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Abstract—Recent applications of model-based iterative recon-
struction (MBIR) algorithms to multislice helical CT reconstruc-
tions have shown that MBIR can greatly improve image quality by
increasing resolution as well as reducing noise and some artifacts.
However, high computational cost and long reconstruction times
remain as a barrier to the use of MBIR in practical applications.
Among the various iterative methods that have been studied for
MBIR, iterative coordinate descent (ICD) has been found to have
relatively low overall computational requirements due to its fast
convergence. This paper presents a fast model-based iterative re-
construction algorithm using spatially nonhomogeneous ICD (NH-
ICD) optimization. The NH-ICD algorithm speeds up convergence
by focusing computation where it is most needed. The NH-ICD
algorithm has a mechanism that adaptively selects voxels for up-
date. First, a voxel selection criterion VSC determines the voxels
in greatest need of update. Then a voxel selection algorithm VSA
selects the order of successive voxel updates based upon the need
for repeated updates of some locations, while retaining character-
istics for global convergence. In order to speed up each voxel up-
date, we also propose a fast 1-D optimization algorithm that uses
a quadratic substitute function to upper bound the local 1-D ob-
jective function, so that a closed form solution can be obtained
rather than using a computationally expensive line search algo-
rithm. We examine the performance of the proposed algorithm
using several clinical data sets of various anatomy. The experi-
mental results show that the proposed method accelerates the re-
constructions by roughly a factor of three on average for typical
3-D multislice geometries.

Index Terms—Computed tomography, coordinate descent, iter-
ative algorithm, model based iterative reconstruction (MBIR).

I. INTRODUCTION

R ECENT applications of model based iterative recon-
struction (MBIR) algorithms to multislice helical CT

reconstructions have shown that MBIR can greatly improve
image quality by increasing resolution as well as reducing noise
and some artifacts [1]–[8]. MBIR algorithms typically work by
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first forming an objective function which incorporates an accu-
rate system model [9], [10], statistical noise model [11], [12]
and prior model [13]–[15]. The image is then reconstructed by
computing an estimate which minimizes the resulting objective
function.

A major obstacle for clinical application of MBIR is the fact
that these algorithms are very computationally demanding com-
pared to conventional reconstruction algorithms due to the more
elaborate system models and the need for multiple iterations.
Although accurate models are critical for MBIR to achieve high
image quality, they also tend to result in objective functions that
are difficult to compute and optimize. In an effort to speed up the
iterative reconstruction, various hardware platforms are being
considered [16], [17], and a variety of iterative methods, such
as variations of expectation maximization (EM) [18], conjugate
gradients (CG) [19], ordered subsets (OS) [20], and iterative co-
ordinate descent (ICD) [21], is typically used to minimize the
objective function. Each iteration of these methods can be com-
putationally expensive since it typically requires at least one
pass through a large volume of CT data, and the number of re-
quired iterations depends upon both the desired image quality
and the convergence speed of the particular iterative algorithm.

Among various iterative methods that have been applied to
MBIR, ICD, and similar sequential updating techniques such as
OS-ICD [22], [23] and group coordinate ascent [24], [25], have
been found to have relatively low overall computational require-
ments. The convergence behavior of the ICD algorithm has been
studied in the literature [26], [27]. In particular, Bouman and
Sauer’s study on tomographic reconstruction using ICD showed
that it has rapid convergence for high spatial frequencies and
near edge pixels of the reconstruction [21]. In fact, among the
optimization algorithms compared in [28], the ICD algorithm
was found to have a relatively fast convergence behavior when
it is initialized with the FBP reconstruction, which usually pro-
vides a good estimate of the low spatial frequency content of
the image that tends to converge more slowly with the ICD al-
gorithm. It should be noted that ICD tends to have less reg-
ular memory access than gradient based optimization methods.
Therefore, depending upon the computation platform, this can
negatively impact the per-iteration computation time. Nonethe-
less, we have found that the total computation time for ICD gen-
erally compares quite favorably to alternative methods in prac-
tical implementations.

The ICD algorithm works by decomposing the N-dimen-
sional optimization problem into a sequence of greedy 1-D
voxel updates. A full iteration of the conventional ICD algo-
rithm then updates all the voxels in the image volume once
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and once only. In addition to the fast convergence speed, ICD
has also been found to have a number of useful properties in
model-based iterative reconstruction. First, the ICD algorithm
can easily incorporate positivity constraints and non-Gaussian
prior distributions; and in particular, positivity constraints can
be difficult to incorporate into CG. This is important because
nonquadratic regularization can substantially improve image
quality, but can make optimization more difficult. Second, the
ICD algorithm naturally allows for updates that vary nonuni-
formly across the reconstructed image. This last property has
not been fully exploited so far, and provides a rich opportunity
for reducing the computation of MBIR.

In this paper, we propose the nonhomogeneous ICD
(NH-ICD) algorithm [29] that can substantially accelerate
convergence relative to the conventional ICD algorithm for
tomographic reconstruction. The NH-ICD algorithm takes
advantage of the flexibility of ICD by selectively updating
voxels that can benefit most from updates. Typically, the errors
between the FBP initialization of ICD and the converged re-
construction are not uniformly distributed across the image. In
fact, these initial errors tend to be primarily distributed around
edges and other localized regions. Therefore, the convergence
speed of ICD can be improved by focusing computational
resources on these important locations. In order to select the
order of voxel updates, we formulate a voxel selection criterion
(VSC) to determine the voxels in greatest need of update. We
also develop a voxel selection algorithm (VSA) that balances
the need for repeated updates of some voxels with the need
for more uniform updating of all voxels to guarantee global
convergence.

