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A Unified Approach to Statistical Tomography
Using Coordinate Descent Optimization
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Abstract—Over the past ten years there has been considerable
interest in statistically optimal reconstruction of cross-sectional
images from tomographic data. In particular, a variety of such
algorithms have been proposed for maximum a posteriori (MAP)
reconstruction from emission tomographic data. While MAP
estimation requires the solution of an optimization problem,
most existing reconstruction algorithms take an indirect approach
based on the expectation maximization (EM) algorithm. In this
paper, we propose a new approach to statistically optimal image
reconstruction based on direct optimization of the MAP criterion.
The key to this direct optimization approach is greedy pixel-wise
computations known as iterative coordinate decent (ICD). We
propose a novel method for computing the ICD updates, which we
call ICD/Newton—Raphson. We show that ICD/Newton—-Raphson
requires approximately the same amount of computation per
iteration as EM-based approaches, but the new method converges
much more rapidly (in our experiments, typically five to ten iter-
ations). Other advantages of the ICD/Newton—Raphson method
are that it is easily applied to MAP estimation of transmission
tomograms, and typical convex constraints, such as positivity,
are easily incorporated.

I. INTRODUCTION

N THE past decade, emission tomography and other

photon-limited imaging problems have benefited greatly
from the introduction of statistical methods of reconstruction.
Unlike the relatively rigid deterministically based methods
such as filtered backprojection, statistical methods can be
applied without modification to data with missing projections
or low signal-to-noise ratios (SNR’s). This makes statistical
reconstruction methods well suited to emission problems
or transmission tomograms of dense materials. The Poisson
processes in emission and transmission tomography invite the
application of maximum-likelihood (ML) estimation, simply
choosing the parameters in the discretized reconstruction that
best match the data. However, due to the typical limits
in fidelity of data, ML estimates are usually unstable, and
have been improved upon by methods such as regularization,
maximum a posteriori probability (MAP) estimation [1], or
the method of sieves [2].
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Both the ML and MAP reconstructions may be formulated
as solutions to optimization problems. However, this optimiza-
tion problem is a formidable numerical task due to both the
number of parameters in the estimate (pixels or voxels) and
the number of observations (photon-counting measurements).
Since the work of Shepp and Vardi [3], the method of choice
for finding ML estimates in emission tomography has been the
expectation-maximization (EM) algorithm. The EM algorithm
is based on the notion of a set of “complete” data which, if
available, would make the estimation problem easier. Lange
and Carson [4] also formulated the EM method for the
transmission problem.

In the Bayesian problem, the EM approach is less simple to
apply to emission tomographic reconstruction. This is because
the maximization step has no closed form and itself requires
the use of an iterative optimization technique. To address
this problem, many approaches have been proposed, but all
of them approximate the otherwise intractable maximization
step. For the case of Gaussian prior densities, Liang and Hart
[51, [6], Herman and Odhner [7], and Herman, DePierro, and
Gai [8] have modified the EM approach to include Bayesian
estimation. A variety of methods have also been proposed for
adapting the EM algorithm to more general Markov random
field (MRF) priors. These methods include the generalized EM
(GEM) algorithm proposed by Hebert and Leahy [9], [10], the
one-step-late (OSL) method proposed by Green [11], and a
more general form of DePierro’s method [12].

The slow convergence of EM is perhaps its greatest disad-
vantage and is well documented for ML emission tomography
[13]. Ollinger used the EM approach of [4] to solve the
transmission problem and found that convergence required
from 200 to 2000 iterations[14]. For the emission tomography
problem, the complete data are usually the number of detec-
tions associated with each pixel/detector combination, while
the number of photons from each ray entering and exiting
each pixel is the corresponding set for transmission. While
the use of such large complete data sets appears to simplify
the computation of the ML estimate, Fessler and Hero [15]
have shown that a large or “informative” complete data space
also slows convergence, and have proposed SAGE [16], a
collection of methods designed to limit the size of the complete
data set with each pixel update in EM reconstruction, with
substantially improved convergence.

The similarity of EM iterations to gradient ascent has often
been noted [17], [13], [18], and has led to improvements
in computational costs and the understanding of convergence
properties of the algorithm. Lange and Fessler have recently
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developed alternative gradient-type optimization approaches
with provable convergence for the transmission problem[19].
The preconditioned conjugate gradient approach of Mum-
cuoglu er al. is also operationally similar to EM, but is
designed independently of the EM notion, and is explicitly
formulated for the MAP problem in both emission and trans-
mission reconstruction[20].

In this paper, we expand on the work first presented in
[21] and take a direct optimization approach to the problem
of MAP image reconstruction of emission and transmission
tomograms. It is interesting to note that in spite of their
relative simplicity, such methods do not seem to have been
well investigated for exact statistical image reconstruction
with Poisson measurement noise. However, we show that
direct optimization is quite tractable for this problem. The
result of [15] also suggests that the fastest convergence of
an EM-type formulation may be achieved by using the actual
observations as the complete data set, which is equivalent to
direct optimization of the ML or MAP functionals. Moreover,
a direct method without appeal to EM allows one to use a
wide range of efficient algorithms to achieve fast convergence.
Our approach requires approximately the same amount of per
iteration computation as traditional EM methods, but has much
more rapid convergence, and therefore reduced computation.
We also note that some of the methods developed in this paper
have recently been studied in [22], and found to compare
favorably to alternative approaches.

