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Abstract

We quantitatively compare filtered backprojection
(FBP), expectation maximization (EM), and Bayesian
reconstruction algorithms as applied to the IndyPET
scanner, a small to intermediate field of view dedicated
research scanner. A key feature of our investigation is the
use of an empirical system kernel determined from scans
of line source phantoms. This kernel is incorporated into
the forward operator of EM and the Bayesian reconstruc-
tion algorithms. Our results indicate that, particularly
when an accurate system kernel is used, Bayesian meth-
ods can significantly improve reconstruction quality over
FBP and EM.

1 Introduction

Iterative methods for positron emission tomography
(PET) reconstruction can theoretically improve recon-
struction quality by modeling the data acquisition pro-
cess and by regularizing the ill-posed inverse problem.
Importantly, iterative methods can achieve significant
resolution recovery by incorporating an accurate model of
the tomography scanner to account for sinogram blurring
due to detector crystal penetration, inter-crystal scatter,
depth of interaction and other effects. However, this ad-
vantage is often not fully exploited in practical imple-
mentations of iterative reconstruction algorithms.

Previous approaches to modeling the tomography
scanner for iterative reconstruction have typically relied
on analytical modeling of detector properties or on Monte
Carlo simulations. Qi, et al., [1, 2] have successfully used
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such a model for Bayesian reconstruction of data from the
microPET and the Siemens/CTI HR+ scanners. Their
results demonstrate that accurate modeling in combina-
tion with Bayesian reconstruction algorithms can give su-
perior resolution and ROI quantitation at lower variance
as compared to FBP and OSEM.

In this study, we quantitatively compare FBP, EM,
and Bayesian reconstruction algorithms and evaluate the
impact of modeling the scanner for iterative reconstruc-
tion. Our results are based on phantom data acquired on
the IndyPET tomography scanner[3], and also on simu-
lated data. In contrast to previous approaches, we have
obtained a system kernel for the IndyPET scanner em-
pirically using scans of line source phantoms. This em-
pirical approach is greatly simplified by the non-circular
detector geometry of the scanner which allows for mea-
suring the full range of incident photon angles using only
sources positioned near the center of the field of view.
For the iterative reconstruction methods, we compare re-
construction quality for our empirical kernel and a simple
triangular kernel calculated based on detector solid angle.

For the Bayesian reconstruction algorithms, we com-
pare three different prior models; a Gaussian Markov
random field (GMRF), a generalized Gaussian Markov
Random field (GGMRF)[4] and a wavelet prior model[5].
Furthermore, we evaluate a modification of Bayesian
methods proposed by Fessler and Rogers[6] that produces
reconstructions with approximately uniform resolution.

2 IndyPET Scanner

As illustrated in Fig. 1, the distinguishing feature of the
IndyPET scanner[3] is the use of two, approximately pla-
nar detector banks with adjustable separation which are
mounted on a rotatable gantry. Each detector bank con-
sists of 8 CTI-HR BGO detector modules whose crystals
are cut into a 7 (transaxial) by 8 (axial) array of segments
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Figure 1: Photograph and detector geometry of the IndyPET
scanner.

with a transaxial spacing of 3.3 mm and an axial spacing
of 6.3 mm. The crystal depth is 30 mm.

In comparison to using a full ring of detectors, the
scanner’s geometry results in reduced parallax and ap-
proximately uniform resolution throughout the field of
view. However, because the detectors do not form a full
ring, data must be collected at multiple gantry positions.

To model the system kernel, we consider the projection
matrix P such that Pij is proportional to the probability
that an emission from pixel j is registered by the ith

detector pair. Assuming that pixels in the reconstruction
image are considerably smaller than the detectors, Pij
can be written as

Pij ≈ hi(scj )Aj (1)

where hi(s) is the kernel of the ith detector pair, s is the
coordinate, scj is the center coordinate of pixel j, and
Aj is the area of pixel j. We assume that the factor
hi(s) depends only on the projection angle θi relative to
the detectors and the displacement ∆ts,i of location s
from the ideal projection line connecting the centers of
detector pair i. Then we model hi(s) as

hi(s) = h(θi,∆ts,i) (2)

where we call the 2-D function h the system kernel. The
simplicity of the parameterization (2) is a direct conse-
quence of the use of approximately plane detector banks
in the IndyPET scanner. In contrast, the parameteriza-
tion for a circular detector geometry would require an ad-
ditional parameter since the detector orientation relative
to the projection lines is a function of the displacement
of the projection from the center of the field of view.

We measured the system kernel h(θi,∆ts,i) using an
axially oriented line source phantom stepped through the
center of the field of view. The measured counts were
corrected for detector efficiencies and parameterized by
projection angle θ and displacement difference ∆ts,i be-
tween the needle position s and the ideal projection line.
The resulting empirical system kernel h(θ,∆t) is shown
in Fig. 2. We observe that the response is wider and

Figure 2: Meshplot showing the empirical system kernel
h(θ,∆t) for the IndyPET scanner. The kernel is parame-
terized by projection angle θ and the displacement ∆t of the
source from the ideal projection line.

more complicated than for a simple triangular response
profile based on solid angle. Also, the result in Fig. 2 does
not indicate a significant dependence on projection an-
gle due to the limited range of projection angles acquired
with the IndyPET scanner.

