconstruction, and it is comparable
in speed to the image-domain methods.

PET data for which a kinetic model has been already estab-
lished. It should be mentioned that there is nothing to prevent
us from incorporating more complicated kinetic models into
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APPENDIX

PSEUDOCODE

'  ParametricReconstruct(sinograms)f

for each iteration f

for each voxel sf

[�1; �2]  ComputeDerivatives(sinograms; 's)

~'s  's
[~�; ~�] ConvolveWithPlasma(~cs; ~ds; [t0; . . . ; tK�1]; �; VB ; CP )

~cs  argmin~c fCostFunction([~as;~bs;~cs; ~ds]; 's; �; �; �1; �2; f'r : r 2 @sg;W )g

[~�; ~�]  ConvolveWithPlasma(~cs; ~ds; [t0; . . . ; tK�1]; �; VB ; CP )

[~as;~bs]  EstimateAandB( ~'s; 's; ~�; ~�; �; �; �1; �2; f'r : r 2 @sg;W )

l  argminlfCostFunction([~as;~bs; ~cs + l; ~ds + l]; 's;�; �; �1; �2; f'r : r 2 @sg;W )g

~cs  ~cs + l; ~ds  ~ds + l

[~�; ~�]  ConvolveWithPlasma(~cs; ~ds; [t0; . . . ; tK�1]; �; VB ; CP )

[~as;~bs]  EstimateAandB(~'s; 's;~�; ~�; �; �; �1; �2; f'r : r 2 @sg;W )

's  ~'s
g

g

g

cost  CostFunction(~'s; '; �; �; �1;�2; f'r : r 2 @sg;W )f

[~�; ~�]  ConvolveWithPlasma(~cs; ~ds; [t0; . . . ; tK�1]; �; VB ; CP )

[~as;~bs]  EstimateAandB(~'s; 's;~�; ~�; �; �; �1; �2; f'r : r 2 @sg;W )

cost  DeltaCost( ~'s; 's; ~�; ~�; �; �; �1; �2; f'r : r 2 @sg;W )

g

[~a;~b]  EstimateAandB(~'s; 's;~�; ~�; �; �; �1; �2; f'r : r 2 @sg;W )f

for Lab=3 iterations f

�C  DeltaCost([~a;~b; ~cs; ~ds]; 's;~�; ~�; �; �; �1; �2; f'r : r 2 @sg;W )

(dC=da) (�1=�)fDeltaCost([~a + �;~b; ~cs; ~ds]; 's;~�; ~�; �; �; �1; �2; f'r : r 2 @sg;W ) ��Cg

(dC=db) (�1=�)fDeltaCost([~a;~b + �; ~cs; ~ds]; 's;~�; ~�; �; �; �1; �2; f'r : r 2 @sg;W ) ��Cg

if ~a = 0 and (dC=da) < 0 then (dC=da)  0

if ~b = 0 and (dC=db) < 0 then (dC=db)  0

if fj(dC=da)j+ j(dC=db)jg > 0 then f

((dC=da); (dC=db)) ((dC=da);(dC=db))= ((dC=da)2 + (dC=db))2

�  argmin�2[0;1]DeltaCost([~a + �(dC=da);~b+ �(dC=db); ~cs; ~ds]; 's; ~�; ~�; �; �; �1; �2; f'r : r 2 @sg;W )

~a  ~a + �(dC=da);~b  ~b + �(dC=db)

g

g

g

�C  DeltaCost( ~'s; 's; ~�; ~�; �; �; �1; �2;f'r : r 2 @sg;W )f

�f  ~as ~� + ~bs ~� � as� � bs�

�C  �f�1 + (1=2)k�fk2� +
r2@s

gs�rkT ( ~'s) � T ('r)k
2
W

g:

the PICD algorithm. Even though the solution to these models
cannot be expressed in closed form, the power of our method,
to decouple the (numerical) solution of the model from the
other steps in the optimization procedure, is preserved.

We also believe that an extension of the PICD algorithm to
list-mode data is possible. The function , defined in (16),
can be viewed as the coefficients of a zeroth-order piece-wise
constant spline. By using higher order splines, the activity of a
voxel at any time can be computed. In this way, event arrival

times can be incorporated into the probability function and log
likelihood given in (19) and (20) respectively. In this case,
would denote the spline coefficients for voxel , and the quan-
tities and would be the first and second derivatives of the
likelihood function with respect to the spline coefficients.

Our current implementation of direct reconstruction has
certain limitations. For example, in image domain estima-
tion methods it is possible to register the images for motion
compensation. External measurement devices can allow us to
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record motion during acquisition [66] and correct the data in
an automated fashion. The current implementation of our al-
gorithm does not allow for this type of compensation. Another
limitation is that our method assumes that all voxels are well
modeled by the same family of model kinetics, which might not
be the case in practice. However we note that single families
of model kinetics have been sufficient for describing receptor
ligands in different regions of the brain on an ROI-basis.

VIII. CONCLUSION

In this paper, we introduce a method for the direct recon-
struction of kinetic parameters at each voxel from dynamic
PET sinogram data. Our algorithm, which we call parametric
iterative coordinate decent (PICD), decouples the nonlinearities
between the tomographic model, the kinetic model, and the
regularized parameters. It also allows one to regularize with
respect any desired parametrization, even if the parameters that
are selected are nonlinearly related to the projections or the
kinetic model parameters. Using an anatomically and phys-
iologically realistic small animal phantom, we demonstrated
that our method can reduce the mean squared error in model
parameter estimates; and we show that for our example, it
does not require substantially more computation than more
conventional methods for computing dense parameter estimates
in the image domain.

APPENDIX

See pseudocode at the top of the previous page.
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