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Abstract—A variety of new imaging modalities, such as optical
diffusion tomography, require the inversion of a forward problem
that is modeled by the solution to a three-dimensional partial
differential equation. For these applications, image reconstruction
is particularly difficult because the forward problem is both
nonlinear and computationally expensive to evaluate. In this
paper, we propose a general framework for nonlinear multigrid
inversion that is applicable to a wide variety of inverse problems.
The multigrid inversion algorithm results from the application
of recursive multigrid techniques to the solution of optimization
problems arising from inverse problems. The method works by
dynamically adjusting the cost functionals at different scales so
that they are consistent with, and ultimately reduce, the finest scale
cost functional. In this way, the multigrid inversion algorithm
efficiently computes the solution to the desired fine-scale inversion
problem. Importantly, the new algorithm can greatly reduce
computation because both the forward and inverse problems are
more coarsely discretized at lower resolutions. An application of
our method to Bayesian optical diffusion tomography with a gen-
eralized Gaussian Markov random-field image prior model shows
the potential for very large computational savings. Numerical data
also indicates robust convergence with a range of initialization
conditions for this nonconvex optimization problem.

Index Terms—Inverse problems, multigrid algorithms, multires-
olution, optical diffusion tomography (ODT).

I. INTRODUCTION

LARGE class of image processing problems, such as

deblurring, high-resolution rendering, image recovery,
image segmentation, motion analysis, and tomography, require
the solution of inverse problems. Often, the numerical solution
of these inverse problems can be computationally demanding,
particularly when the problem must be formulated in three
dimensions.

Recently, some new imaging modalities, such as optical
diffusion tomography (ODT) [1]-[4] and electrical impedance
tomography (EIT) [5], have received much attention. For ex-
ample, ODT holds great potential as a safe, noninvasive medical
diagnostic modality with chemical specificity [6]. However,
the inverse problems associated with these new modalities
present a number of difficult challenges. First, the forward
models are described by the solution of a partial differential

Manuscript received December 24, 2002; revised January 22, 2004. This
work was supported by the National Science Foundation under Contract
CCR-0073357. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Mark R. Luettgen.

The authors are with the School of Electrical and Computer Engi-
neering, Purdue University, West Lafayette, IN 47907-2035 USA (e-mail:
ohs@ecn.purdue.edu; amilstei@ecn.purdue.edu; bouman@ecn.purdue.edu;
webb@ecn.purdue.edu).

Digital Object Identifier 10.1109/TIP.2004.837555

equation (PDE) which is computationally demanding to solve.
Second, the unknown image is formed by the coefficients of
the PDE, so the forward model is highly nonlinear, even when
the PDE is itself linear. Finally, these problems typically are
inherently three-dimensional (3-D) due to the 3-D propagation
of energy in the scattering media being modeled. Since many
phenomena in nature are mathematically described by PDEs,
numerous other inverse problems have similar computational
difficulties, including microwave tomography [7], thermal wave
tomography [8], and inverse scattering [9].

To solve inverse problems, most algorithms, such as conju-
gate gradient (CG), steepest descent (SD), and iterative coor-
dinate descent (ICD) [10] work by performing all computations
using a fixed discretization grid. While tremendous progress has
been made in reducing the computational complexity of these
fixed-grid methods, computational cost is still of great concern.
Perhaps, more importantly, fixed-grid optimization methods are
essentially performing a local search of the cost function and
are, therefore, more susceptible to being trapped in local minima
that can result in poorer quality reconstructions.

Multiresolution techniques have been widely investigated to
reduce computation for inverse problems. Even simple multires-
olution approaches, such as initializing fine resolution iterations
with coarse solutions [11]-[15], have been shown to be effec-
tive in many imaging problems. Wavelets have been studied for
Bayesian tomography [16]-[20], and both wavelet and multires-
olution models have been applied in Bayesian formulations of
emission tomography [21]-[24] and thermal wave tomography
[25]. For ODT, a two resolution wavelet decomposition was
used to speed inversion of a problem linearized with a Born ap-
proximation [26].

Multigrid methods are a special class of multiresolution al-
gorithms which work by recursively operating on the data at
different resolutions, using the ideas of nested iterations and
coarse grid correction [27]-[32]. Multigrid algorithms origi-
nally attracted interest as a method for solving PDEs by ef-
fectively removing smooth error components, which are not al-
ways damped in fixed-grid relaxation schemes. In particular, the
full approximation scheme (FAS) of Brandt [27] can be used to
solve nonlinear PDEs. Multigrid methods have been used to ex-
pedite convergence in various image processing problems, for
example, lightness computation [33], shape-from-X [33], [34],
optical flow estimation [33], [35]-[38], signal/image smoothing
[39], [40], image segmentation [40], [41], image matching [42],
image restoration [43], anisotropic diffusion [44], sparse-data
surface representation [45], interpolation of missing image data
[40], [46], and image binarization [34].
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More recently, multigrid algorithms have been used to solve
image reconstruction problems. Bouman and Sauer showed that
nonlinear multigrid algorithms could be applied to inversion of
Bayesian tomography problems [47]. This work used nonlinear
multigrid techniques to compute maximum a posteriori (MAP)
reconstructions with non-Gaussian prior distributions and a non-
negativity constraint. McCormick and Wade [48] applied multi-
grid methods to a linearized EIT problem, and Borcea [49] used
a nonlinear multigrid approach to EIT based on a direct non-
linear formulation analogous to FAS in nonlinear multigrid PDE
solvers. Brandt et al. developed multigrid methods for EIT [50]
and atmospheric data assimilation [51] and applied multigrid
or multiscale methods to various numerical computation prob-
lems including inverse problems [52], [53]. Johnson et al. [54]
applied an algebraic multigrid algorithm to inverse bioelectric
field problems formulated with the finite-element method. In
[55], [56], Ye et al. formulated the multigrid approach directly in
an optimization framework, and used the method to solve ODT
problems. In related work, Nash and Lewis formulated multi-
grid algorithms for the solution of a broad class of optimization
problems [57], [58]. Importantly, both the approaches of Ye and
Nash are based on the matching of cost functional derivatives at
different scales.

In this paper, we propose a method we call multigrid inver-
sion [59]-[62]. Multigrid inversion is a general approach for
applying nonlinear multigrid optimization to the solution of in-
verse problems. A key innovation in our approach is that the
resolution of both the forward and inverse models are varied.
This makes our method particularly well suited to the solution
of inverse problems with PDE forward models for a number of
reasons, as follows.

1) The computation can be dramatically reduced by using
coarser grids to solve the forward model PDE. In previous
approaches, the forward model PDE was solved only at
the finest grid. This means that coarse grid updates were
either computationally costly, or a linearization approxi-
mation was made for the coarse grid forward model [48],
[55], [56].

2) The coarse grid forward model can be modeled by a cor-
rectly discretized PDE, preserving the nonlinear charac-
teristics of the forward model.

3) A wide variety of optimization methods can be used for
solving the inverse problem at each grid. Hence, common
methods, such as pre-conditioned conjugate gradient
and/or adjoint differentiation [63], [64] can be employed
at each grid resolution.

While the multigrid inversion method is motivated by the solu-
tion of inverse problems, such as ODT and EIT, it is generally
applicable to any inverse problem in which the forward model
can be naturally represented at differing grid resolutions.