Our approach to optimization is based on the sequential
greedy optimization of pixel (or voxel) values in the re-
construction. This method, which we refer to as iterative
coordinate descent (ICD)! goes by a variety of other names
including iterated conditional modes (ICM) for MAP seg-
mentation 23], and Gauss—Seidel (GS) for partial differential
equations [24]. All these algorithms work by iteratively up-
dating individual pixels or coordinates to minimize a cost
functional. The ICD method was first applied to least-squares
Bayesian tomographic reconstruction by Sauer and Bouman
[25]. This work assumed transmission data with a Poisson
distribution, but used a Taylor series expansion to derive a
quadratic approximation to the exact log likelihood. Fessler
has applied this ICD method to a least squares formulation
of the emission problem and has shown that underrelaxation
methods can speed ICD convergence[26].

The ICD method has a number of important advantages
that make it a good choice for direct optimization. First,
ICD can be efficiently applied to the log-likelihood expres-
sions resulting from photon-limited imaging systems. In fact,
each ICD iteration is similar in nature and computational
complexity to an iteration of the EM algorithm; however,
we directly attack the posterior probability function rather
than the @ function of EM. Second, the ICD algorithm is
demonstrated to converge very rapidly (in our experiments,
typically five to ten iterations) when initialized with the
filtered back projection (FBP) reconstruction. This is not
surprising, since the FBP reconstruction is accurate at low
spatial frequencies, and in [25] we showed that the ICD

I'We choose to use the name ICD since it is most descriptive of the
algorithmic approach.

method (also known as Gauss—Seidel) has rapid convergence
at high spatial frequencies. The third important advantage of
the ICD algorithm is that it easily incorporates typical convex
constraints and non-Gaussian prior distributions.? Positivity
is a particularly important convex constraint which can both
improve the quality of reconstructions and significantly speed
numerical convergence [27]. Non-Gaussian prior distributions
are also important since they can substantially reduce noise
while preserving edge detail [11], [28], [29], [30].

Our principal result is a new method for computing the ICD
updates, which we call ICD/Newton—Raphson. This method
is similar to the classical Newton—Raphson root-finding algo-
rithm, but differs from the conventional approach in treating
the prior term separately. This is important since the prior
term is may be poorly modeled with a quadratic approximation
when non-Gaussian image models are used.

Our analysis starts with an approximation of the optimiza-
tion problem based on a Taylor expansion of the log-likelihood
function. This approximation, which was previously developed
for the transmission problem [25], is shown to extend equally
well to the emission formulation. The Taylor approximation is
important for two reasons. It provides a common conceptual
framework for both the emission and transmission problems,
and it gives insight into the best choice of numerical techniques
for the exact optimization problem. We also show that this
Taylor series approximation leads to an expression similar to
one proposed by Fessler [26] for the modeling of accidental
coincidences in emission reconstructions.

While the approximation above may be accurate enough
for some high SNR settings, solving the exact ML or
MAP problem is our principal concern here. This leads
us to the optimization of the exact posterior distribution
using the ICD/Newton-Raphson algorithm. The per-iteration
computational cost of ICD/Newton—-Raphson is found to be
similar to that of the EM algorithm, but unlike EM, the
ICD/Newton-Raphson algorithm is easily adapted to the
Bayesian problem. Finally, we note that a minor modification
of the ICD/Newton—Raphson algorithm can be proved to have
global convergence [31].

II. FORMULATION OF STATISTICAL PROBLEM

In this section, we will develop the statistical framework
for the MAP reconstruction problem for both the emission
and transmission case. We will also review the conventional
EM approach for later comparison.

For the emission problem, A is the N dimensional vector
of emission rates, Y is the M dimensional vector of Poisson-
distributed photon counts, A; represents the emission rate from
pixel (voxel) 7, and P;; is the probability that an emission from
pixel j is registered by the ith detector. Thus, according to the
standard emission tomographic model, the random vector Y
has the distribution

- _Pi*)\ Pzak)\ vi
P(Y =y =]] exp y"}{ } (0
i=1 v

2We note that convex constraints, such as positivity, may be thought of as
a special type of non-Gaussian prior information, and is therefore consistent
with the Bayesian problem formulation.
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where the matrix P contains the probabilities P;;, and P,
denotes the vector formed by its sth row. This formulation is
general enough to include a wide variety of photon-limited
imaging problems, and the entries of P may also incorporate
the effects of detector response and attenuation. Using (1), the
log likelihood may be computed:

(emission) log P(Y = y|A\)
M

= 3" (=Pi) + yilog{ PuA} — log(u:!)).

=1

@

The corresponding result for the transmission case is dis-
cussed in [25]. In order to emphasize the similarity of the
transmission problem, we use the same notation but interpret
A as the attenuation density of a pixel, and y as the observed
photon counts. The log likelihood is then given by

(transmission)  log P(Y = y|A)

M

=Y (—yre P+ yi(logyr — Pic)) — log(y:!)) (3)
t=1

where yr is the photon dosage per ray. Both log-likelihood
functions have the form

M
log P(Y =ylA) = = > fi( Piu)) @

=1

where f;(-) are strictly convex and differentiable functions.
This common form will lead to similar methods of solving
these two problems.

