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ML Parameter Estimation for Markov Random
Fields with Applications to Bayesian Tomography

Suhail S. Saquib, Charles A. Boumasgnior Member, IEEEand Ken Sauenviember, IEEE

Abstract—Markov random fields (MRF's) have been widely MRF model is computationally tractable and can also capture
used to model images in Bayesian frameworks for image re- many non-Gaussian aspects of images such as edges. A variety
construction and restoration. Typically, these MRF models have of continuously valued MRF models have been proposed for

parameters that allow the prior model to be adjusted for best S
performance. However, optimal estimation of these parameters accurately modeling images [2], [3], [9], [10]-[13]. Most of

(sometimes referred to as hyperparameters) is difficult in practice these are distinguished by the choice of potential function that
for two reasons: i) direct parameter estimation for MRF's is assigns cost to differences between neighboring pixels.
known to be mathematically and numerically challenging; ii) While Bayesian methods can improve the quality of re-
parameters can not be directly estimated because the true image constructed images, they also have the potential to create

cross section is unavailable. hen th dels d t telv ch terize the dat
In this paper, we propose a computationally efficient scheme to errors when the models do not accurately characterize the data.

address both these difficulties for a general class of MRF models, TO avoid this problem, modern approaches usually include
and we derive specific methods of parameter estimation for the parameters that allow the prior model and/or forward model
MRF model known as generalized Gaussian MRF (GGMRF).  to be adjusted to achieve the best possible results for each

The first section of the paper derives methods of direct estima- data set. Often the prior model parameters are referred to as
tion of scale and shape parameters for a general continuously ’

valued MRF. For the GGMRF case, we show that the ML hyperparameters because their effect is only indirectly apparent

estimate of the scale parametergs, has a simple closed-form through the measured data.

solution, and we present an efficient scheme for computing the  Ideally, model parameters must be estimated for each data

ML estimate of the shape parameterp, by an off-line numerical ~ set as part of the image reconstruction or restoration process.

computation of the dependence of the partition function orv. — However, estimation of these model parameters is often diffi-
The second section of the paper presents a fast algorithm It for t First direct . likelihood (ML

for computing ML parameter estimates when the true image Cu. or, WO reasons. FIrst, direct maximum .' el 00. (ML)

is unavailable. To do this, we use the expectation maximization €stimation of MRF parameters from example images is known

(EM) algorithm. We develop a fast simulation method to replace to be a difficult problem. This is because in most cases the

the E-step, and a method to improve parameter estimates when normalizing constant of the distribution, known as the partition

the simulations are terminated prior to convergence. function, is an intractable function of the parameters.

Experimental results indicate that our fast algorithms substan- S d i t licati lei t i
tially reduce computation and result in good scale estimates for econd, In most applications example iImages are not avail-

real tomographic data sets. able for estimation of parameters. Instead, parameters must
be estimated indirectly from collected data because the true
I. INTRODUCTION image cross section is not known. This is a classic example

of an incomplete data problem for which the expectation-

OVER THE past decade, Bayesian methods for imagg,imization (EM) algorithm was developed [14], [15]. In-
reconstruction and restoration have become mcreasmgLINtively the EM algorithm works by iteratively computing
pop.ular becquse they alloyv accurate modeling of b_Oth data Cﬂé expectation of the unknown image statistics, and then
lection, and image behavior. For example, Bayesian methads imizing the likelihood with respect to those statisfics.
have been widely studied for emission tomography [11H3], \og previous research for the direct estimation of MRF

transmission tomography [4]-[6], and image restoration Wéarameters has focused on discrete MRF's [17]-[22] and
[8]. . _ used approximations to the ML estimate based on maximum
While the model used for data collection (also known Bseudolikelihood [19], [20] or least squares [21]. The meth-

the forward model) has varied depending on the applicatllo&js of these papers are not directly applicable to estimation
most of these approaches have used Markov random fields, oo meters from the continuously valued MRF’s, which
(MRF’s) to model the unknown image. This is because hgo the subject of this paper. More recently, researchers
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Alternatively, estimation of parameters for Gaussian MRFB0 do this, we reparameterize many well known potential
has received wide attention. This problem is essentially equiunctions using two parameters referred to as scale and shape.
alent to estimation of regularization parameters in quadralée show that in the general case, the scale parametaray
regularization. For a review of these approaches, see [29]. We computed as the numerical solution to a simple equation.
do not consider these methods since, for the purposes of thiterestingly, for the specific case of the GGMRF [12],
research, Gaussian prior models lead to excessive smootHiag a closed-form solution that is analogous to estimation of
of image edges. standard-deviation for Gaussian random variables [31]. Based