The multigrid inversion method is formulated in an optimiza-
tion framework by defining a sequence of optimization func-
tionals at decreasing resolutions. In order for the method to have
well behaved convergence to the correct fine grid solution, it is
essential that the cost functionals at different scales be consis-
tent. To achieve this, we propose a recursive method for adapting
the coarse grid functionals which guarantees that multigrid up-
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dates will not change an exact solution to the fine grid problem,
i.e., that the exact fine grid solution is always a fixed point of
the multigrid algorithm. In addition, we show that under certain
conditions, the nonlinear multigrid inverse algorithm is guaran-
teed to produce monotone convergence of the fine grid cost func-
tional. We present experimental results for the ODT application
which show that the multigrid inversion algorithm can provide
dramatic reductions in computation when the inversion problem
is solved at the resolution necessary to achieve a high-quality re-
construction.

This paper is organized as follows. Section II introduces the
general concept of the multigrid inversion algorithm and Sec-
tion II-D discusses its convergence. In Section III, we illustrate
the application of the multigrid inversion method to the ODT
problem and its numerical results are provided in Section IV.
Finally, Section V makes concluding remarks.

II. MULTIGRID INVERSION FRAMEWORK

In this section, we overview regularized inverse methods and
then formulate the general multigrid inversion approach.

A. Inverse Problems

Let Y be a random vector of (real or complex) measurements
and let = be a finite-dimensional vector representing the un-
known quantity, in our case, an image to be reconstructed. For
any inverse problem, there is a forward model f(z) given by

E[Y]a] = f(x) ()
which represents the computed means of the measurements
given the image x. For many inverse problems, such as ODT,
the forward model f(z) is given by the solution of a PDE where
x determines the coefficients of the discretized PDE. We will
assume that the measurements Y are conditionally Gaussian
given z, so that

1 P
logp(yle) = —5-lly = f(2)I2 — 5 log(2malAI™)) (@)

where A is a positive definite weight matrix, P is the dimen-
sionality of the measurement, « is a parameter proportional to
the noise variance, and ||w||3 = w® Aw. Note that the mea-
surement noise covariance matrix is equal to «A~!. When the
data values are real valued, P is equal to the length of the vector
Y, but when the measurements are complex, then P is equal to
twice the dimension of Y.

Our objective is to invert the forward model of (1) and thereby
estimate x from a particular measurement vector y. There are
a variety of methods for performing this estimation, including
maximum a posteriori (MAP) estimation, penalized maximum
likelihood, and regularized inversion. All of these methods work
by computing the value of x which minimizes a cost functional
of the form

1 2 P -1
2o lly = f@)I; + 5 log(2mal A7) + 5(z)  3)
« 2
where S(z) is a stabilizing functional used to regularize the
inverse. Note that in the MAP approach, S(z) = —logp(z),
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where p(z) is the prior distribution assumed for 2:. We will esti-
mate both the noise variance parameter o and x by jointly max-
imizing over both quantities [65]. Minimization of (3) with re-
spect to « yields the condition & = (1/P)|ly — f(z)||3. Sub-
stitution of & into (3) and dropping constants yields the cost
functional to be optimized as

ofa) = loglly — F(x)I} + S(a) @)

where we will generally assume c(z) is a continuously differ-
entiable function of x.

We have found that joint optimization over o and x has a
number of important advantages. First, in many applications, the
absolute magnitude of the measurement noise is not known in
advance, while the relative noise magnitude may be known. In
such a scenario, it is useful to simultaneously estimate the value
of a along with the value of x [55], [56], [66]. More importantly,
we have found that the logarithm in the expression of (4) makes
optimization less susceptible to being trapped in local minima.
In any case, the multigrid methods we describe are equally ap-
plicable to the case when « is fixed. In this case, the cost func-
tional is given by c(z) = (1/2a)|ly — f(z)||3 + S(z), instead
of (4).

B. Fixed-Grid Inversion

Once the cost functional of (4) is formulated, the inverse is
computed by solving the associated optimization problem

P
o = argmin { T loglly - S@IR 450} ©

Most optimization algorithms, such as CG, SD, and ICD, work
by iteratively minimizing the cost functional. We express a
single iteration of such a fixed-grid optimizer as

Zupdate — Fixed_Grid_Update(Zinit, ¢(-)) 6)

where ¢(-) is the cost functional being minimized, x;,j; is the
initial value of x, and T ypdate i the updated value.! We will
generally assume that the fixed-grid algorithm reduces the cost
functional with each iteration, unless the initial value of x is
at a local minimum of the cost functional. Therefore, we say
that an update algorithm is monotone if c(zypdate) < ¢(Tinit),
with strict inequality when Ve(@inis) 7 0 OF Tupdate 7 Tinit-
Repeated application of a monotone fixed-grid optimizer will
produce a sequence of estimates with monotonically decreasing
cost. Thus, we may approximately solve (5) through iterative
application of (6).

In many inverse problems, such as ODT, the forward model
computation requires the solution of a 3-D PDE which must be
discretized for numerical solution on a computer. Although a
fine discretization grid is desirable because it reduces modeling
error and increases the resolution of the final image, these im-
provements are obtained at the expense of a dramatic increase in
computational cost. For a 3-D problem, the computational cost

I'We use the « symbol to denote assignment of a value to a variable, thereby
eliminating the need for time indexing in update equations.
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typically increases by a factor of 8 each time the resolution is
doubled. Solving problems at fine resolution also tends to slow
convergence. For example, many fixed-grid algorithms such as
ICD2 effectively eliminate error at high spatial frequencies, but
low-frequency errors are damped slowly [10], [29].

C. Multigrid Inversion Algorithm

In this section, we derive the basic multigrid inversion al-
gorithm for solving the optimization of (5). Let z(°) denote
the finest grid image and let (?) be a coarse resolution rep-
resentation of 2(?) with a grid sampling period of 27 times the
finest grid sampling period. To obtain a coarser resolution image
2(@*1) from a finer resolution image a:(‘I), we use the relation
e+l = I((g;_l)w("), where I((;I)'i_l) is a linear decimation ma-

: (@)
trlyf. We use I(q+1)
lation matrix.

We first define a coarse grid cost functional &(@ (2(9)) with a
form analogous to that of (4), but with quantities indexed by the

scale ¢, as

to denote the corresponding linear interpo-

P
D (@) = EIOg |y @ — fF Dz D))2 + 5D (D). (7)

Notice that the forward model f(?)(-) and the stabilizing func-
tional S(9)(.) are both evaluated at scale ¢. This is important
because evaluation of the forward model at low resolution sub-
stantially reduces computation due to the reduced number of
variables. The specific form of £(©)(-) generally results from the
physical problem being solved with an appropriate grid spacing.
In Section III, we will give a typical example for ODT where
f@(.) is computed by discretizing the 3-D PDE using a grid
spacing proportional to 2¢. The quantity %(?) in (7) denotes an
adjusted measurement vector at scale g. Note that, in this work,
we assume that 4(? and £(9)(-) are of the same length at every
scale ¢, so that the data resolution is not a function of ¢. The
stabilizing functional at each scale is fixed and chosen to best
approximate the fine scale functional. We give an example of
such a stabilizing functional later in Section II-E.

In the remainder of this section, we explain how the cost func-
tionals at each scale can be matched to produce a consistent so-
lution. To do this, we define an adjusted cost functional

D (D) = & (D) — (D)D)
P
= 5 log [l — f@ D)}
+ S@(z(@) — p(@)y(@) 8)

where (%) is a row vector used to adjust the functional’s gra-
dient. At the finest scale, all quantities take on their fine scale
values and 7(?) = 0, so that &) (2(0)) = ¢ (2(0) = ¢(z). Our
objective is then to derive recursive expressions for the quan-
tities (9 and (9 that match the cost functionals at fine and
coarse scales.