For the emission problem, maximum-likelihood (ML) esti-
mation of A from y yields the optimization problem

M
Avrz = argmin y (P — y;log{PiA}).

7=1

Probably the most widely applied algorithm for finding Az is
expectation-maximization (EM) [32], which was first applied
by Shepp and Vardi [3] to the emission tomographic problem.
EM solves the ML estimation by hypothesizing the existence
of complete data, which would allow very simple estimation of
A if available. For the emission tomographic problem, these
observations are the number of photons emitted from each
discretized cell of the reconstruction region registered at each
detector. The iteration resulting from the EM formulation is
\tl M/\? i i
’ Zm:l Prj i 21:1 PaA?

where n indicates the number of the iteration, updating the
entire reconstruction. Because the log likelihood is concave,
this approach can be shown to converge to the ML estimate
[17].

In Sections Il and IV, we will show that the exact ML
or MAP reconstruction may also be computed through direct
optimization using the ICD algorithm. The ICD algorithm
works by sequentially optimizing the log likelihood with re-
spect to each pixel (or voxel) value A;. In [25], we introduced
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TABLE I
Two MEASURES OF COMPUTATIONAL COMPLEXITY INDEPENDENT OF
HARDWARE/SOFTWARE IMPLEMENTATION. THE FIRST MEASURE IS THE NUMBER
OF MULTIPLIES PLUS D1vIDES PER FULL ITERATION OF EACH METHOD.
THE SECOND MEASURE is THE NUMBER TIMES THE P MATRIX IS
READ FROM MEMORY. /N IS THE NUMBER OF POINTS IN THE IMAGE,
Mo1s THE AVERAGE NUMBER OF NONZERO PROJECTIONS ASSOCIATED
WITH EACH IMAGE PIXEL, AND K 1S THE AVERAGE NUMBER
OF ITERATIONS REQUIRED FOR THE HALF INTERVAL SEARCH

Algorithm | # of multi./div. | # of matrix reads
Filtered Backprojection MoN 1
EM (maximum likelihood) 2MoN 2
TCD (Gauss-Seidel) with quadratic approximation 3MN 2
1CD/Half Tnterval exact 3KMyN K+1
1CD/Newton-Raphson exact 4MyN 2

a fast algorithm for implementing ICD in the transmission
problem when the log likelihood is approximated by a single
quadratic function. This basic ICD algorithm exploits the
sparse nature of the projection matrix by maintaining a state
vector p* = PA™ of the projected values.

In this paper, we will investigate three new techniques
for applying ICD to emission and transmission MAP recon-
struction. The first technique is as in [25], but relies on a
new quadratic approximation to the log likelihood derived
for the emission problem. The second technique, which we
will refer to as ICD/half interval, finds the solution through
greedy sequential pixel updates, using a half-interval search to
solve the problem exactly at each step. Finally, the method
we call ICD/Newton-Raphson (ICD/NR) forms a revised
quadratic approximation to the log likelihood at each new pixel
update. The ICD/Newton—Raphson method solves the MAP
reconstruction problem exactly, with the optimum estimate
being its only fixed point. It is this algorithm which we propose
as our best solution for the general statistical tomographic
reconstruction problem. The details of computation will follow
in Sections III and IV.

In order to compare these various algorithms, we will need
an objective measure of computational complexity that is inde-
pendent of the specific hardware or software implementation.
For this purpose, we use two figures of merit: the approximate
number of multiplies plus divides per full iteration and the
number of complete reads of the P matrix. In practice, we
have found the number of matrix reads to be a good predictor
of algorithm speed since computation is often dominated by
memory access time and indexing overhead. Table I lists these
two performance measures for the EM algorithm in terms
of My, the average number of nonzero projection values
associated with each pixel> NM, is then the number, of
nonzero entries in the sparse projection matrix P. Notice that
one iteration of the EM algorithm requires the computation of
two iterations of filtered back projection.

For low signal-to-noise ratio medical imaging problems,
the shortcomings of ML estimation are well documented [2],
[33], [34]. Therefore, many researchers have resorted to some
form of regularized estimation for tomographic inversion.
Maximum a posteriori probability (MAP) estimation addresses
this problem by adding regularization in the form of an a priori
density for A. The MAP estimate has been shown to substan-

3The entries in Table I assumes that Mg >> 1, the sparse matrix P, is
precomputed and stored, and sums independent of the data are precomputed.
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tially improve performance in many image reconstruction and
estimation problems. In addition, the computation of the MAP
estimate is not prohibitively difficult provided that the log of
the prior density is a concave function of A.

A frequent choice for a prior model is the Gaussian MRF,
but the quadratic penalty extracted for the Gaussian often
causes excessive smoothing of edges. Several prior models
have been developed that include desirable edge-preserving
properties and maintain concavity in their log prior densities
[11], [35], [29,] [30]. Provided we choose one of these models,
the MAP problem is also concave, and iterations converge
to the global minimum solution. If the log prior is strictly
concave, then this minimum is also unique. Any MRF prior
model with a convex potential function may be applied to our
MAP formulation.