3 Reconstruction Algorithms

We compare reconstructions obtained using FBP, EM,
and Bayesian techniques with three different prior mod-
els. For EM and the Bayesian methods, the exact Poisson
counting statistics were used to model the data acquisi-
tion. Transmission attenuation coefficients were calcu-
lated by forward projecting the estimated support of the
imaged object using a constant attenuation coefficient.
Scatter and randoms correction factors were estimated
directly from the sinogram. For the Bayesian meth-
ods, we compare three different prior models; a Gaus-
sian Markov random field prior (GMRF), a generalized
Gaussian Markov random field (GGMRF)[4] prior and
an adaptive wavelet graph model (WGM) prior. The
GGMRF was proposed in as an edge-preserving MRF
prior with a convex potential function. For our experi-
ments, we chose a GGMRF shape parameter of p = 1.5.
The adaptive wavelet graph model (WGM)[5] is a non-
linear prior model formulated in the wavelet domain and
exploits dependencies between wavelet coefficients at dif-
ferent resolutions. For the results presented here, the
WGM model was implemented and trained as described
in [5]. The MAP optimization for all three prior mod-
els was performed using the iterative coordinate descent
(ICD) algorithm[4, 7].

Reconstructions were performed as a function of a
smoothing parameter appropriate for each reconstruction
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Figure 3: Bar phantom reconstructions with smoothing parameters selected to minimize the expected error for the bar
profiles in quadrant 3 (2.90 mm bars). The field of view is 13.50 × 13.78 cm at a resolution of 0.70 mm/pixel.

method. For FBP, the cutoff frequency of a Hanning fil-
ter was varied. For EM, the number of iterations was
varied. For the Bayesian methods, the scale parameter
of the prior was varied.

4 Experimental Results

Reconstruction quality for different combinations of re-
construction algorithms and system kernels was analyzed
using two sets of phantom data collected on the IndyPET
scanner and using a simulated data set containing a circu-
lar lesion on an approximately uniform background. For
the phantom data sets, we performed EM and Bayesian
reconstructions using the empirical system kernel shown
in Fig. 2 and using a triangular kernel of width 3.3 mm
which is the analytical result based on solid angle.

4.1 Bar Phantom

The bar phantom consists of four arrays of parallel acrylic
bars with thicknesses of 1.55, 2.31, 2.90, and 4.32 mm
separated by gaps of equal widths, resulting in square
wave emission profiles with different periods for each
quadrant. The data set acquired on the IndyPET scanner
contained 10.4M counts in the 2-D reconstruction plane.

Figure 3 shows sample reconstructions with the
smoothing parameters chosen to minimize the expected
spatial reconstruction error (see below) for the 2.90 mm
bars in quadrant 3. Based on visual inspection, the em-
pirical system kernel significantly improves the quality of
the iterative reconstruction techniques. Also, when the
empirical system kernel is used, the iterative techniques
provide improved resolution over FBP. For the Bayesian
reconstructions, the non-Gaussian GGMRF and WGM
prior models provide sharper edges as compared to the
GMRF prior. However, the GMRF prior appears to have
a wider frequency response, allowing for good reconstruc-
tion quality of all quadrants using a single regularization
parameter.

The bar phantom reconstructions were analyzed quan-
titatively by comparing the reconstructed signal to the
expected square wave profile. Bias and variance mea-
sures were computed separately for each quadrant Q by
fitting a harmonic series to the reconstructed bar profiles

averaged over the coordinate parallel to the bars. The
bias is given by

bias2Q = min
c

{
K∑
k=1

(ak
c
− αk

)2
+
K∑
k=0

(
bk

c
− βk

)2}
.

(3)
where ak and bk are coefficients of the fitted sine and
cosine terms, c is a scaling parameter, and αk and βk are
the coefficients of an ideal square wave. The variance was
calculated between the reconstructed pixel values xi and
the fitted values x̃i,

varQ = std2Q =
1

c2(N2i − 1)

∑
i

(xi − x̃i)
2 (4)

where Ni is the number of pixels.
Figure 4 shows bias versus standard deviation sepa-

rately for the three quadrants. The curves were obtained
by varying the smoothing parameter for each reconstruc-
tion method. The plots indicate that the empirical sys-
tem kernel significantly lowers the bias at equal variance
for EM and Bayesian GMRF MAP. Specifically, when the
triangular kernel is used, EM and GMRF MAP perform
similarly. In this case, the iterative methods do not out-
perform FBP in the low variance region. However, when
the empirical kernel is used, GMRF MAP achieves signif-
icantly lower bias at equal variance as compared to EM.
In this case, both EM and the Bayesian methods per-
form significantly better than FBP. Note, that the FBP
reconstructions have low variance and high bias even for
a ramp filter since no resolution recovery is performed.