Let 2(9) be the current solution at grid ¢. We would like to
improve this solution by first performing an iteration of fixed-
grid optimization at the coarser grid g 4+ 1 and then using this

2ICD is generally referred to as Gauss-Seidel in the PDE literature literature.
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result to correct the finer grid solution. This coarse grid update
is

#@+1)  Fixed_Grid_Update (I((g)*”a:@), c<q+1>(-)) )

where It (@) s the initial condition formed by decimating
2@ and £(4t1) is the updated value. We may now use this result
to update the finer grid solution. We do this by interpolating the
change in the coarser scale solution by
@ @ 4 I((;z)ﬂ) (i<q+1> _ I((;z)+1>$(q>) o 10)
Ideally, the new solutions #(¢) should be at least as good as
the old solution z:(9). Specifically, we would like ¢(4)(7(9)) <
{9 (2(0)) when the fixed-grid algorithm is monotone. However,
this may not be the case if the cost functionals are not consistent.
In fact, for a naively chosen set of cost functionals, the coarse
scale correction could easily move the solution away from the
optimum.
This problem of inconsistent cost functionals is eliminated if

the fine and coarse scale cost functionals are equal within an
additive constant.? This means we would like

L+ D) (D)) & (@) (xm)

+I((;Ii-1) (i(q+1) - I((;I;'I):v(‘”» + constant  (11)

to hold for all values of #(¢+1). Our objective is then to choose
a coarse scale cost functional which matches the fine cost func-
tional as described in (11). We do this by the proper selection of
y@tD) and (Y First, we enforce the condition that the ini-
tial error between the forward model and measurements be the
same at the coarse and fine scales, giving

ylath) _ plat) ( I((g)—l—l)x(Q)> = 4@ _ f@ (@), (12)
This yields the update for y(4+1)
YD — @) _ [f(q)(x(q)) — flatD) (I((;I)-l-l)x(q))} (13

The term in the square brackets in (13) compensates for the for-
ward model mismatch between resolutions.

Next, we use the condition introduced in [55]-[58] to en-
force the condition that the gradients of the coarse and fine cost
functionals be equal at the current values of 2(9) and z(?+1) =
I ((;1)"_ D@, More precisely, we enforce the condition that

Vel (glath)y = Ve @I,

(14)
where Ve(z) is the row vector formed by the gradient of the
functional ¢(+). This condition is essential to assure that the op-
timum solution is a fixed point of the multigrid inversion al-
gorithm [56] and is illustrated graphically in Fig. 1. In Sec-
tion II-D, we will also show how this condition can be used

m(q+1>:1((§)+1>m(q>

3A constant offset has no effect on the value of 2 which minimizes the cost
functional.
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fine scale cost function

ROV () Gt g+ (q)
¢ (x +Iw+||(x _1:4/]> X ))

uncorrected
\  coarse scale
\  cost function

\ =@ty (gt
N ")

/
/
~ : /
~ i /
~No -
i (g+1)
X
]:;l)*”x"“ v
initial coarse
condition scale
update
(a)
fine scale cost function
@y (4) (q) (q+1) qt1) _(q) 1
¢ (x +I(./+|)(x _I:q» X )) |
corrected /
coarse scale /
cost funlctlon /
g+1) +
Cl/ ,(x(l/ ))
; ; xu,.n
(q+1) (@) ~g+1)
I, 'x" X
initial ~ coarse
condition scale
update

(b)

Fig. I. Role of adjustment term r(¢+1) 2(a+1) (a) When the gradients of the
fine scale and coarse scale cost functionals are different at the initial value, the
updated value may increase the fine grid cost functional’s value. (b) When the
gradients of the two functionals are matched, a properly chosen coarse scale
functional can guarantee that the coarse scale update reduces the fine scale cost.

along with other assumptions to ensure monotone convergence
of the multigrid inversion algorithm. Note that in (14), the in-
terpolation matrix 7, ((;13_1 , which comes from the chain rule of
differentiation, actually t)unctions like a decimation operator be-
cause it multiplies the gradient vector on the right. Importantly,
the condition (14) holds for any choice of decimation and inter-
polation matrices.

The equality of (14) can be enforced at the current value z(9)
by choosing

plat) vg(q+1)(x(q+1))

m(q+1>:1((§)+1>m(q>

_ (V(;(q)(x(q)) _ T(q)) I((;z)ﬂ)

15)
where ¢(9) (-) is the unadjusted cost functional defined in (7). By
evaluating the gradients and using the update relation of (15), we
obtain

e g (00} 0, o
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29 — Twogrid_Update(q, (9, y(D (@) {

Repeat {7 times

29 — Fixed_Grid_Update(z'?, ¢ (- ;3@ 7(9))) //Fine grid update
20t — 1((;’)’ Y 2@ //Decimation
Compute 37+ using (13)
Compute r*tY using (16)
Repeat v{"") times

29D — Fixed_Grid_Update(z(@+D | cld+D (. 4@+ (a+1))) //Coarse grid update
2@ — 2@ 4 I((jll)(x(q“) - Isgfl)x(’”) //Coarse grid correction
Repeat 3% times

2@ — Fixed_Grid_Update(z9, c(")( - y(‘I),r(“))) //Fine grid update
Return (9 //Return result

}

Fig.2. Pseudocode specification of a two-grid inversion algorithm. The notation ¢(9+1) (z(a+1); y(a+1) ' r(a+1)) jg used to make the cost functional’s dependency
on y(@+t1 and rla+1) explicit.

main( ) {

Initialize x
0)

() with a background estimate

r®—0
(0)

Y —y
© @ Q-1)

Choose number of fixed grid iterations v, 7, . .. and yéo), cees ué
Repeat until converged:

29— MultigridV (g, ', ¢ (- ; y©@, ()

(a)
2@ — MultigridV (g, =P,y (D) {
Repeat {7 times
2D — Fixed_Grid_Update(z(?, ¢\? (- ; y(@ +(0))) //Fine grid update
If g = Q — 1, return =9 //If coarsest scale, return result
zlatD) I((;l;rl)x(q) //Decimation

(¢+1)

Compute y using (13)

Compute r(9t1)
20D — MultigridV (g + 1, 20Dy @40y jiCoarse grid update

2@ — @ 4 I((;’il)(:c(q“) - Ig;l;rl)x@)) //Coarse grid correction

using (15)

Repeat uéq) times
29 — Fixed_Grid_Update(z?, 9 (-; y@, r(9))) //Fine grid update

Return z(? //Return result

(b)

Fig. 3. Pseudocode specification of (a) the main routine for multigrid inversion and (b) the subroutine for the Multigrid-V inversion. The Multigrid-V algorithm
is similar to the two-grid algorithm, but recursively calls itself to perform the coarse grid update.

where ¢(© and ¢(¢*tY are the gradients of the unadjusted cost

functional at the fine and coarse scales, respectively, given by p
(a+1) _
g - _
" p lv@ — F@ @)
9\ =~ "
@ — f@ @@ « Re { (49 - f9 @)™ 4 A<q+1>}
H
(@) — £(@) (@) (2)
x Re { (y [ )) Ad } + Vst (I((Z;'I)I(Q)) (18)
+ VS@ (5(0) (17)

where H is the conjugate transpose (Hermitian) operator and
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A(@ denotes the gradient of the forward model or Fréchet
derivative given by

A@ :Vf(Q)( (4))
Ale+D) — Vf(q+1( q+1))

19)
(20)

z(q+1>:1(<§)+1>z(q> )

As a summary of this section, Fig. 2 shows the pseudocode
for implementing the two-grid algorithm. In this figure, we use
the notation ¢(2+1) (z(2+1); 4 (a+1) 1-(a+1)) to make the depen-
dency on (91 and r(4*1 explicit. Notice that 1/§q) fixed-grid
iterations are done before the coarse grid correction and that V(Q)
iterations are done afterwards. The convergence speed of the al—
gorithm can be tuned through the choice of qu) and Véq) at each
scale.