We also propose a fast algorithm for approximately solving
the 1-D optimization problem of each voxel update [30] in order
to speed up the ICD algorithm. The fast 1-D update algorithm is
based on the functional substitution (FS) approach [24], [31],
[32], which replaces the objective function with a simplified
substitute function. By carefully deriving the substitute func-
tion, the FS approach reduces computation while also guaran-
teeing monotone convergence of the objective function. The
substitute function we propose in this paper is designed for the
particular q-GGMRF [2] prior model we are using. However, it
can be easily generalized to other prior models as long as the po-
tential function in the prior model satisfies certain constraints.

In our experiments, we examine the performance of the pro-
posed algorithms using several clinical data sets which cover
a variety of anatomical locations. The experimental results
show that the proposed algorithms reduce the computation time
required to achieve desired image quality by approximately a
factor of three on average as compared to the conventional ICD
algorithm.

The paper is organized as follows. Section II provides a re-
view of the conventional ICD algorithm for 3-D iterative re-
construction. Section III presents the spatially nonhomogeneous
ICD algorithm. Section IV presents the fast 1-D optimization al-
gorithm. Finally, in Section V we show the experimental results
on clinical data cases to quantify the improvement in computa-
tion speed.

Fig. 1. Illustration of the geometry of multislice CT. S is the focus of the X-ray
source, D is the detector array, in which detector cells are aligned in channels
and rows. A single row of detectors forms an arc which is equidistant from S,
but a single channel of detectors falls along a straight line parallel to the �� -axis.
Voxels along the same �� � � � location form a voxel-line.

II. CONVENTIONAL ICD ALGORITHM FOR 3-D
RECONSTRUCTION

A. Statistical Model and Objective Function

In this section, we introduce the conventional ICD algorithm
for reconstruction of 3-D volumes from data obtained using a
multislice CT system. The corresponding cone-beam geometry
is illustrated in Fig. 1 where denotes the focus of the X-ray
source, is the detector array, and the detector channels of each
row are located on an arc which is centered at . When taking
measurements in the helical scan mode, the source and detector
array rotate around the patient, while the patient is simultane-
ously translated in the direction perpendicular to the plane of
rotation. The trajectory of the source relative to the patient
forms a helical path.

To define the coordinate system for the reconstructed image
volume, let , , and denote the basis vectors of a right-
handed coordinate system. The origin of the coordinate system
is placed at the center of the rotation, also known as the “iso-
center” of the scanner. As shown in Fig. 1, and are in the
plane that is perpendicular to the axis of the helix, while is
pointing to the right and is pointing downward. The third axis,

, is pointing along the axis of the helix. The reconstruction is
then denoted by where is a vector index with

, , and denoting the
number of voxels along the three axis. For notational simplicity,
we will assume that is a vector with elements indexed by

.
The detector cells are aligned in channels and rows, as shown

in Fig. 1. Each row is formed by an array of detectors which
are equidistant from the source . The detectors in each row
are indexed by their channel numbers. For a given channel, the
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detector cells from each row form a straight line that is parallel
to the axis.

The measurements from the detector array are sampled at uni-
formly spaced intervals in time. The full set of detector mea-
surements sampled at a single time is known as a projection
view. Therefore, the projection measurements form a 3-D array
denoted by , where indexes the view,

indexes the detector row, and in-
dexes the detector channel. For simplicity, we use the notation

where to denote a single measurement.
We consider the image and the data as random vectors,

and our goal is to reconstruct the image by computing the max-
imum a posteriori (MAP) estimate given by

(1)

where is the conditional distribution of given ,
is the prior distribution of , and denotes that each voxel
must be nonnegative. We can use a Taylor series expansion to
approximate the log likelihood term using a quadratic function
[21], [33], resulting in

(2)

where is the forward system matrix, is a diagonal weighing
matrix and is a function which depends upon measurement
data only. The th diagonal entry of the matrix , denoted by

, is inversely proportional to an estimate of the variance in
the measurement [12], [21], [33]. We use the photon count
measurement to estimate the variance in . In theory, the
relationship between and is given by

(3)

where is the expected photon count where there is no object
present. We model as the sum of a Poisson random variable
with mean and the electronic noise with mean zero and vari-
ance . Therefore, we can derive the variance of as [12]

(4)

Since is an unbiased estimation of , we have

(5)

where can be experimentally estimated.
We use a distance driven (DD) forward model [9] for the cal-

culation of [2]. We choose the DD forward model mainly be-
cause it is relatively fast to compute, and it has been shown to
produce images free of visible aliasing artifacts introduced by
the forward model [9]. To forward project one voxel using the
DD model, we first “flatten” the voxel to a rectangle as shown
in Fig. 2(a). Then we compute the projection of the four bound-
aries of this flattened voxel onto the detector array. The projec-
tion is approximated as a rectangle as shown in Fig. 2(b), and
can be specified by its width , length and the center location

in the detector coordinate system. Consequently, the lo-
cation and the size of the rectangular footprint can be separately
computed in the plane and along the axis. Fig. 2(c)

Fig. 2. Illustration of the geometric calculation of the distance driven forward
model. (a) The shaded area on the detector shows the footprint of the voxel. To
simplify the calculation, we “flatten” the voxel to a rectangle and then project
its boundaries onto the detector array. (b) Shows the footprint of a voxel on the
detector array, in which the grid represents the detector cells. The footprint can
be approximated by a rectangle specified by the parameters � , � and �� � � �.
The geometric calculation in the ��� � �� � plane is illustrated in (c). Flattened
voxel is illustrated as the horizontal dashed line. The parameters � and � can
be computed by projecting the dashed line onto the detector array. (d) Geometric
calculation along �� is illustrated.

illustrates the computation of the footprint in the plane,
wherein the flattened voxel is shown as the horizontal dashed
line, and the parameters of the footprint, and , can be com-
puted in this plane. Similarly, the parameters and can be
computed in the plane that is perpendicular to the plane
as shown in Fig. 2(d). Therefore, the forward model can be cal-
culated separately in the plane and the plane.
Later we will discuss how to use the separability to efficiently
calculate the forward projection of a line of voxels that are par-
allel to the axis.