Throughout this paper we will use the generalized Gaussian
MRF (GGMRF) model proposed in [29] to illustrate our
methods. The GGMRF model has a density function with the
form

1
pA(A) = —exp _Wz‘gecbj_w\j — Agl?
VA

where C' is the set of all neighboring pixel pairs, b;_s, is the
coefficient linking pixels 7 and k, v is a scale parameter, and
1 < g £ 2 is a parameter that controls the smoothness of
the reconstruction. This model includes a Gaussian MRF for
¢ = 2, and an absolute-value potential function with ¢ = 1.
In general, smaller values of g allow sharper edges to form in
reconstructed images.

Prior information may also be available in the form of
constraints on the reconstructed solution. We will assume
that the set of feasible reconstructions € is convex, and in
all experiments we will choose £ to be the set of positive
reconstructions. Combining this prior model with the log
likelihood expression of (4) yields the expression for the MAP
reconstruction: ‘

M
Awrap=argmin Z fi(Pi*A)ﬂqz bi k| X — Akl
=1 {i,k}eC

©)

While the EM algorithm is not difficult to implement or
understand in the ML case, it is not directly and simply appli-
cable to MAP estimation when the complete data is taken to
be the number of photons associated with each pixel/detector
combination. This is because there is no closed-form solution
for the maximization step of the iteration. Hebert and Leahy
[9], [10] have developed the GEM algorithm to cope with
these effects. The GEM algorithm takes the form of coordinate
gradient ascent of the MAP EM cost functional with a heuristic
step size that can be adjusted to guarantee convergence.
DePierro’s majorization method for MAP reconstruction is
also guaranteed to converge [12]. The OSL method proposed
by Green [11] uses an approximate maximization step based
on the previous values for neighboring pixels. For all three of
these algorithms, computation per iteration is approximately
the same as listed for EM in Table 1.

1II. COMPUTATION OF APPROXIMATE MAP ESTIMATE

The first step toward efficient direct optimization of (6) will
be to develop a quadratic approximation to the log likelihood
functions for the emission and transmission problems. This
approximation is useful because it will guide the design of
efficient optimization techniques for the exact problem, and
because it gives important insight into the method and its
relationship to existing reconstruction algorithms.

In the Appendix, we compute the first two terms in a
Taylor expansion to find a quadratic approximation to the
emission log likelihood of (2). In [25], a similar quadratic
approximation was derived for the transmission problem. Both
approximations have the form

log P(Y = y|A) = —5(h — PA)TD(p ~ PN) +c(y) (D

N =

where p is a vector of projection measurements, D is a
diagonal matrix, and c(y) is some function of the data. For
the purposes of MAP estimation c(y) may be ignored since it
does not depend on A. For the emission case, p, and D are
given by*

(emission)p = y
D = diag{y; '}

while for the transmission case they are given by

(transmission)p; = ln(yr/v:) ®)
D = diag{y;}. )

The placement and character of the diagonal matrix D gives
immediate insight into both problems. For the transmission
problem, D more heavily weights those projections that cor-
respond to large photon counts. This is because the large
photon counts tend to reduce the variance of the measured
transmission projections. However, in the emission problem
large photon counts tend to create greater variance. In this case,
D is inversely proportional to the measured photon counts.
Fig. 1 compares the exact log-likelihood functions and their
quadratic approximations over a range of photon counts. Both
plots assume a single projection y; and use a 99% confidence
interval. In the Appendix, we show that for both transmission
and emission cases the approximation error bound is propor-
tional to Ei\il 1/./yi for large y;. This is consistent with the
plots that show better approximations for larger y;. In practice,
the accuracy of this least squares approximation to the log-
likelihood function will depend on the dosage (transmission)
or emission rates (emission), and the particular application.
Fessler [26] has independently developed a closely related
approximation to the log likelihood for reconstruction of
PET imagery from data precompensated for accidental coin-
cidences. In this case, the Poisson model is violated since the
observed counts of the compensated data can be negative, and

“For notational simplicity, we assume that all y; > 0. The Appendix
gives a more general quadratic approximation obtained by treating the terms
corresponding to y; = 0 separately.
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Fig. 1. Plots of the relative log-likelihoods for (a) transmission and (b)

emission tomography as a function of a single projection across the recon-
structed image. The exact Poisson model (dashed lines) and the quadratic
approximation (solid lines) are each plotted for three values of ¥, the
observed photon count. In the transmission case, yr = 500. Each of these
plots covers a confidence interval of 0.99 for a maximum-Jikelihood estimate
of the projection value.

Fessler employed a Gaussian approximation for the density of
corrected counts ¢, yielding the objective function

B(A) = (§ — PA)Tdiag{o; 21§ — PA).
Here the variance estimates are given by
of = niaf(a; G + 275)

where n; represents detector efficiency, a; represents atten-
uation correction factors, § is a smoothed version of ¢,
constrained to be positive, and 7; are accidental coincidence
counts made in an independent measurement. Under this least-
squares formulation, Fessler found ICD to converge relatively
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quickly, improving on the speed of EM iterations. Our ap-
proximate formulation of the log likelihood of (9) is similar
to Fessler’s approximation without accidental coincidences,
except for the smoothing of the entries in 4.