The Multigrid-V algorithm [29] is obtained by simply re-
placing the fixed-grid update at resolution q + 1 of the two-grid
algorithm with a recursive subroutine call, as shown in the pseu-
docode in Fig. 3(b). We can then solve (5) through iterative ap-
plication of the Multigrid-V algorithm, as shown in Fig. 3(a).
The Multigrid-V algorithm then moves from fine to coarse to
fine resolutions with each iteration.

D. Convergence of Multigrid Inversion

Multigrid inversion can be viewed as a method to simplify a
potentially expensive optimization by temporarily replacing the
original cost functional by a lower resolution one. In fact, there
is a large class of optimization methods which depend on the
use of so-called surrogate functionals or functional substitution
methods to speed or simplify optimization. A classic example
of a surrogate functional is the () function used in the EM algo-
rithm [68], [69]. More recently, De Pierro discovered that this
same basic method could be applied to tomography problems in
a manner that allowed parallel updates of pixels in the compu-
tation of penalized ML reconstructions [70], [71]. De Pierro’s
method has since been exploited to both prove convergence and
allow parallel updates for ICD methods in tomography [72],
[73].

However, the application of surrogate functionals to multi-
grid inversion is unique in that the substituting functional is at
a coarser scale and, therefore, has an argument of lower dimen-
sion. As with traditional approaches, the surrogate functional
should be designed to guarantee monotone convergence of the
original cost functional. In the case of the multigrid algorithm,
a sequence of optimization functionals at varying resolutions
should be designed so that the entire multigrid update decreases
the finest resolution cost function.

Fig. 1 graphically illustrates the use of surrogate functionals
in multigrid inversion. Fig. 1(a) shows the case in which the
gradients of the fine scale and coarse scale (i.e., surrogate) func-
tions are different at the initial value. In this case, the surrogate
function can not upper bound the value of the fine scale func-
tional, and the updated value may actually increase the fine grid
cost functional’s value. Fig. 1(b) illustrates the case in which
the gradients of the two functionals are matched. In this case,
a properly chosen coarse scale functional can upper bound the
fine scale functional, and the coarse scale update is guaranteed
to reduce the fine scale cost.
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The concepts illustrated in Fig. 1 can be formalized into con-
ditions that guarantee the monotone convergence of the multi-
grid algorithms. The following theorem, proved in Appendix I,
gives a set of sufficient conditions for monotone convergence of
the multigrid inversion algorithm.

Theorem: (Multigrid Monotone Conver, {;ence) For 0<qg<
Q — 1, define the functional £¢(¢+1) : RV o

E(q 1) (x((l 1)) —
=g q (Q) qg+1

clatd) (glat1))

12 0)) @1

where N (@*1) is the number of voxels in (41, R is the set of
real numbers and the functions ¢ (-) and ¢(¢*+1)(.) are contin-
uously differentiable. Assume that the following conditions are
satisfied.

1) The fixed-grid update is monotone for0 < ¢g< Q.

2) £(@)(.) is convex on R for0 < q¢<Q.
3) The adjustment vector rlat1) ig given by (15) for0 < g <

Q.

4 v 4 > 1for0< g < Q.

Then, the multigrid algorithm of Fig. 3 is monotone for ¢(°)(-).

The conditions 1, 3, and 4 of the Theorem are easily satis-
fied for most problems. However, the difficulty lies in satisfying
condition 2, convexity of £(@(-) for ¢ > 0. If the eigenvalues of
the Hessian of £(9)(-) are lower-bounded, the convexity condi-
tion can be satisfied by adding a convex term, such as y||z(9) |2,
to ¢@(.) for ¢ > 0, where v is a sufficiently large constant.
However, addition of such a term tends to slow convergence by
making the coarse scale corrections too conservative.

When the forward model is given by a PDE, it can be difficult
or impossible to verify or guarantee the convexity condition of 2.
Nonetheless, the theorem still gives insight into the convergence
behavior of the algorithm, and, in Section IV, we will show that
empirically, for the difficult problem of ODT, the convergence
of the multigrid algorithm is monotone in all cases, even without
the addition of any convex terms.

E. Stabilizing Functionals

The coarse scale stabilizing functionals S(%)(2(9)) may be
derived through appropriate scaling of S(z). A general class of
stabilizing functional has the form

< |zi — 2] )

= D b
{i,j}EN

where the set N consists of all pairs of adjacent grid points,
b;_; represents the weighting assigned to the pair {4, j}, o is a
parameter that controls the overall weighting, and p(+) is a sym-
metric function that penalizes the differences in adjacent pixel
values. Such a stabilizing functional results from the selection
of a prior density p(x) corresponding to a Markov random field
(MRF) [74]. A wide variety of functionals p(-) have been sug-
gested for this purpose [75]-[77]. Generally, these methods at-
tempt to select these functionals so that large differences in pixel
value are not excessively penalized, thereby allowing the accu-
rate formation of sharp edge discontinuities.

(22)
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The stabilizing functional at scale ¢ must be selected so that
5@ (D) = §(z). (23)

This can be done by using a form similar to (22) and applying
scaling factors to result in

:E/('q)’

S (z(0)) = 994 Z bi_jp
{i.j}eN

iy (24)

where d is the dimension of the problem. Here we assume that
T; —x; = x,L((I)
compensate for the reduction in the number of terms as the sam-
pling grid is coarsened.

In our experiments, we use the generalized Gaussian Markov
random field (GGMRF) image prior model [13], [14], [56], [67],

[77] given by

— J;E»Q)) /29, and we use the constant 214 to

1
exXp —7 Z bi_j|:l?i—$j|p (25)

{i,j}eN

where ¢ is a normalization parameter, 1 < p < 2 controls the
degree of edge smoothness, and z(p) is a partition function. For
the GGMREF prior, the stabilizing functional is given by

S(x):}% >

{i.j}eN

(26)

bivj |z — ;[

and the corresponding coarse scale stabilizing functionals are
derived using (24) to be

S(Q) (./17((1)) (q Z bz j (q (4)‘ (27)
p o
{1 JYeEN
where ¢(9) is given by
5@ — 9a(1—(d/p)) . ;(0) 28)

III. APPLICATION TO ODT

ODT is a method for determining spatial maps of optical ab-
sorption and scattering properties from measurements of light
intensity transmitted through a highly scattering medium. In fre-
quency domain ODT, the measured modulation envelope of the
optical flux density is used to reconstruct the absorption coef-
ficient and diffusion coefficient at each discretized grid point.
However, for simplicity, we will only consider reconstruction
of the absorption coefficient.