4.2 Hoffman 3-D Brain Phantom

The Hoffman 3-D brain phantom data set acquired on
the IndyPET scanner contained 2M counts in the 2-D
reconstruction plane. Figure 5 shows reconstructions for
the different algorithms and system kernels. In general,
using the empirical kernel significantly improves the qual-
ity of the EM and MAP GMRF reconstructions. For
the empirical kernel, the EM result does not reproduce
the interior contours as well as the Bayesian techniques.
As compared to the GMRF, the GGMRF prior produces
sharper contours with few artifacts. The WGM produces
a much sharper image, however, the result has significant
artifacts.
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Figure 4: Plots of bias versus standard deviation for the bar phantom reconstructions.
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Figure 5: Reconstructions of Hoffman 3-D brain phantom.

4.3 Simulated Lesion Phantom

Simulated projection data were generated using the im-
age shown in Fig. 6(a) containing a constant circular le-
sion of 4 mm diameter added to an approximately uni-
form background. The amplitude of the lesion was 5
times the background activity.

Twenty noisy realizations of simulated projection data
were generated by forward projecting the image shown in
Fig. 6(a) using the empirical system kernel and adding
Poisson noise corresponding to 130,000 counts in the
reconstruction plane. For the iterative reconstruction
methods, only the empirical system kernel was used.
Even though the use of the same system kernel for for-
ward projection and reconstruction will bias the results
towards the iterative reconstruction techniques, we still
obtain fair comparisons between different iterative tech-
niques and obtain an approximate idea about their per-
formance relative to FBP.

The reconstructions were analyzed quantitatively by
calculating the errors e2L and e2B given by

e2L =
1

µ2LNL

∑
j∈L

(x̂j − xj)
2 (5)

and

e2B =
1

µ2BNB

∑
j∈B

(x̂j − xj)
2 (6)

where xj and x̂j are pixel values in the ground truth and
reconstructed images, µL and µB be the true mean ac-
tivity values, and NL and NB are the number of pixels
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Figure 6: Plots of lesion RMSE versus background RMSE
for reconstructions of the simulated lesion phantom. Shown
in (a) is a comparison for the different iterative methods and
FBP. Shown in (b) is the effect of using the modification of
the MAP prior proposed in [6].

in the respective regions. The errors e2L and e2B are av-
eraged over the 20 reconstructions of the different noise
realizations to give estimates Ê[e2L] and Ê[e2B] for the ex-
pected relative errors for each reconstruction method as
a function of regularization parameter.

Figure 6(a) shows a plot of the expected reconstruction

error
√
Ê[e2L] for the lesion versus the expected recon-

struction error
√
Ê[e2B] for the background for different

algorithms. The curve for each algorithm was obtained
by varying the smoothing parameter. We observe that
for the lesion region, the Bayesian methods achieve lower
error compared to EM. Also, the GGMRF prior model
performs significantly better than the GMRF prior since
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Figure 7: Reconstructions of the simulated tumor phantom. The 1-D profiles correspond to a single row of pixels intersecting
the center of the lesion.

the GGMRF curve reaches a point closer to the coordi-
nate origin, signifying lower combined error.

Figure 6(b) shows the reconstruction error for Bayesian
GMRF and GGMRF reconstructions using the modifi-
cation proposed by Fessler and Rogers[6]. This modifi-
cation is effective in reducing the combined lesion and
background errors since the curves move closer to the
coordinate origin. However, the minimum error in the
lesion region is slightly higher for the modified priors.

Figure 7 shows reconstruction images as well as 1-D
profiles through the lesion for the different algorithms.
For the iterative reconstructions, the results in Fig. 7 cor-
respond to the value of smoothing parameter that min-
imizes the combined error (Ê[e2L] + Ê[e2B]); for FBP, a
ramp filter reconstruction is shown. We observed that
the iterative algorithms resolve the lesion substantially
better than FBP. In comparison to EM, the Bayesian
GMRF and GGMRF reconstructions more accurately
quantify the lesion. The WGM prior model segments the
lesion surprisingly accurately, however, it slightly under-
estimates lesion activity and has some artifacts. Overall,
the modified GGMRF model appears to achieve the most
accurate result. Note that the reconstructions have ring-
ing artifacts in the background due to the extremely high
reconstruction resolution which is consistent with obser-
vations in earlier studies[1].

5 Conclusions

We have presented a comparison of reconstruction quality
for FBP, EM, and Bayesian algorithms as implemented
for the IndyPET scanner. A key feature of this investi-
gation is the determination of an empirical system kernel
based on scans of line source phantoms which may be
simpler and potentially more accurate than modeling of
detector properties and Monte Carlo simulations.

For the data sets and evaluation methods used in this
study, we found that without an accurate system kernel,
the reconstruction quality of the iterative methods was
similar to that of FBP. However, when an accurate sys-

tem kernel was incorporated, Bayesian MAP techniques
were superior to EM and EM was superior to FBP.
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