We use a Markov random field (MRF) as our image prior
model with the form

(6)

where is the set of all the neighboring voxel pairs, are
fixed weights, and is a symmetric potential function. The
potential function considered in this paper is a nonquadratic po-
tential function with the form

(7)

with [2]. We refer to MRF prior models
which uses this potential function as the q-generalized Gaussian
Markov random field (q-GGMRF). Fig. 3 shows the plots of the
potential function, and its derivative, also known as the influence
function. The potential function of (7) is strictly convex when

[2]. Strict convexity of the potential function
is important because it ensures that there is a unique solution
to the optimization problem and that the MAP reconstruction is
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Fig. 3. (a) Shows the potential function ����. (b) Shows the influence function
� ��� for a choice of parameters with � � �, � � ��� and � � ��.

Fig. 4. Pseudocode for one voxel update, it comprises four steps: first, com-
pute the column of forward projecting matrix; second, derive the parameters of
the 1-D objective function; third, solve 1-D optimization problem; and fourth,
update voxel and error sinogram.

a continuous function of the data [14]. We have found that the
parameters , and Hounsfield units (HU)
work well in practice [2]. The value produces an approx-
imately quadratic function for . This helps to preserve
detail in low contrast regions such as soft tissue, and the value of

produces an approximately generalized-Gaussian prior
[14] when . This helps preserve edges in high contrast
regions such as interfaces between bone and soft tissue.

Applying the approximation of (2) and the prior distribution
of (6), the MAP reconstruction is given by the solution to the
following optimization problem:

(8)

B. ICD Algorithm

We use the ICD algorithm to solve the problem of (8). One
full iteration of the ICD algorithm works by updating voxels in
sequence, until every voxel has been updated exactly once. Each
voxel is updated so as to globally minimize the total objective
function while fixing the remaining voxels. Formally, the update
of the selected voxel is given by

(9)

This update can be computed efficiently by keeping track of the
residual error sinogram defined by . To do this,
we first compute the first and second derivative of the negative
log-likelihood term and as

(10)

(11)

where is the th element in the error sinogram and is the
total number of measurements in the sinogram. Then, derived
from (8), one can write the minimization of the 1-D objective
function for explicitly as follows [21]:

(12)
where is the th voxel’s value before the update and is the
set of neighboring voxels of voxel . We can bracket the mini-
mizer of the 1-D objective function in the interval
given by

(13)

(14)

This is because the ML term in (12) is minimized by
, and each of the prior terms is mini-

mized by ,
The pseudocode of Fig. 4 summarizes the steps for each voxel

update. The first step is to compute the elements of the forward
projection matrix for voxel , that is, , the th column of .
Second, we compute and using (10) and (11). Third, we
compute the voxel’s updated value by solving the 1-D optimiza-
tion problem in (12). Finally, we update the error sinogram by
forward projecting the update step .

The FBP reconstruction typically provides a good initial con-
dition for the ICD algorithm. This is because the FBP generally
provides an accurate estimate of the low frequency components
of the reconstruction. Higher frequency edge and texture details
are generally not as accurate in the FBP images, but the ICD al-
gorithm is known to have rapid convergence at high frequencies
[21].

Each voxel update of ICD requires the computation of the 1-D
minimization of (12). This update can be done using half-in-
terval search, which is simple and robust, but relatively slow
because it requires multiple steps to reach the desired precision
of solution. Moreover, the number of steps required for a given
precision may vary between voxel updates. We, therefore, pro-
pose a fast 1-D minimization algorithm for ICD in Section IV.

In each iteration of the conventional ICD algorithm, each
voxel is updated once and only once. However, the order of
voxel updates may vary with each iteration. We follow two rules
in selecting the order of voxel updates. First, entire lines of
voxels along the axis are updated in sequence. As shown in
Fig. 1, we refer to a line of voxels that falls at the same
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Fig. 5. Illustrates the fact that it is not necessarily good to use the convergence
error as the only criterion for selection. The solid line shows the algorithm which
always updates the voxel-line with the largest convergence error. However, in
later iterations the convergence of this algorithm is actually slower than that of
the conventional ICD algorithm.

position in the plane as a “voxel-line.” The voxels in the
voxel-line share the same geometry calculation in the
plane as illustrated in Fig. 2(c), so updating all the voxels along
a voxel-line saves computation [29]. In addition, updating the
voxels sequentially helps to reduce memory bandwidth require-
ments. Second, we update the voxel-lines in a random
order, so that each voxel-line is updated once per iteration, and
the order of selection is randomized with a uniform distribution
[34]. For 2-D reconstruction, we compared this random selec-
tion method with another method which selects the pixels by
raster scan order, and the experimental results indicated that se-
lecting pixels in random order provides significantly faster con-
vergence than raster order as the correlation between successive
updates is reduced [35]. Therefore, the random update order is
typically used in the conventional ICD algorithm.

III. SPATIALLY NONHOMOGENEOUS ICD (NH-ICD)
ALGORITHM

The basic idea behind the spatially NH-ICD algorithm is
updating some voxel-lines more frequently than others. The
NH-ICD algorithm is motivated by the fact that the conver-
gence error, which we define as the error between the current
value and the fully converged value of a voxel, is not uni-
formly distributed across a reconstructed image. In fact, the
convergence error tends to be distributed primarily near edges.
However, the conventional ICD algorithm does not exploit this
nonuniform distribution of error because each voxel must be
updated exactly once per iteration. Therefore, we propose the
NH-ICD algorithm to improve the convergence speed of ICD
by focusing computational resources on the voxel-lines which
can benefit most from updates.

In order to implement the NH-ICD algorithm, one must deter-
mine an ordering of the voxel updates which yields fast conver-
gence to the MAP estimate. Ideally, it would be best to select the
update ordering that results in the fastest overall convergence.
However, determining this optimum ordering is very difficult
since each voxel update can affect the result of subsequent up-
dates.