The complex amplitude ¢ (r) of the modulation envelope
due to a point source at position s; and angular frequency w
satisfies the frequency domain diffusion equation

—6(r — si)
(29)

VD) Vi(r)] + [—M ) - —] b (r) =
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where r is position, ¢ is the speed of light in the medium,
e (r) is the absorption coefficient, and D(r) is the dif-
fusion coefficient. The 3-D domain is discretized into N
grid points, denoted by 71,72 ...,7y. The unknown image
is then represented by an N-dimensional column vector
7 = [pa(r1), pta(12), - - -, pta(rn5)]T containing the absorption
coefficients at each discrete grid point, where 7 is the transpose
operator. We will use the notation ¢ (r; ) in place of ¢ (r),
in order to emphasize the dependence of the solution on the
unknown image z. Then, the measurement of a detector at loca-
tion d,,, resulting from a source at location s can be modeled
by the complex value ¢, (d,,; x). The complete forward model
function is then given by*

f(z) = [¢1(d1;$)7¢1(d2;$)7---7¢1(d1\f1;-’17)7

balihi ). ... bxc(drrix)] . (30)

Note that f(z) is a highly nonlinear function because it
is given by the solution to a PDE using coefficients x.
The measurement vector is also organized similarly as
Yy = [y117y127---7y1m7y21 ..... yK]\[] where Ykm is
the measurement with the source at s;, and the detector at d,,,.

Our objective is to estimate the unknown image = from the
measurements y. In a Bayesian framework, the MAP estimate
of z is given by

Earap = arg max{log p(yle) +log p(x)} (3D

where p(y|z) is the data likelihood and p(z) is the prior model
for image x, which is assumed to be strictly positive in value.
We use an independent Gaussian shot noise model (see [67] for
details of this noise model) with the form given in (2), where the
weight matrix A is given by

1 1 1
NI > .3
lyin| |y |y |

For the prior model, we use the GGMRF density of (25) for
p(z). Using the formulation of Section II-A, the ODT imaging
problem is reduced to the optimization

A:diag<|y11|,...,

A R 1
(Errap, @) = arg max mgX{—%lly - (@)}

P 1
{i,j}eN

where constant terms are neglected. Minimizing (33) with re-
spect to « reduces the cost functional to

C(fl?) = bi_j|$i—$j|p. (34)

P 1
5 log ||y—f($)||12\+ﬁ >
{i,j}eN

“4For simplicity of notation, we assume that all source-detector pairs are used.
However, in our experimental simulations, we use only a subset of all possible
measurements. In fact, practical limitations can often limit the available mea-
surements to a subset so that P # 2K M.
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This cost functional has the same form as (4) with the stabilizing
functional given by (26). The gradient terms of the stabilizing
functional used in (17) and (18) are given by

VS(z) = L

oP

Z bo—jlwn — ;P tsgn(z, — x;).  (35)
JEN,

We use multigrid inversion to solve the required optimization
problem with coarse grid cost functionals of the form

P
C(Q)(x((l)) - Elog ||y((1) _ f(q)(x(q))”?\

D

+—1 E (2) (@]*

bi_,' ‘JZ,-(I — T 4 — T(q)w(’l)
(2) 3| j
p(a ! )P {i,j}EN

(36)

where (9 is given by (28) with d = 3.

At each scale ¢, we must also select a fixed-grid optimiza-
tion algorithm. For simplicity, we minimize (36) by alternatively
minimizing with respect to « and z using the update formulas

1
a = 5ly = F@)3 (37)

.1 2
T~ argglzug{%ﬂy - f@)lx

1
+ pr Z bijlzi —x;l’ — Tx}
{iiYeN
(38)

where all expressions are interpreted as their corresponding
scale ¢ quantities. The fixed-scale optimization (38) is per-
formed using ICD optimization, as described in [67]. ICD
requires the evaluation of the Fréchet derivative matrix of
(19). For the ODT problem, it can be shown that the Fréchet
derivative is given by [78]

8[f(x)](k71)M+m
0%y,
O¢r(dm; )
ox,
— G(sky1n;0)G(dpy, T 2)V

A(kfl)]\/lﬁ»m,n =

(39)

where V is the voxel volume, G(rs, 7,; ) is the diffusion equa-
tion Green’s function for the problem domain computed using
the image z, with 74 as the source location and r, as the ob-
servation point, and domain discretization errors are ignored
[14], [78]. Since the ODT problem is inherently 3-D, the Fréchet
derivative matrix is usually very large. Fortunately, the separable
structure of the Fréchet derivative can be use to substantially re-
duce memory requirements by storing the two quantities

¢ =[G(s1,m1;3),...,G(s1,rn; )
G(s2,71;2), ..., G(sK,rn;2)]
VY =[G(dy,r1;2),...,G(dy,rN; )

(40)
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(41)

and computing A on the fly [14].

The ICD algorithm is initialized by setting a state vector ¢
equal to the forward model output for the current value of z,
giving

g f(x). (42)
Each ICD iteration is then computed by visiting each voxel n

once using a random order, and updating each pixel value x,,
and the state y using the following expressions:

Told,n < Tn (43)
. 1 . 2
o argin{ 5l == v )1
1
-I—W Z bn—jlu — z;] —rnu} (44)
JEN,
Q — ?Q + A*n(xn - xold,n) (45)

where A,,, is the nth column of the matrix A. Note that the state
1 keeps a running estimate of the forward model output by (45),
so that subsequent state updates can be computed efficiently.
Fig. 4 shows a detailed pseudocode specification for the fixed-
grid and multigrid algorithms for the ODT application. In par-
ticular, it explicitly shows the computation of the quantities ¢(¢)
and /(9 used in the computation of the Fréchet derivative.

IV. NUMERICAL RESULTS

This section contains the results of numerical experiments
using simulated data sets. In all cases, our simulated physical
measurements were generated using a257 x 257 x 257 grid dis-
cretization of the domain and the MUDPACK [79] PDE solver.
We used the highest practical resolution for the forward model
simulation, so as to achieve the best possible accuracy of the
simulated measurements. Since the sources and detectors are
not located exactly on the grid points, a 3-D linear interpolation
of the nearest grid points was also used.

Our experiments used two tissue phantoms, which we
refer to as the homogeneous and nonhomogeneous phantoms.
Both phantoms had dimensions of 10x 10x 10 cm, and
each face contained eight sources and nine detectors with
a single modulation frequency of 100 MHz, as shown in
Fig. 5. So, the number of sources was K = 48, and the the
number of detectors was M = 54. Some experiments used
all source/detector pairs (P = 2K M = 5184), while others
only used source/detector pairs on different faces of the cube
(P =2K(M/6) x 5 =4320). A zero-flux boundary condition
on the outer boundary was imposed to approximate the physical
boundary condition [14], [67], [78].