IV. COMPUTATION OF EXACT MAP ESTIMATE

To compute the exact MAP reconstruction, we must perform
the optimization of (6). Of course, there is a wide variety
of techniques from which to choose, but we will use the
approximate quadratic structure derived in Section III to guide
our selection.

Optimization techniques such as gradient ascent are unde-
sirable because of their slow convergence [25], [36]. Alterna-
tively, conjugate gradient [37] or various preconditioned forms
of gradient ascent [38,] [39], [20] techniques may be used
since they are known to have rapid convergence for quadratic
optimization problems. However, the performance of these
techniques is less predictable for the nonquadratic problems
resulting from non-Gaussian prior distributions. In fact, in the
limit as ¢ approaches 1, the log prior distribution becomes non-
differentiable, and gradient based optimization methods can
become unreliable [40]. Another significant drawback of con-
jugate gradient and preconditioning methods is the difficulty
of incorporating positivity constraints. The incorporation of
positivity constraints for these methods may require the use of
“bending” techniques, which are potentially computationally
costly [13], [41].

We choose to use the ICD algorithm for a number of
reasons. First, it was shown in [25] that the greedy pixel-
wise updates of the ICD algorithm produce rapid convergence
of the high spatial frequency components in the quadratic
problem. Since the FBP can be used as a starting point of
the algorithm, the convergence of the low spatial frequencies
is less important. Second, the ICD updates work well with
non-Gaussian prior models. In fact, the ICM algorithm, which
is functionally equivalent to ICD, was developed for the
MAP segmentation problem with a discrete prior model [23].
Finally, the ICD algorithm is easily implemented along with
convex constraints such as positivity. For this example, each
pixel update is simply constrained to be nonnegative.

The ICD algorithm is implemented by sequentially updating
each pixel of the image. With each update the current pixel
is chosen to minimize the MAP cost function. For emission
tomography, the ICD update of the jth pixel is given by

M
)\2’.“"1 = arg Izl’lzlgl ZO [P—LJQJ — y; log (PZJ((E - /\?) -+ Pz*/\’n)}
i=

+ 9% ) bjklz — AR
kEN;

(10)

where N; is the set of pixels neighboring j. Notice that in this
case A" and A™t1! differ at a single pixel, so a full update of the
image requires that (10) be applied sequentially at each pixel.

No simple closed-form expression for A?*l results from
(10), but there are many optimization techniques that can
be employed to find its minimum. We will describe two
strategies to the solution of the problem posed by (10). The
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first strategy is a direct application of half-interval search.
However, each iteration of this direct approach is significantly
more computationally expensive than an iteration of EM-based
methods. The second strategy uses a technique similar to
Newton—Raphson search to substantially reduce computation
by exploiting the approximately quadratic nature of the log-
likelihood function.

Half-interval search may be directly applied to solve (10)
by searching for a zero in the derivative of the cost function.
The cost function may be analytically differentiated to yield
the expression

. _ Yi
ZL:PW (1 Pij(:L' - /\?) + Pi*)\”)

+qv Y bi-klz — AR|* Tsignlz — A7)
kENj

The disadvantage of this direct approach is that it requires
the repeated computation of the derivative. By maintaining
a state vector for P, A™, the derivative may be evaluated
with approximately 3M, multiplies and divides. Therefore, the
computation required for a complete update is given in Table
Ias 3K MyN where K is the average number of half-interval
iterations required for convergence to the desired precision.

We may reduce computation of ICD updates by exploiting
the fact that the log-likelihood function is approximately
quadratic. Newton—Raphson optimization works by applying
a second-order Taylor series approximation to the function
being maximized. For example, if g(z) is the function being
maximized and z™ is the current value, then the new value
g™t is given by

$n+1

—argmin fo(a") o — 2" (2") + 5o - "ol |
")/a(e")

where ¢'(z) and g(z) are the first and second derivatives of
g(+), respectively. Should g(-) be quadratic, we find the exact
solution in a single step.

We apply the Newton—Raphson approach to the ICD up-
dates by locally approximating the log-likelihood function as
quadratic. However, our method will deviate from conven-
tional Newton-Raphson because we retain the exact expression
for the log likelihood of the prior distribution. This is be-
cause the prior term is generally not well approximated by
a quadratic function. Let 6; and #, be the first and second
derivatives of the log-likelihood function evaluated for the
current pixel value A7. Using our Newton-Raphson update,
the new pixel value is given by

=z" — ¢ (z

Qz(x - )\?)2

n+l _ . n
by —argglzlg[&(w—/\j)—i- 5

+90 Y bklz = AR D

keN;

This equation may be solved by analytically calculating the
derivative and then numerically computing the derivative’s
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root. The complete set of ICD/Newton—Raphson update equa-
tions for emission data is then given by

ZP” (1 - 7) (12)
02=Zy1~( f) (13)
i=1 Pi
0= 01 +02(z—A})q7?
- bjklz — AR|¢ sign(z — AR) (14)
keN; z=A"*1
PP = Py (AT = AR 4+ (15)

Equation (14) requires the numerical computation of a root.
This can be done using a number of well-known techniques;
however, we generally find that a half-interval search works
quite well since the function being rooted is monotone decreas-
ing. If the coefficients b; are nonnegative,’ then the solution
to (14) must satisfy the constraint

min{ B AY —

0 n
Q—;Ik € J\/J} <ant

?ilke/\/j}.
)

(The term A7 — —L represents the ML value of A; under the
current state and the local quadratic approximation. ) Therefore,
these bounds may be used as end points for initiating the half-
interval search. Since the half-interval search has guaranteed
exponential convergence, one can either choose to terminate
after a fixed number of iterations or after a fixed tolerance is
reached.