In order to illustrate the difficulty in selecting the best up-
date ordering, consider the plot of Fig. 5 which shows the root

mean squared error (RMSE)1 convergence for two different al-
gorithms on a typical 3-D helical scan multislice CT data set.
The dotted line shows the RMSE convergence of conventional
ICD while the solid line shows the convergence of a nonhomo-
geneous update method2 that always selects the voxel-line with
the greatest mean squared error (MSE). Notice that the greedy
selection method actually has slower convergence than conven-
tional ICD. This is because fast convergence also requires that
some voxels with lower MSE be updated, but these updates can
be less frequent. Moreover, even if it worked well, this greedy
selection method can not be practically implemented because it
depends upon the knowledge of the converged MAP reconstruc-
tion to compute the MSE of each voxel-line.

With this example in mind, our nonhomogeneous ICD algo-
rithm will be based on two concepts. First, we will compute a
VSC for each voxel-line. The VSC will be used to determine
which voxel-lines are in greatest need of update. Second, at a
higher level, we will also need a VSA. The VSA will be de-
signed to balance the need for repeated updates of some voxel-
lines with the need for more uniform updating of all voxels lines.
By balancing these two goals, we will be able to avoid the slow
convergence shown in Fig. 5.

A. VSC

In this work, we choose the VSC to be related to the absolute
sum of the update magnitudes along a voxel-line at its last visit.
Intuitively, if a voxel-line had large updates, then it is likely
that the voxels are far from their converged values, and could
benefit from more frequent selection. Fig. 6 shows empirically
that this conjecture is true. Fig. 6(a) shows an image of the 5%
of voxel-lines whose updates were largest in the first iteration of
the conventional ICD and Fig. 6(b) shows the 5% of voxel-lines
with the largest MSE after the first iteration. The fact that the
two images are highly correlated suggests that one can predict
the RMSE using the update magnitude.

The total update magnitude is stored in a 2-D array corre-
sponding to all the voxel-lines. The array is referred to as the
update magnitude map, denoted by . The function

is initialized to zero, and with each ICD update of a
voxel-line, the array is updated using the relation

(15)

where denotes the total number of voxels on the voxel-line,
and the values and denote the values
of voxels before and after the update, respectively. Because one
full ICD iteration is required for all of to take on nonzero
values, the VSC is not available until after the first full ICD
update. In Section III-C, we introduce the interleaved NH-ICD
algorithm, which is designed to overcome this limitation. The

1The RMSE is computed between the current values and fully converged
values of the voxels. We generate the fully converged images by running the
reconstruction for a large number of iterations.

2For this algorithm, we define one iteration to be one “equit” as will be defined
later in (25).
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Fig. 6. Correlation between the update magnitude and the true convergence
errors at the end of the first iteration of conventional ICD for a clinical body
case. (a) Shows the top 5% voxel-lines with largest update magnitude. (b) Shows
the top 5% voxel-lines with largest convergence error.

values of the VSC, denoted by , are then computed by
applying a 2-D low pass filter to so that

(16)

where the filter kernel is a 5 by 5 Hamming window. We have
found empirically that adjacent voxels have strong correlation in
their MSE. Therefore, we use the low-pass filter to encourage
updates of local neighborhoods and to reduce the variation in
the VSC.

B. VSA

In Fig. 5, we saw that an excessive focus on a small number of
voxels can actually slow down the convergence. Therefore, an
effective VSA must balance the need for repeated updating of
some voxels with the need for improvement of the remainder of
the image. In order to achieve this goal, we will incorporate two
subprocedures in the VSA. The nonhomogeneous subprocedure
selects voxel-lines that have large VSC values, and updates them
frequently. Alternatively, the homogeneous subprocedures up-
date all voxel-lines uniformly. By alternating between these two
subprocedures, we can accelerate the convergence of the voxels
with large VSC values while ensuring that all voxel-lines and
their VSC values are updated.

Fig. 7(a) shows a flow diagram for the VSA. The algorithm
starts with a homogeneous subprocedure, in which each voxel-
line is updated exactly once, in a randomized order. This first ho-
mogeneous subprocedure ensures that the values of the update

Fig. 7. Block diagram for the VSA used in NH-ICD. (a) Illustrates the top level
VSA. (b) Shows the nonhomogeneous subprocedure.

magnitude map, , are all initialized, and that the VSC can be
computed for each voxel-line. Once the first homogeneous sub-
procedure is completed, the NH-ICD algorithm iterates between
a nonhomogeneous subprocedure and a homogeneous subpro-
cedure, and these two steps are repeated until the desired level
of convergence is achieved.

When updating a voxel-line, we sometimes ignore
zero-valued voxels in a process we call “zero-skipping.”
We have found that typically many voxels in air converge to a
value of zero due to the positivity constraint, and can be skipped
with little effect on the reconstructed image. Thus, if a voxel
and its neighbors all have value zero, we skip the ICD update
of that voxel. As shown in Fig. 7(a), zero-skipping is applied to
all subprocedures except the first homogeneous subprocedure,
in which we need to initialize the VSC.

Fig. 7(b) shows the flow diagram of the nonhomogeneous
subprocedure. The subprocedure is composed of subitera-
tions. In each subiteration, first the values of the VSC are com-
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Fig. 8. Pseudocode specification of the nonhomogeneous subprocedure. Each
iteration of the outer “for” loop represents a subiteration of the nonhomogeneous
subprocedure. In each subiteration, the VSC is first computed by the function
ComputeVSC���, and then a set � is formed that contains � fraction of voxel-
lines with largest VSC values. The selected voxel-lines in � are then updated in
a randomized order.

puted from the current update magnitude map using (16). Next a
fraction of the voxel-lines is updated by selecting the voxel-
lines with the largest values of the VSC in . Once these

voxels-lines are updated, the VSC is recomputed in the be-
ginning of the next subiteration, and this process is repeated
times.