The homogeneous phantom had the constant values
fta = 0.02cm~! and D = 0.03 cm. For the inhomogeneous
phantom of Fig. 6(a), the u, background was linearly varied
from 0.01 cm~*! to 0.04 cm~? in a direction perpendicular to a
surface of the cubic phantom, except for the outermost region of
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main( ) {

Tnitialize z*) with a background estimate
Forg=1,2,...,Q -1, 29 — Ifg)_l):c@*l)
Forg=0,1,....,Q—1, r@ —0 and 3@ —y
Repeat until converged: {

Compute ¢, @ and § — f© ()

If Multigrid Inversion :

Choose V(D), RN Z/EQ_I) and V§°)7 ceey yéQ_l)
— MultigridV (0, z(? | y(©@ (5O 4O 4
If Fixed Grid Inversion :

2 — Fixed_Grid_Update(z®, @, 70 4@ © 5)

(a)

a «— Fixed_Grid_Update(z, y, 7, ¢, ¢, 9) {
Compute o — 31|y — JI[3
Forn =0,..., N — 1 (in random order), {
Compute column vector A, with (39)
Update z,, as described by Ye, et al.[67]:
Toldn < Tn
T argggg{i ly == Aen(u =)l + o S baslu—l? —rnu}
JENR
+ Awn(Zn — Zotd,n)

Q:>

g

(b)

2@ MultigridV (g, 2@ y(tz)7 RCUACHS 1/}(11)7 Kl

Forv = 1,...,1/@

29 — Fixed_Grid_Update (29, @ +(@ ¢@ (@ §) //Fine grid update
If g = Q — 1, return 9 //If coarsest scale, return result
zlath) I((;’;l)x(q) //Decimation
Compute ¢(q+1)’ w(q+1) and §j — f(q+1)(m(q+1))
Compute 3V using (13)
Compute 771 using (16)
20D MultigridV (g + 1, 2@+ g(a+d) e+ gla+D) (@t 5y //Coarse grid update
2@ — g 4 I((;’ll)(a:(q“) - I((;’;’D:c(q)) //Coarse grid correction
Forv = 1,...,1/5‘”
9 — Fixed_Grid_Update(z(?, 4D 7D 4D (D 5 //Fine grid update

Return z(? //Return result

(c)

Fig. 4. Pseudocode specification of fixed-grid and multigrid inversion methods for the ODT problem showing (a) the main routine for ODT problems, (b) the
fixed-grid update, and (c) the Multigrid-V inversion.

width 1.25 cm, which was homogeneous with y1, = 0.02cm~!.  cubic phantom surfaces parallel to the background variation
Two spherical p, inhomogeneities with values of p, = direction. The diffusion coefficient D was homogeneous with
0.1 cm™! (left-top) and p, = 0.12 cm™! (right-bottom) D = 0.03 cm. For both phantoms, the reconstruction was

were centered on the bisecting plane, which is parallel to the performed for all voxels except the eight, four, and two outer-
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Fig. 5. (a) Source and (b) detector pattern on each face of the cube geometry.
Two data set scenarios were considered: one containing all source/detector pairs
and a second containing only source/detector pairs on different faces.

most layers of grid points for 65 x 65 x 65, 33 x 33 x 33, and
17 x 17 x 17 reconstruction resolutions, respectively. These
border regions were fixed to their true values in order to avoid
singularities near the sources and detectors. These regions
have also been excluded from all cross-section figures and the
evaluation of root-mean-square (RMS) reconstruction error.

A. Evaluation of Required Forward Model Resolution

The objective of this section is to experimentally determine
the forward model resolution required to produce a high-quality
reconstruction. To do this, we first evaluated the accuracy of
the forward model as a function of resolution using the ho-
mogeneous phantom. The forward model PDE was first solved
as resolutions corresponding to 129 x 129 x 129, 65 x 65 x 65,
33 x 33 x 33, and 17 x 17 x 17 grid points. We then computed
the distortion-to-noise ratio (DNR) for two scenarios. The first
scenario included all source/detector pairs, and the second only
included source/detector pairs on different faces. This was done
because the close proximity of source/detector pairs on the same

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 1, JANUARY 2005

TABLE 1

DISTORTION-TO-NOISE (DNR) RATIO FOR VARIOUS FORWARD MODEL
RESOLUTIONS. COARSE DISCRETIZATION INCREASED FORWARD
MODEL ERROR, AND SOURCE/DETECTOR PAIRS
ON THE SAME FACE HAD MUCH HIGHER DNR

Distortion-to-noise ratio
Forward Model | Aj| measurements Source/detector pairs
Resolution on different faces
17 x 17 x 17 6.74 x 1074 9.96 x 107
33 x 33 x33 9.66 x 107° 2.85 x 1078
65 x 65 x 65 2.44 x 1076 3.35 x 1077
129 x 129 x 129 1.74 x 107° 1.04 x 10710

face can result in susceptibility to discretization errors in the for-
ward model. The DNR for the forward solution with [ grid points
on each side was computed as

|y(257 Yy
DNR = = Z (46)

i=1 |y(207)z|

where 4 is the index of source-detector pairs, y(;); is the ith
forward solution with [ grid points on each side, y(257); is the
ith simulated measurement, which was computed wiht 257 grid
points on each side, and P/2 is the number of complex mea-
surements. Since |y(2 57)i| is proportional to the noise variance
defined in (2) and (32), the DNR is proportional to the average
ratio of discretization distortion and measurement noise.

Table I lists the DNR as a function of resolution for the two
scenarios. Notice that for all resolutions the DNR is uniformly
higher when source/detector pairs on the same face are included.
As expected, the DNR also monotonically decreases as the res-
olution of the forward model is increased.

Next, we examined the reconstruction quality as a function
of resolution using the inhomogeneous phantom. Gaussian shot
noise was added to the data using A as given in (32) and [67],
so that the average signal-to-noise ratio for sources and de-
tectors on opposite faces was 35 dB. Fig. 6 shows a a cross
section through the center of the inhomogeneities of the orig-
inal phantom and the corresponding reconstructions for a va-
riety of resolutions and data set scenarios.> Each reconstruc-
tion used p = 1.2, but the value of o(°) was chosen from the
range of 0.002 to 0.12, in order to minimize the RMS image
error between the reconstructions and the decimation of the true
phantom. The parameters and the resulting RMS errors are sum-
marized in Table II.

Fig. 6 is consistent with the DNR measurement. The
65 x 65 x 65 reconstruction from source/detector pairs on dif-
ferent faces has the best quality. Reconstructions at lower reso-
lutions degrade rapidly, with very poor quality at 17 x 17 x 17
resolution. Perhaps it is surprising that even the 65 x 65 x 65

SThese reconstructions were all produced using the multigrid algorithm with
the mean phantom value as the initial condition because, in each case, this
method converged to lowest cost among the tested algorithms.
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Fig. 6. Cross section through (a) the inhomogeneous phantom and the best
reconstructions obtained using source detector pairs on different faces with
(b) 65 X 65 x 65 resolution, (¢) 33 x 33 x 33 resolution, (d) 17 x 17 x 17
resolution, and (e) all source detector pairs with 65 X 65 X 65 resolution.
The 65 X 65 X 65 reconstruction with different face source/detector pairs
produced substantially better quality reconstruction. Reconstructions using all
source/detector pairs failed even at 65 X 65 X 65 reconstruction.

TABLE 1I
NORMALIZATION PARAMETER ¢ (°) THAT YIELDS THE BEST RECONSTRUCTION
AND THE RESULTING RMS IMAGE ERROR BETWEEN THE RECONSTRUCTIONS
AND THE DECIMATION OF THE TRUE PHANTOM

Resolution/Data Set o | RMS image error
65 x 65 x 65/diff. faces | 0.018 0.0069
33 x 33 x 33/diff. faces | 0.008 0.0079
17 x 17 x 17/diff. faces | 0.004 0.0093
65 x 65 x 65/all 0.03 0.0099

resolution reconstruction fails when all source/detector pairs
are used. This result emphasizes the importance of using suffi-
ciently high resolution, particularly when source/detector pairs
are closely spaced.