The root-finding operation of (14) is usually computation-
ally inexpensive, since the neighborhood A; typically contains
only a few pixels.® Therefore, the computation is dominated
by the 4M, total multiplies and divides required to compute
61 and 5. A full iteration consists of applying a single New-
ton—Raphson update to each pixel in A. This results in 4MoN
operations per full image update. In practice, the computation
is often dominated by the time required to index through
the data. By this measure, the ICD/Newton—Raphson and EM
algorithms are computationally equivalent, each requiring two
indexings through the projection matrix P.

It should be noted that the distinction between the
ICD/Newton-Raphson method and the approximate method
of Section III is that for ICD/Newton—Raphson the parameters
of the quadratic approximation are recomputed for each new
update. This guarantees that the exact MAP reconstruction is
the only fixed point of the algorithm.

Recently, we have shown that a small modification
in the computation of f; guarantees convergence of the
ICD/Newton—Raphson method with any strictly convex prior
[31] for both the transmission and emission cases. However,
even with the update of (13), we have observed that in all cases

Smax{ kAT —

3This is required for convexity when 1 < p < 2.
In some cases, computation time can be reduced by replacing the power
function 91 by a linearly interpolated lookup table.
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the convergence is monotone and stable. This is not surprising,
since the true log likelihood is very close to quadratic. In
fact, ICD/Newton—-Raphson method has an intrinsic safety
factor since it remains stable in the quadratic case even with
overrelaxation by a factor of two [24]. In practice, we have
found the ICD/Newton—Raphson method to remain stable even
when the over relaxation factor approaches two.

The ICD/Newton—Raphson method may also be applied
to the transmission tomography problem. In this case, the
parameters ¢; and 5 of (12) and (13) are given by the
following equations:

M
(transmission) 6, = >: P (M - yTe—ﬁ?)
=1
M
N —pn
02 = Phyre ™.
=1

We note that these updates require the evaluation of exponen-
tial functions.

V. EXPERIMENTAL RESULTS

Fig. 2 shows the phantoms we used for our emission and
transmission tomography experiments together with the FBP
reconstructions. The emission phantom and transmission phan-
toms are of size 64x64 and 128 x 128, respectively.

The emission phantom in Fig. 2(a) represents higher emis-
sion rates with higher image infensity, having zero emission
from the background. Rates are scaled to yield a total count of
approximately 5x10% for the cross-section in Fig. 2(a), with
readings taken at 64 equally spaced angles, and 64 perfectly
collimated detectors at each angle.

The transmission phantom represents an object of diameter
20 cm and density 0.2 cm™!, with higher density regions
of up to 0.48 cm™! added. The dosage per ray (yr) of
only 500 in this experiment results in zero counts at many
detectors. Though this is well below typical medical trans-
mission CT imaging rates, low dosage reconstructions are
useful in reconstructing approximate attenuation maps for
emission imaging [42]. The FBP reconstructions of Fig. 2
show significant noise and streaking artifacts. This is typical of
FBP reconstructions, since they do not account for the relative
accuracy of projection measurements.

We choose an eight-point neighborhood system for the
GGMRF, with normalization of weights {b;_r} to a total
of 1.0 for each 7, and b;_, = (2v/2 + 4)~! for nearest
neighbors and b;_r = (4 + 41/2)7! for diagonal neighbors.
In order to illustrate the effect of the Bayesian prior, we
will compute reconstructions for both ¢ = 2 and ¢ = 1.1.
The first case is equivalent to the common Gaussian prior,
and the second does a better job of preserving edges. Since
the log prior is strictly concave and differentiable in both
cases, convergence of numerical algorithms can be guaranteed.
We choose scale parameters yielding the qualitatively best
results for comparison of reconstructions under the exact and
approximate likelihoods. The parameters of the prior model
were (¢ = 2.0,7 = 1.0), (¢ = 1.1,y = 3.0) for the emission
problem, and (¢ = 2.0, = 15.0), (¢ = 1.1,y = 40.0)
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for the transmission problem. We choose ¢ = 2.0 because
it results in a Gaussian prior, and we choose ¢ = 1.1 because
we have found it to give good quality results in a variety
of examples. The problem of choosing «y is more complex,
since it depends on specific attributes of the reconstructions.
Recently, we have developed methods for directly estimating -y
[43]-[45]. However, in this example we simply choose values
of «y that yield a reasonable visual tradeoff between smoothing
and detail preservation.