The number of voxel-lines visited in each subiteration is equal
to the total number of voxel-lines in the image multiplied by a
factor , that is, . The number of subit-
erations is then computed by , where

is the number of voxels updated in each subiteration,
is the number of voxels updated in the previous homoge-

neous subprocedure, and is a user selected parameter.
may be less than due to zero-skipping. We typi-

cally use the values and , which we have found
to result in consistently fast convergence.

The pseudocode in Fig. 8 specifies the nonhomogeneous sub-
procedure in detail. In the beginning of the subprocedure, we
compute the number of subiterations that need to be performed.
In each subiteration, the function ComputeVSC first com-
putes the VSC using (16). Then, we form a set that contains
all the voxel-lines with , where is the
threshold for the fraction of voxel-lines with the largest VSC
values. Next, the voxel-lines in are updated in a randomized
order using the UpdateVoxelLine function. The
function UpdateVoxelLine updates the voxels on
the selected voxel-line in sequence and also computes

using (15). In the next subiteration, the refreshed up-
date magnitude map is used to compute the VSC. A voxel-line
can be updated at most once in one subiteration, but if it pro-
duces a large update magnitude, it may be selected in subse-
quent subiterations. Therefore, a voxel-line can be updated as
many as times during a single application of the nonhomo-
geneous subprocedure.

C. Interleaved NH-ICD

Interleaved NH-ICD is intended to allow nonhomogeneous
subprocedures before the completion of the first full homoge-
neous update, to exploit as early as possible the knowledge of

Fig. 9. Pseudocode of the complete NH-ICD algorithm. Notice that the
NH-ICD algorithm starts by first running the interleaved subprocedures. The
interleaved subprocedures start with a partial homogeneous subprocedure
that updates a subset of voxel-lines, and then it is followed by a partial
nonhomogeneous subprocedure with a limited number of subiterations. After
updating all subsets, the algorithm then alternates between full homogeneous
and nonhomogeneous subprocedures.

the locations where updates are most needed. To do this, we up-
date a densely interleaved set of voxel-lines, so that a value for
VSC can be computed at all voxel locations. This allows the first
nonhomogeneous subprocedure to be run after a fraction of an
iteration.

The pseudocode in Fig. 9 specifies the interleaved NH-ICD
algorithm. Before the reconstruction starts, we partition
the set of all voxel-lines into four interleaved subsets,

,
, and

, in which and are
positive integers. The interleaved NH-ICD algorithm starts by
performing a homogeneous update of only the voxel-lines in

. The partial nonhomogeneous subprocedure then updates the
voxel-lines with the largest VSC. The number of voxel updates
performed in this partial nonhomogeneous subprocedure is
proportional to the number in the previous partial homogeneous
procedure. This process is repeated four times until each subset
has been updated once, after which the NH-ICD algorithm
alternates between full homogeneous and nonhomogeneous
subprocedures until convergence is achieved.

In the partial nonhomogeneous subprocedure, we compute
the VSC for each voxel-line using partially initialized update
magnitude maps. Therefore, the updates in the partial nonho-
mogeneous subprocedure are not limited to the subset . Since
the voxel-lines are uniformly sampled in the partial homoge-
neous subprocedures, the filtering step of (16) can be viewed as
a simple interpolation which fills in the values in the VSC for
the voxel-lines that have not yet been updated. Fig. 10(a) shows
the update magnitude map after the first partial homogeneous
subprocedure, in which a quarter of voxel-lines have been up-
dated. The interpolated VSC is shown in Fig. 10(b).
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Fig. 10. Shows part of the update magnitude map after the first partial homo-
geneous subprocedure in (a), and the corresponding VSC in (b). The filtering
step of equation (16) fills in the values in the VSC for the voxel-lines that have
not been updated yet.

IV. FAST 1-D OPTIMIZATION ALGORITHM

The ICD algorithm requires solving the 1-D optimization
problem in (12) for each voxel update. Due to the complex form
of the potential function in (7), this optimization step can
account for a substantial fraction of the total computation time
in an ICD iteration. In this section, we propose a fast algorithm
for approximately solving the 1-D optimization problem of
(12). This fast 1-D update algorithm is based on a functional
substitution (FS) approach which uses a simplified upper
bound to replace the true objective function [24], [30]–[32].
Importantly, this FS approach reduces computation while also
guaranteeing monotone convergence of the objective function.

We form the substitute function by replacing each function
in the terms of (12) with a new function . The

function is chosen to have a simple quadratic form

(17)

so that it is easy to minimize, and the coefficients , and
are chosen to meet the following two important constraints:

(18)

(19)

where is the value of the th voxel before it is updated.
The motivation behind these two constraints is illustrated in

Fig. 11. At the value , the true function and substitute
function are equal, but for all other values of
the substitute function, , is greater than the true func-
tion. If the functions are continuously differentiable, and

, this must also imply that the functions are tangent

Fig. 11. Substitute function equals the true objective function at � � �� and
upper bounds the objective function on the interval �� � � �. Therefore,
when the substitute function is minimized, the underlying objective function is
guaranteed to be reduced.

Fig. 12. Algorithm for computing the parameters of � .

to each other at , so that their derivatives must also be
equal

(20)

Our objective is to determine values of the coefficients , ,
and which ensure that the constraints of (18) and (19) are satis-
fied. In fact, we can achieve this goal by computing coefficients
using the algorithm specified in Fig. 12. The following theorem,
proved in Appendix A, guarantees that for a broad class of po-
tential functions, the coefficients computed by this algorithm,
satisfy the conditions of (18) and (19).

Theorem 1: If is continuously differentiable and satis-
fies the following conditions:

1) is an even function;
2) is strictly convex;
3) is strictly concave for and strictly convex for

;
4) exists.