B. Multigrid Performance Evaluation

The performance of the fixed-grid and multigrid algorithms
was evaluated using the measurements of the inhomoge-
neous phantom of Section IV-A. Based on the results of
Section IV-A, all comparisons of fixed-grid and multigrid
inversion algorithms were performed for the 65 x 65 x 65
resolution using only source/detector pairs on different faces.
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Our simulations compared fixed-grid inversion with multigrid
inversion using 2, 3, and 4 levels of resolution. Table III lists
these four cases together with our choice for the v parameters
at each scale. We selected the parameters v to achieve robust
convergence for a variety of problems. However, in other work
[61], we have shown that these parameters can be adaptively
chosen. The adaptive approach can further improve conver-
gence speed and eliminates the need to select these parameters
a priori. In order to make fair comparisons of computational
speed, we scale the number of iterations for all methods into
units of single fixed-grid iterations at the finest scale. To do
this, we use the approximate theoretical number of multiplies
and the corresponding relative complexity shown in Table III.
However, we note that Table III indicates that the theoretical
complexity of the multigrid iterations was somewhat lower
then the experimentally measured complexity. See Appendix II
for details of this conversion.

All reconstructions were done using the inhomoge-
neous phantom and a prior model with p = 1.2 and
o® = 0.018 cm~!. We chose I(ZH) to be the separable
3-D extensions of the one-dimensional (1-D) decimation ma-
trix

330 0 0 00 0 0
0o 111 0 0 0 0
4 2 4
R : : @7)
00 0 00 i1 % 0
00 0 00 oo i3
and [, ((3-1) to be the separable 3-D extension of the 1-D interpo-
lation matrix
1 0 0 0 00 0
1 1
i L o000 0 0 0
01 00 0 0 0
0 3 5 0 00 0 (48)
00 00 o 1 1
0 0 0O 0 0 1

respectively.

For the first experiment, all algorithms were initialized
with the average values of the true phantom, which were
pa = 0.026 cm™! and D = 0.03 cm. ¢ Fig. 7 shows that the
multigrid algorithms converged much faster than the fixed-grid
algorithm, both in the sense of cost and RMS error. The multi-
grid algorithms converged in only 20 iterations, while the fixed
algorithm required 270 iterations. Even after 200 iterations, the
fixed-grid algorithm still changed very little in the convergence
plots.

Fig. 8 shows reconstructions produced by the four algorithms.
The reconstructed image quality for all three multigrid algo-
rithms is nearly identical, but the reconstructed quality is sig-
nificantly worse for the fixed-grid algorithm. In fact, the multi-
grid algorithms converged to slightly lower values of the cost
functional (—3.9833 x 10% to —3.9763 x 10%) than the fixed-

6In practice, this is not possible since the average value is not known, but it
was done because it favors the fixed-grid algorithm.
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TABLE 1II

COMPLEXITY COMPARISON FOR EACH ALGORITHM. THEORETICAL COMPLEX MULTIPLICATIONS ARE ESTIMATED WITH (55), AND THEORETICAL RELATIVE
COMPLEXITY IS THE RATIO OF THE REQUIRED NUMBER OF MULTIPLICATIONS FOR ONE ITERATION TO THAT FOR ONE FIXED-GRID ITERATION.
EXPERIMENTAL RELATIVE COMPLEXITY IS THE RATIO OF USER TIME REQUIRED FOR ONE ITERATION TO THAT FOR ONE FIXED-GRID ITERATION

Parameters Theoretical Experimental
Algorithm Multiplications Relative Relative
1/{0) Véo) 1/{1) I/él) 1/{2) 1/52) 1/{3) (x105) Complexity | Complexity
Fixed-grid 1 5,799 1 1
2 levels 1 20 24,569 4.23 4.96
Multigrid-V | 3 levels 1 40 21,479 3.70 4.56
4 levels 1 . 4 4 20 20 60 20,775 3.58 4.60
x 10*
-1.5 - fine—grid only . 01 . 01
-- 2 level multigrid
- - - 3 level multigrid
-2 — 4 level multigrid | . 0.05 . 0.05
T |
3 0 0
8§ | (a) ()
| L B
L |
. ‘ ‘ ‘ ‘ 0.05 0.05
0 50 100 150 200 250 300 .
Iterations (converted to finest grid iterations)
(a) 0 0
: ‘ : : : (c) (d)
oot6l fine—grid only
’ = 2level mult!gr!d Fig. 8. Cross sections of reconstructions on the plane through the centers of
: 2 :eve: mu::!gr!g the inhomogeneities using (a) a four-level multigrid with 19.35 iterations, (b) a
0.014+ evel muitignd || three-level multigrid with 19.95 iterations, (c) a two-level multigrid with 18.24
S R iterations, and (d) 270 fixed-grid iterations. All the multigrid reconstructions
o e have better image quality the the fixed-grid reconstruction.
3 0.012 ‘
£
0 001 : estimate. The initial image was homogeneous, with a value of
z : 1.75 times the true phantom’s average value. The plots in Fig. 9
. show that the three and four level multigrid algorithms con-
0.0081} ] verged rapidly. In particular, the four-level multigrid algorithm
""""" - converges almost as rapidly as it did when initialized with the
0.006 - - ' L . s Cop .
o 50 100 50 200 250 300 true pbantom s average valuef. The fixed-grid algorlthm.changed
Iterations (converted to finest grid iterations) very little from the initial estimate even after 300 iterations, and
(b) the two grid algorithm progressed slowly. These results suggest
that higher level multigrid algorithms are necessary to overcome
Fig. 7. Convergence of (a) cost function and (b) RMS image error when  the effects of a poor initial estimate.

reconstructions were initialized with average values of true phantom. All
multigrid algorithms converge about 13 times faster than the fixed-grid
algorithm.

grid algorithm (—3.9392 x 10%), and the RMS image error
for the multigrid reconstructions ranged from 0.0069 to 0.007,
while the fixed algorithm converged to the higher RMS error of
0.0081.

To investigate the sensitivity of convergence with respect to
initialization, we performed reconstructions with a poor initial

V. CONCLUSION

We have proposed a nonlinear multigrid inversion algorithm
which works by simultaneously varying the resolution of both
the forward model and inverse computation. Multigrid inversion
is formulated in a general framework and is applicable to a wide
variety of inverse problems, but it is particularly well suited for
the inversion of nonlinear forward problems such as those mod-
eled by the solution of PDEs.
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Fig. 9. Convergence of (a) cost function and (b) RMS image error with a poor
initial guess. For higher level multigrid algorithms, the convergence was faster.
In particular, the four-level multigrid algorithm converged almost as fast as when
the reconstruction was initialized with the true phantom’s average value.

We performed experimental simulations for the application
of multigrid inversion to optical diffusion tomography using an
ICD (Gauss—Seidel) fixed-grid optimizer. These simulations in-
dicate that multigrid inversion can dramatically reduce compu-
tation, particularly if the reconstruction resolution is high, and
the initial condition is inaccurate. Perhaps, more importantly,
multigrid inversion showed robust convergence under a variety
of conditions and while solving an optimization problem that is
subject to local minima. Future investigation could also make
these comparisons using other fixed-grid optimizers, such as
conjugate gradient. Our experiments also indicated the impor-
tance of adequate resolution in the forward model.

APPENDIX 1
PROOF OF MULTIGRID MONOTONE CONVERGENCE

We begin with two lemmas which give sufficient conditions
to guarantee monotone decrease of the finer grid cost functional
in the two-grid algorithm. All lemmas assume that the functions
¢(@(.) and ¢4tV (.) are continuously differentiable.

Lemma I: Assume that the following conditions are satisfied
for a resolution ¢ > 0:
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1) The fixed-grid update is monotone at resolutions ¢ and
q+ 1.