Figs. 3 and 4 show the results of MAP reconstruction for
the emission and transmission problems. In each figure, both
the exact MAP reconstructions and the result of the quadratic
approximation of the likelihood function in Section III are
shown. The exact MAP reconstructions were computed by
running the ICD/Newton—Raphson algorithm of Section IV
for 150 iterations, at which point changes in both the log
a posteriori probability and the reconstructed image were
negligible. In each case, the cost function being minimized is
strictly convex and the algorithm converges to the global min-
imum. Therefore, the exact reconstruction will be identical to
a reconstruction computed using the modified EM algorithm.
Since the form of the approximate log likelihood (7) is the
same for the emission and transmission problems, the ICD
algorithm (called Gauss—Seidel) of [25] was used to calculate
both approximate MAP estimates. This algorithm has been
shown to converge rapidly and requires approximately 3MyN
operations per iterations as listed in Table L

In both examples of Figs. 3 and 4, there are small but
perceptible differences between the exact and approximate
reconstructions. Fessler has found that the quadratic approxi-
mation can introduce significant bias into transmission recon-
structions under low dosages [46]. So exact MAP transmission
reconstruction may be of value if precise and absolute density
measurements are required.

‘We concentrate on the exact emission reconstruction prob-
lem for comparison of convergence rates to previously pro-
posed algorithms, since it is in this arena that the majority
of recent research activity has taken place. (Convergence
of ICD in transmission tomography was treated in [25].)
Three alternatives to ICD/Newton—Raphson appear in the
plots. Green’s one-step-late (OSL) algorithm allows EM to
be applied to MAP problems by adding a regularizing term to
each EM maximization step which is based on the previous
iteration’s pixel values [11]. The update is made by setting
to zero the sum of the gradient of the EM functional and
the gradient of the log of the prior density, evaluated at
pixel values from the previous iteration. The OSL is very
simple to compute, but may fail to converge. The generalized
expectation-maximization (GEM) of Hebert and Leahy [9]
substitutes an increase in the MAP/EM objective function for
the more difficult maximization. GEM features an adjustable
step size for the update accompanied by evaluation of the cost
functional to guarantee increase in a posteriori probability.
While the vector § is updated after -all pixels have been
visited, the pixel values used in evaluating the log of the
prior density are updated sequentially. Finally, we include
DePierro’s method [8], which guarantees convergence through
a MAP/EM approach that decouples the computation of pixel
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Fig. 2. Original synthetic phantoms and their FBP reconstructions for emission and transmission examples: (a) Emission phantom with higher emission
intensities in lighter areas; (b) FBP emission reconstruction; (c) transmission phantom with higher density in lighter areas; (d) FBP transmission reconstruction.
FBP reconstructions were computed using a raised cosine rolloff filter, and served as the initial estimate for the iterative statistical methods.

updates in the maximization step. This technique may therefore
be applied to complete parallel updates. While DePierro’s
method was originally designed for the case of a Gaussian
prior density, it applies to other convex penalties as well [12],
such as the GGMRF with ¢ = 1.1.

The three alternative algorithms were implemented without
modification to their originally proposed forms. All methods
could include a 1-D search for each pixel’s update, which is
assumed available in both DePierro’s method and ICD/NR.
Both of these techniques require the minimization of a non-
quadratic function at each pixel in the case of a non-Gaussian
prior. The adjustable step size of GEM may be replaced by
a minimization, and OSL may be augmented to vary the

influence of the derivative of the log of the prior at each step
to guarantee convergence as well [11].

We will plot convergence performance in terms of complete
updates of the image, since like the computational cost mea-
sures of Table I, it is independent of implementation. Each of
the four methods was initialized in all cases with an FBP re-
construction, which is of negligible cost relative to the ensuing
computation. Since the a posteriori log likelihood is strictly
concave, the solution will not be influenced by this choice
of initial condition. Because low-frequency components in the
error between the FBP image and the MAP reconstruction
will converge most slowly [25], we correct the zero-frequency
component of the initial condition with a least-squares estimate
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Fig. 3.

(@

Emission MAP reconstructions with a Gaussian MRF prior, and (a) exact reconstruction using ICD/Newton—Raphson; (b) quadratic approximation.

MAP estimates resulting from GGMRF model with ¢ = 1.1; (c) exact reconstruction using ICD/Newton—Raphson; (d) quadratic approximation.

directly from the data. This correction is done by multiplying
the FBP image by the appropriate constant.

Fig. 5 shows the convergence rates for the maximum-
likelihood problem (y = 0). In this case, all three alternative
methods reduce to the EM algorithm. The ICD/NR esti-
mate has, for practical purposes, converged after five or six
iterations, while EM appears to require over an order of
magnitude more. This behavior is at least partly explained by
the similarity of EM to gradient ascent, which is particularly
slow for this type of problem [25].

Figs. 6 and 7 illustrate similar results for the MAP problem.
With the Gaussian prior model, the three EM-based algorithms
perform similarly in early iterations, but OSL fails to converge
for this case, settling into an oscillation significantly below the

maximum a posteriori likelihood. For a scale of v = 2.0 with
the same data, OSL. diverged badly from the solution. Both
GEM and DePierro’s method approach the optimum, but as in
Fig. 5, the convergence is much slower than ICD/NR.
Non-Gaussian models allow better preservation of abrupt
transitions in MAP estimates. One example that possesses
this advantage along with strict convexity of the potential
function is the GGMRF with values of ¢ near 1.0. We use
g = 1.1, which affords good edge preservation with tractable
optimization. While this likelihood has first derivatives that
are well behaved, the second derivative of the function is
unbounded, which may have varying effects on the opti-
mization approaches. Although convergence is similar in this
case also, interesting differences exhibit themselves in Fig. 7.
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Fig. 4. Transmission MAP reconstructions with a Gaussian MRF prior, and (a) exact reconstruction using ICD/Newton-Raphson; (b) quadratic approximation.
MAP estimates resulting from GGMRF model with ¢ = 1.1; (¢) exact reconstruction using ICD/Newton-Raphson; (d) quadratic approximation.