The parameters , , and are computed according to the algo-
rithm given in Fig. 12, then the conditions in (18) and (19) hold
true. Similarly to [32], we can show the given is optimal in the
sense that it is the smallest number satisfying these conditions.
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The four conditions of Theorem 1 are satisfied by a variety
of potential functions, among them the q-GGMRF prior used
in this paper with as illustrated in Fig. 3. Moreover, if
we replace equation (21) in the algorithm with ,
then the computed coefficients guarantee that on

. This result is useful if the iterative algorithm being
used does not allow us to easily find the interval
for each voxel.

If we replace each function in (12) with ,
then instead of minimizing the original objective function, we
minimize the substitute function on the interval as
shown in the following:

(22)

where is the global minimizer of the quadratic substitute
function given by

(23)

and the function clips the variable to
either or if it falls out of the interval .

The update given by (22) tends to be conservative. Therefore,
we use an over-relaxation method to encourage larger update
steps in order to improve the convergence speed of the algo-
rithm. Using over-relaxation, we compute the update value of

by

(24)

where . Since the substitute function is quadratic,
values of in the range of (0,2) are still guaranteed to strictly
decrease the substitute function’s value, and therefore also the
true cost function’s value.

We summarize the proposed 1-D optimization algorithm in
the pseudocode in Fig. 13. First, we compute and .
Second, the parameters and are computed in the for loop,
for each voxel pair in the neighborhood. Third the global
minimizer of the substitute function is computed using the
closed form formula. Finally, we find the update value of by
over-relaxing the solution using (24), and then clip the solution
if necessary.

V. EXPERIMENTAL RESULTS

In this section, we apply the NH-ICD algorithm to clinical re-
constructions. The data are acquired from a multislice GE Light-
speed VCT scanner. All axial reconstructed images are of size
512 512 with each slice having thickness of 0.625 mm. We
use three clinical data sets that cover different anatomy: a ab-
domen scan of 95 slices in 700 mm field of view (FOV) with
normalized pitch 1.375, a head scan of 155 slices in 480 mm
FOV with pitch 1, and an abdomen scan of 123 slices in 500
mm FOV with normalized pitch 1.375. Fig. 14 shows a single
axial slice from data set 1 which has been reconstructed using

Fig. 13. Pseudocode for functional substitution (FS) method. The algorithm
computes the parameters of the substitute function that upper bounds the true
objective function on the interval �� � � �. We then find the minimum �

of the substitute function using a closed form formula. The final solution is over-
relaxed by a factor � and then clipped to the interval �� � � �.

FBP and the conventional ICD algorithm with 10 iterations. In
our objective function, we choose to be inversely propor-
tional to the distance between voxels and . We adjust the scale
of to achieve a balance between resolution and noise in the
reconstruction. We implemented all algorithms on a standard
2.0 GHz clock rate 8 core Intel processor workstation running
the Linux operating system. The algorithm was parallelized so
that each core was responsible for updating a sequence of slices
along the axis. All the cores simultaneously work on the same
voxel-line. Once a voxel-line is selected, we distribute voxel up-
dates onto each core. Moreover, we guarantee the voxels being
updated in parallel are far apart so that they do not share any
sinogram data and can be updated independently.

We first investigated the computational cost reduction associ-
ated with the functional substitution update algorithm described
in Section IV. In this experiment, we use a constant over-re-
laxation factor for the functional substitution method.
The functional substitution method performs only one update
for each voxel. The half-interval method performs multiple it-
erations until the search interval is less than 1 HU. In Table I,
the first row compares the average computation time of the 1-D
optimization using the functional substitution and the half in-
terval methods for a single voxel. The second row compares
the total computation time required for updating one voxel on
a voxel-line, which includes the time required for the forward
model calculation as well as reading and updating the sinogram
data. The computation time is measured by averaging all the
voxel update times from 10 iterations of the conventional ICD
algorithm. The results show that the functional substitution al-
gorithm on average reduces the computation time of the 1-D
optimization by 85%. Consequently, the total computation time
per voxel update is reduced by approximately 20% on this com-
puter.

Since the two algorithms do not reach same numerical solu-
tion at each voxel update, we would also compare the conver-
gence speed. The convergence speed of functional substitution
and half-interval methods as well as other algorithms discussed
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Fig. 14. Single slice of the data set 1. (a) Shows the FBP reconstruction. (b)
Shows the conventional ICD reconstruction with 10 iterations. The FBP recon-
struction is used as the initial estimate for the iterative reconstruction.

TABLE I
TABLE COMPARING THE AVERAGE COMPUTATION TIME BETWEEN

HALF-INTERVAL SEARCH AND FUNCTIONAL SUBSTITUTION METHOD FOR A

SINGLE VOXEL ON A VOXEL-LINE

in this paper will be compared in the following. The results show
that the functional substitution method also improves the con-
vergence speed of the ICD algorithm.

Next, we compare the speed of the following five algorithms:
1) ICD/HI—conventional ICD using half interval 1-D opti-

mization;
2) ICD/FS—vonventional ICD using functional substitution

1-D optimization;
3) ICD/FS/zero skipping—the ICD/FS algorithm with zero

skipping;
4) NH-ICD—the NH-ICD algorithm using functional substi-

tution and zero-skipping with and ;
5) NH-ICD/Interleave—the NH-ICD algorithm with inter-

leaving.
In order to compare the speed of convergence for each of these

methods, we need measures of both convergence and computa-
tion. We employ two measures of convergence. The first mea-
sure is the value of the MAP cost function being minimized.
The second measure is the RMSE difference between the cur-
rent image and its converged value after 50 iterations of the con-
ventional ICD algorithm. We also use two measures of compu-
tation. The first measure, called equivalent iteration or “equit,”
is based on the total number of voxel updates and is defined as

Fig. 15. Comparison of the convergence speed of different algorithms. The
cost function and RMSE are computed by averaging from all three clinical
data reconstructions. (a) and (b) Show the convergence of the cost function and
RMSE versus equits. (c) and (d) Show the convergence of the cost function and
RMSE versus normalized wall clock time. The results show that the interleaved
NH-ICD algorithm significantly improves the speed of the reconstruction.
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(25)

By this definition, one conventional ICD iteration requires one
equit of computation. The subprocedures in NH-ICD generally
require less than one equit due to zero-skipping. Also, one equit
of NH-ICD may update some voxels multiple times whereas
other voxels are not visited. The second measure of computa-
tion is the normalized wall clock time, which is computed as
the actual wall clock time divided by the computation time re-
quired for a single full iteration of ICD/HI. The convergence
plots are based on the averaged cost function and RMSE of all
three clinical cases. To compute the averages, we evaluated the
cost function every equit and the RMSE every 0.2 equit for each
data set. We then averaged the cost function and RMSE values
at the same number of equits from the three data sets to form the
aggregate convergence plot.