2) A functional n(¢t1) RNV

— IR, defined by

pla+ D) (a+D)) = o+ (g la+1)y

(@ (g+1)
@ (2@ 4 10 (o)~ 18D20)) )

has a global minimum at z(¢t1) = I((Z;rl)a:(q), where

29 is the value resulting after the initial qu) fixed-grid
iterations.
3) I/£q> + I/éq) > 1.
Then, the two-grid inversion algorithm of Fig. 2 is monotone for
the functional ¢(9)(-).

Proof of Lemma 1: By the definition of monotonicity, the
updated value (211 of (9) satisfies

+1) (7 (g+1 +1 (q+1)
et (gl < ol )(](;1) x(Q))_ (50)

Applying the definition of 7(?*1)(.) and the second condition,
we have

@D (D) > pylatD) (I((qq)ﬂ)w(q))
or equivalently
~ ~ 1
cla+D) (FlatD) _ oo (x<q> + 1((311) (x<q+1> _ 1((3)* )x@)))

> olat) (I((;,)H)x(q)) — @ (@), (51)

From the inequalities (50) and (51), it follows that

() (x(q) + [((;Iil) (Sg(qﬂ) _ I((;I)—l-l)x((l))) < D (@),
(52)
This inequality means that the coarse grid update and its sub-
sequent coarse grid correction decreases the cost functional
{9 (.). With the first condition, this guarantees the inequality
in the definition of monotone convergence for ¢(4)(-). Further-
more, by the first and fourth conditions, if Vc(")(w(")) # 0,
the update at resolution ¢ either before or after the coarse
grid update strictly decreases c(‘l)(-). Therefore, the two-grid
algorithm is monotone under these assumptions.
Lemma 2. (Two-Grid Monotone Convergence): Assume that
the following conditions are satisfied for a resolution g > 0:
1) The fixed-grid update is monotone at resolutions g and
g+ 1.
2) £@+1(.) is convex on RV .
3) The adjustment vector (¢+1) is given by (15).
4) Z/YI) + lléq) > 1.
Then, the two-grid inversion algorithm of Fig. 2 is monotone for
the functional ¢(®)(-).
Proof of Lemma 2: 1t is enough to show that the third and
second conditions of this lemma imply the second condition in
Lemma 1. By condition three, we know that

n(q“)(w("“)) - £(q+1)(x(q+1)) + vzt 4 constant (53)
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for some row vector v of length NV (a+1) In fact, we know that
(15) selects the vector v so that the gradients of the coarse and
fine scale cost functionals are matched, and, therefore

Vilath) (gla+1) - 0.

$<q+1):1(<;';r1)r<q)

(54)

By (53), we also know that (4+1)() is a continuously differen-
tiable convex function. Therefore, we know that 74+ (-) must
take on its global minimum value at z(4t1) = I(;I'H)x(‘”.
Proof of Multigrid Monotone Convergence Theorem: Our
proof is by induction. Consider the case when ¢ = ) — 2, then
we have the two-grid case, and the proof is trivial by Lemma 2.
Now consider ¢ < ) — 2. By induction, we assume that
the Multigrid-V algorithm applied at resolution ¢ + 1 is mono-
tone for the function ¢(2+1)(-). This then meets condition 1 of
Lemma 2, since the multigrid algorithm serves as the coarse grid
optimizer in a two-grid algorithm. Therefore, the Multigrid-V
algorithm applied at resolution ¢ is monotone for the function
(@ (), and the induction is complete.

APPENDIX II
COMPUTATIONAL COMPLEXITY

In this appendix, we compare the computational cost of the
proposed multigrid inversion algorithm for ODT problems with
that of the fixed-grid ICD algorithm [67]. We use the number
of complex multiplications required for one iteration of the
V-cycle algorithm as a measure of computational complexity.

First, let us consider the computation required for one iter-
ation of Fixed_Grid_Update(). Here, we use the analysis from
[67]. Assuming F' iterations are used for the linear PDE solver,
the computation of Green’s functions of (40) and (41) needs
5(K 4+ M)F Ny multiplications, where Ny is the number of grid
points in the PDE domain. Then, we need PN and (5/2)PN
multiplications to compute (39) and (44), respectively, where NV
is the updated image size.” Thus, the total computational cost for
one iteration of the ICD fixed-grid update is 5(K + M)F Ng +
(7/2)PN multiplications.

Now, let us estimate the computation required for one
iteration of MultigridV() which operates at resolutions
0,...,Q — 1. For simplicity, we neglect the computa-
tional cost required for decimation and interpolation of
images and the correction vector. In other words, we assume
that the main computational cost at resolution ¢ consists
of the fixed-grid update on (9 and the computation of
(@, To update (9, one iteration of MultigridV() involves
v@ = {9 4 189 jterations of Fixed_Grid_Update(), which

requires [5(K + M)FN? + (7/2)PN(‘1)} v multiplica-

tions. Since N\¥ = 8=9Ny and N(¥ = 8N in 3-D prob-
lems, this is equal to 8~ x [5(K 4+ M)FNy + (7/2)PN]v(@
multiplications.

The correction vector 7(?) is computed only once when the
inversion proceeds from resolution ¢ to ¢ + 1. Since glath) is
computed in the optimization for the update of z(4*1), the only

"In Section IV, we do not update the outermost region to avoid singularity
problems, so N and N, are different in this case.
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additional computation for (¢ is computation of ¢(¢) given
by (17). To compute ¢(9), we first compute the Green’s func-
tions of (40) and (41) and then use them to compute Fréchet
derivatives by (39), which requires 5(K +M)FN.” and PN (@
multiplications, respectively [67]. Then, PN (9 multiplications
are required to evaluate the expression in the braces of (17).
The resulting total complexity for computation of (%) is 879 x
[5(K + M)F Ny + 2P N] multiplications.

Thus, for resolutions ¢ = 0, ..., Q — 2, the total complexity
of the Multigrid-V algorithm is 879 x [{5(K + M)FN, +
(7/2)PN}1v(94+{5(K + M)F Ny+2P N }] multiplications. At
the coarsest resolution ¢ = () — 1, we do not need r@=1 sothe
complexity is 8 (@Y x {5(K + M)F Ny + (7/2) PN }»/(@~V
multiplications. Therefore, the total complexity for one Multi-
grid-V is

Q-2

> [8“1 X {{5(K+M)FNO n ;PN} @

q=0

+ {5(K + M)FN, + 2PN}H
+8-(@-1) x {5(1{ + M)F Ny + gPN} (@D (55)

where K is the number of sources, M is the number of detectors,
P is the number of measurements, Ny is the PDE image size, N
is the updated image size, F' is the number of iterations required
for the linear forward solver, and (%) is the number of iterations
of fixed-grid update at resolution q.

Table III lists the estimated number of complex multiplica-
tions required for each iteration of the fixed-grid and Multi-
grid-V algorithms for typical values of parameters which we use
in the simulations of Section IV-B. The values of the parame-
ters are K = 48, M = 54, P = 4320, Ny = 65 X 65 X 65,
N = 49 x 49 x 49, and F = 16. We also provide the ex-
perimental computation time. One fixed-grid iteration took 55.5
minutes of user time on a Pentium-III 697 MHz Linux machine,
and the complexity per iteration is 4.56—4.96 times larger for the
multigrid algorithm. However, one multigrid iteration involves
many coarser grid iterations, and the simulation results show
that the number of iterations required for the multigrid algo-
rithms to converge is substantially less than is required using
the fixed-grid algorithm.
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