OSL again fails to converge, which is not surprising given
the character of the derivative of |z|! near the origin.
GEM is the fastest of the three EM-type methods in this
problem, reaching parity with the ICD/NR solution at about 50
iterations. There is also some potentially interesting asymptotic
behavior. After about 60 iterations, when the estimate is
undergoing very minor changes, the log likelihood of the
GEM estimate slightly exceeds that of ICD/NR. Asymptotic
characteristics of ICD/NR in nonlinear problems may require
further study and improvement.

VI. CONCLUSION AND FUTURE DIRECTIONS

We have presented a new method of computing MAP
tomographic reconstructions using direct optimization of

the log-likelihood function. Each iteration of our proposed
ICM/Newton—Raphson algorithm has computation comparable
to an iteration of the EM algorithm. However, the new method
works well with Bayesian prior distributions and converges
much more rapidly than EM. The direct optimization approach
also gives a common framework for solving both the emission
and transmission tomography problems. The proposed
ICM/Newton—Raphson algorithm differs from conventional
Newton—Raphson because the prior term is left out of the
quadratic approximation. This is important since the prior
term may be poorly approximated by a quadratic function.

Experiments indicated that while a fixed quadratic ap-
proximation is adequate for some transmission problems,
optimization of the exact likelihood appeared to yield im-
proved results in the experiments presented here.
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Fig. 6. Convergence of MAP estimates using ICD/Newton-Raphson up-
dates, Green’s (OSL), Hebert/Leahy’s GEM, and DePierro’s method, and a
Gaussian prior model with v = 1.0

Much work remains to be done to fully understand the
use of direct optimization, such as ICD, in tomographic
reconstructions. We are currently investigating the effects
of over- and underrelaxation to improve convergence speed.
Another important modification is the use of simultaneous
pixel updates for parallel implementations. Initial investigation
indicates that parallel update strategies can be implemented
with guaranteed convergence properties [47].

APPENDIX
TAYLOR SERIES APPROXIMATION
OF EMISSION LOG LIKELIHOOD

In this Appendix, we derive the Taylor series approximation
for the emission log likelihood of (2). We will also determine
the convergence behavior of the quadratic approximation for
both the transmission and emission case.
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Fig. 7. Convergence of MAP estimates with a generalized Gaussian prior
model with ¢ = 1.1 and v = 3.0.

Using the convention that p; = P, A, the log likelihood
may be expressed as

log P(Y = y|A) = =} fi(p:)

where for the emission case
Ji(D:) = Ps — ys log{D:} + log(w:!).

If we assume that y; > 0, then the gradient of the likelihood
function evaluated at p = y has entries

1 = ;
a og’}‘)gj y|A) 14 H
Di =y Pilp=y
=0.
The Hessian is diagonal, with
FlogP(Y =ylA)|  _ —wu
552 - 52
op; =y Py lp=y
-
Yi-

We may account for the terms with y; = 0 by including them
separately. Let Sp = {i : y; = 0} and let S; = S — Sp. Then
the approximation for the log likelihood is given by

1
log P(Y =yl\) ~ Y -3 -(yi — Pu))?
€S, Yi
+ > =y — Pud) + y)-
1€S5p

If we ignore the terms in Sy, then the log likelihood may be
simply written as

1
log P(Y = y|A) ~ —§(y — PNTD(y — PA) + c(y),
withD = diag{y;'}.

We next show that the quadratic approximation for the log-
likelihood function converges as >, 1/,/y; — oo for both
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the transmission and emission cases. For the Taylor series
approximation of a function g(z), as follows:
2
aplxr —a
v, g,

9(z) = g(a) + g'(a)(z — a) +

we have the Lagrange form of the remainder

99z — a)®

3!
where € is between ¢ and x. We will show in both the
transmission and emission tomographic cases that (16) goes
to zero on arbitrarily large confidence intervals as the photon
counts y; become large.

In order to cover an arbitrarily large confidence interval for
the parameter p;, we will assume that p; € [y; — k\/yi, ¥ +
k./yi] where k is any fixed positive integer. For large y;, the
total error is then bounded by

Z ) (pl - vi)?

_223/@ i yz)
Yi k\/“)

Zg’(?/@‘k\/_y—z)

o

Thus the error goes to zero as Y, 1/\/y;i — 0.
For the transmission problem

fi(Bi) = yre ™ — yi(lnyr — §;) + log y;!

To cover an arbitrary confidence interval, we assume p; €

[B: — k/\/yi, Bi + k[ /5] where p; = log(yr/y;). This results
in the following error bound for large y;:

I () @i — pi)?
= 31; :

— ;yTe—ei (ﬁl *6131)3
k3e~/ﬁ
_Z 6\/@/_1
—6_; N

Thus, in both cases, the bound on the error magnitude — 0

as >, 1/\/y; — 0.
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