Fig. 15(a) and (b) shows the convergence of the averaged
cost function and RMSE versus equits. The convergence plots
show that all the algorithms converge to the same asymptotic
cost function and RMSE, which is expected for this convex op-
timization problem. Generally, we found that RMSE is a better
indicator of the visual convergence of the reconstruction than
the cost function. For example, we found that images with sim-
ilar RMSE typically have similar visual quality, while recon-
structions with close cost function values might have very dif-
ferent visual appearance. First note that the convergence speed
in equits of ICD/FS is consistently faster than ICD/HI. Perhaps
this is surprising since ICD/HI computes the exact ICD update
for each voxel. However, ICD/HI initially suffers from over-
shoot due to the greedy nature of the algorithm, and ICD/FS
avoids this pitfall by effectively reducing the size of changes in
these initial updates. The NH-ICD algorithm dramatically re-
duces the RMSE in the first nonhomogeneous subprocedure,
which occurs roughly in between equits 1 and 2, and maintains
a fast convergence speed afterward. The interleaved NH-ICD
algorithm provides the fastest convergence speed in terms of
RMSE. Especially after the first equit, the RMSE of the inter-
leaved NH-ICD algorithm is significantly smaller than that of all
other algorithms. Although the asymptotic convergence speed
of interleaved NH-ICD is similar to the NH-ICD algorithm, the
interleaved NH-ICD algorithm has the advantage of eliminating
the overshoots in the early stage of the reconstruction.

Fig. 15(c) and (d) shows the plots of cost function and RMSE
versus the normalized wall clock time in order to compare the
overall speed improvement contributed by both the fast voxel
update and fast convergence speed. For example, to achieve an
RMSE under 5 HU, it takes on average eight iterations for the
conventional ICD algorithm, while the computational cost for
the interleaved NH-ICD algorithm is equivalent to only 2.5 it-
erations of conventional ICD. Therefore, the plots show that the
proposed interleaved NH-ICD algorithm improves the recon-
struction speed by approximately a factor of 3.

Fig. 16 compares the reconstructions of the ICD/HI in the first
and second rows and the interleaved NH-ICD in the third and
fourth rows with 1, 3, 7, and 10 equits. The RMSE values of the
reconstructions are also listed in the caption. In Fig. 16(a), the

Fig. 16. First and second rows show the reconstruction using ICD/HI algorithm
with (a) 1 equit, RMSE = 51.3 HU (b) 3 equits, RMSE = 18.6 HU, (c) 7 equits,
RMSE = 6.7 HU, and (d) 10 equits, RMSE = 4.3 HU. The third and fourth rows
show the reconstruction using Interleaved NH-ICD with (e) 1 equit, RMSE =
14.7 HU, (f) 3 equits, RMSE = 3.8 HU (g) 7 equits, RMSE = 0.91 HU and (h)
10 equits, RMSE = 0.45 HU. The images show that NH-ICD with interleaving
can achieve the same visual quality of conventional ICD with significantly fewer
voxel updates.

first iteration of ICD/HI creates overshoots which appear as salt
and pepper noise and gradually disappear after several more iter-
ations. Although most areas in the reconstruction do not change
significantly after three equits, the conventional ICD algorithm
still iterates on all the voxels instead of focusing on the vis-
ible errors near the edge of the patient. On the other hand, the
interleaved NH-ICD algorithm visually converges much faster.
For example, comparing at a fixed number of equits, interleaved
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Fig. 17. Convergence plot of the interleaved NH-ICD algorithm with different
choice of parameters � and � . In (a), we fix � � ����, and vary �. In (b), we
fix � � �, and vary � . The plots show that the interleaved NH-ICD algorithm
is not sensitive to the choice of � and � .

NH-ICD reconstructions in Fig. 16(e) and (f) are visually better
than the ICD/HI reconstructions in (a) and (b). Comparing at
a fixed RMSE level, the interleaved NH-ICD reconstruction in
(e) and (f) with one and three equits, respectively, have smaller
RMSE than the ICD/HI reconstruction in (b) and (d) with three
and ten equits. In this case, the interleaved NH-ICD is more than
three times faster in reaching the same RMSE level.

Fig. 17 studies the impact of the VSA parameters, and ,
on the convergence speed of the interleaved NH-ICD. Fig. 17(a)
shows the RMSE convergence of the first data set with varying
from 0.1 to 2 and fixed at 0.05. Fig. 17(b) shows the RMSE
convergence plots with varying from 0.01 to 0.50 and fixed

. The convergence plots indicate that the convergence
speed of the NH-ICD algorithm is not sensitive to the choice
of the parameters when we select from 0.5 to 2 and from
0.01 to 0.15. We typically use and , which
consistently performed well. Intuitively, when approaches 0
or approaches 1, the algorithm approaches the conventional
ICD algorithm with zero skipping. This trend is also shown in
Fig. 17(a) and (b).

Finally, we conjecture that it is possible to further improve
the convergence speed of the NH-ICD algorithm by reducing
the length of the voxel-lines, updating smaller segments inde-
pendently. To verify, we divide the voxels with the same
coordinates into voxel-lines that are equally spaced along
the axis. The mechanism to select voxel-lines for update
is exactly as described in Section III, except now we need to
manage times the number of voxel-lines and keep track of

Fig. 18. In this experiment, we divide a voxel-line into smaller segments of
length VL that can be updated independently. The results show that we can
improve the convergence speed of NH-ICD by reducing the length of the voxel-
line.

their update magnitudes. In Fig. 18, we compare the conver-
gence speed of the NH-ICD algorithm with varying voxel-line
lengths (VL). In this experiment, we use the data of case 3. In-
stead of reconstructing 123 slices as in previous experiments,
we now reconstruct a wider coverage of 363 slices to illus-
trate the impact of the voxel-line length. We first consider the
case with a full-length voxel-line of 363 voxels, then reduce the
length by approximate factors 4 and 16, and finally consider
only one voxel. First, the results confirm that, even with long
voxel-lines, the NH-ICD algorithm still converges significantly
faster than the conventional ICD algorithm. Second, we notice
that as the length of the voxel-line decreases, the convergence
speed of the NH-ICD algorithm increases. For example, by re-
ducing the voxel-line length to 1, we can save an average of
0.7 equits over the RMSE range of 1 to 10 HU. However, using
smaller voxel-lines tends to increase the computation time per
voxel update. In general, one needs to choose the length of the
voxel-line to achieve a balance between the convergence speed
and the computational efficiency of the voxel update.

VI. CONCLUSION

In this paper, we have presented a spatially nonhomogeneous
ICD algorithm with fast 1-D optimization. The method works by
focusing computation to the most important areas of the recon-
struction. The experiments on a variety of clinical data sets show
that the proposed algorithm can accelerate the reconstruction by
a factor of approximately three on average. This improved con-
vergence speed may be used to either reduce computation for a
fixed level of quality, or improve quality for applications with
fixed computational resources.

APPENDIX

PROOF OF THE THEOREM

Theorem: If is continuously differentiable and satisfies
the following conditions:

1) is an even function;
2) is strictly convex;
3) is strictly concave for and strictly convex for

;
4) exists.
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The parameters , , and are computed according to the al-
gorithm given in Fig. 12, then the conditions in (18) and (19)
hold true. Moreover, is the smallest number satisfying (18)
and (19).

Proof: In order to simplify the notation, in the following we
suppress the dependency of the index on and . To do this, we
define function by changing variables, that is,

. Let and ,
then to show satisfies (18) and (19) is equivalent to show

(26)

(27)

where and .
It is easy to verify that the parameters , and com-

puted using the algorithm in Fig. 12 satisfies (26) and the fol-
lowing equations:

(28)

(29)

In fact, we can use (26), (28) and (29) to derive the formula of
, and in Fig. 12.
Our objective for the remaining part of this proof is to show

that, first, the inequality 27 holds, and second, is the smallest
number that satisfies (27). In order to show the inequality (27)
holds, we construct the function , so
that we only need to show on . By
the previous assumptions on and , has the
following properties which will be used later in this proof:

1)
2) is strictly convex for and strictly concave

for (since is a linear function)
In equation (21), we have three different cases for the value

of . We now show the inequality holds on
for each case:

In the first case when , let
. It is easy to verify that in this case is an even

function. is also even, which results in as an even
function and as an odd function. By the properties of
odd functions, we can derive that and

.
Let us first consider . There are two sub-

cases, First, if , since is strictly convex on
, on , and on ,

which is illustrated in Fig. 19(a) and (b). Therefore, for
, we apply the fact that to yield

. Similarly, for ,
we have . Therefore, for

. Second, if , it is easy to see that in this case
, therefore, . For , by

convexity of , we have ,
and, thus, . Symmetrically, it can be
shown that for .

Now, we consider the second case when and
. First, we want to show that for
, where is defined in the previous case. Let

be the substitute function for the previous case when

Fig. 19. Illustrates the proof for two cases. In the first case when� � �� , (a)
shows � ��� and � ��� intersects at � � �� � ���. Consequently, � ���,
as shown in (b), has three roots at � � �� � ��� . In the second case when
� � ���� � � � � , (c) shows � ��� and � ��� also intersects at
three points; and (d) shows � ��� has three roots at � � �� � ��� , where
� � ���� �.

. Intuitively, as illustrated in Fig. 19(c), as ,
rotates clockwise around the fixed point .

Thus, for . This can be rigorously
proved by contradiction as follows:
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We observe that , i.e., two lines intersect
at . Therefore, either or

on . If on , then

which contradicts the fact that . Therefore,
for . As a result, we have and

, which will be used in the next step. Next, as
illustrated in Fig. 19(d), we want to show there is one and only
one root of , denoted by , on the interval . This
can be shown by proving the following statements.

1) There is at least one root in . Since
, by applying the mean value theorem, there

must be at least one root of .
2) The roots of in the interval can only

lie in . If , this is obvious. Otherwise
, since we showed earlier and

, any root in will contradict the fact
that is concave on .

3) There is only one root in . If there is more than one
root in , it will contradict with the convexity of the
function in .

In the last step, using the convexity and concavity of the func-
tion and the fact that where , we
can check that the inequality holds on the following
intervals:

1) , :
.

2) , :
.

3) , :
.

Above all, we have proved the second case.
The third case is symmetric to the second case and

can, therefore, be proved in the same way. Therefore, we have
shown that inequality (27) holds in all three cases.

Next, we would like to show that is the smallest number
that satisfies conditions (26) and (27). Let us assume there exists

, and such that the substitute function denoted as
satisfies conditions (26) and (27). Therefore, must also
satisfy (28). Thus, we have

Therefore, by Taylor series expansion at , we find
. Consequently,

for . In particular, we choose , where
is given by (21). Notice that, if , then , thus,

. Therefore, does not satisfy con-
dition (27). If , let , then

. Therefore, there exist such that ,

. Then , that is,
, which violates the condition (27).
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