A number of researchers have specifically studied the proba this result, we derive a general approach to ML estimation
lem of estimating continuous MRF parameters from incon®f the shape parameter through precomputation afna-
plete data. The simplest and perhaps most natural approdénensional (1-D) functiorof the shape parameter. We then
to this problem is joinimaximum a posterioffMAP) estima- illustrate the method for the case of the GGMRF by showing
tion of both the image and parameters [30]. Unfortunatelgomputed values of andp for a variety of images.
this leads to an inconsistent estimator that may even belhe second section of the paper presents a fast algorithm,
divergent [31], [32]. Mohammad-Djafari has reported gooiased on the EM algorithm, for computing ML parameter
results by using a joint MAP estimation method which igstimates when the true image is unavailable. We develop
stabilized with an appropriate prior distribution for the paranf2 fast simulation method to replace the-step based on
eters [33]. Schultz, Stevenson, and Lumsdaine have propo§&kensions to the conventional Metropolis algorithm [46]-[48],
a method for ML estimation of parameters by employinand the heuristics s.ug.gested by (}rgen and Han [49]. For the
a signal-dependent approximation to the partition functidrSe of both transmission and emission tomography problems,
and a quadratic approximation to the posterior distribution 8¢ Updates may be efficiently computed using the techniques
the image [34]. Recently, Higdoet. al. have independently described in [50]. To further reduce computatl(_)n, we introduce
proposed a method for sampling from the posterior distributiéh Méthod to extrapolate the parameter estimates when the
of the MRF parameters using direct precomputation of tfémulations are terminated prematurely. o
partition function [35]. Samples from the posterior distribution EXPerimental results are presented for real transmission

can be used to compute confidence intervals, and if tﬁQd emission data sets, as well as for image restoration.

posterior distribution is peaked, then individual samples ald'€S€ results indicate that our fast algorithms substantially
likely to be good estimates reduce computational cost and result in useful scale parameter

In an effort to avoid the computationally expensije SStmates.
step of the EM algorithm, Zhou and Leahy have developed
an approach which uses a mean field theory approximation II. ML PARAMETER ESTIMATION
to compute the required expectation [32], [36]. This method FOR CONTINUOUSLY VALUED MRF's

is philosophically similar to mean field approximations used Let X be a continuously valued unknown random image,
by Zhang in segmentation problems [37]. Pun and Jeffs haygd letY be the measured random observations. We use
taken an approach similar in concept to EM, but replacing thgper case letters to denote random quantities and lower case
ML step with a estimator designed specifically for fhearam- letters to denote their corresponding deterministic realizations.
eter used in a generalized Gaussian MRF (GGMRF) [38], [39the unknown image is modeled by its probability density
True EM approaches have often been avoided due to the gfenction, P, ,(z), wheres andp are unknown scale and shape
ception of excessive computation. One of the earliest attemptrameters to be defined. We will assume tRatontainsv
was by Geman and McClure when they proposed computipixels indexed byX, for s € S, and thatX takes values in the
the shape parameter of a MRF by precomputing the partitioonvex set2 = {x: z, > 0 for all s € S}. The observations
function and replacing the expectation step with stochastice modeled by their conditional density functio?y|z). If
integration [1], [40]. Y is discrete, therP(y|z) is a probability mass function.
In this paper, we propose a computationally efficient schemeOur objective is to estimate the parameterandp so that
to compute ML estimates of MRF model parameters frome may compute the MAP estimate &f givenY
incomplete observations [41]-[44]. Our method hinges on two .
innovations: Xnap = arg max {logP(Y|z) +log Pop(x)} (1)

« simple direct parameter estimation for continuous MRF! here the constraint of € € enforces positivity in the

based on closed form expressions for the dependencqrﬂgge_ In this section, we develop methods for computing ML

the partition function on the scale parameter; parameter estimates from direct observationsyof
e computationally fast algorithms for computing the E-

step of the EM algorithm based on fast simulation ang MRE Prior Models
parameter extrapolation. '

In addition, we present a method for computing forward,
model parameters such as dosage which are often required 5
Bayesian reconstruction of transmission tomograms [45]. {

We model the unknown imag& as an MRF with Gibbs
Fribution

1 1 .
aN—z(p)eXp{_E u(x/a,p)}, ffoQ @)
0, if ¢&Q

The first section of the paper derives methods for direct estiPsp(z) =
mation of parameters for a general continuously valued MRF.
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TABLE | TABLE I
LisT oF NONCONVEX AND CONVEX POTENTIAL LiST OF SCALABLE POTENTIAL FUNCTIONS, THE DIVERGENCE
FuncTiONs THAT HAvE BEEN USED AND GENERALIZED DIVERGENCE ARE EXAMPLES OF SCALABLE

PoTENTIAL FUNCTIONS THAT REQUIRE Two POSITIVE ARGUMENTS

Nonconvex potential functions

- Scalable potential functions

Author (name) Reference | p(A, p)

Author (name) Reference | p(x;, z;,p) range of p
S oY 2
Geman and McClure (1, 40] L+AZ Bouman and Sauer | [11] lz; —x;P p>0
Blake and Zisserman | [9, 51] min{AZ% 1} (GGMRT)
(weak spring) O’Sullivan [53, 13] (z; — ;) log(wi/z;) p=1
Hebert and Leahy [2] log(1 + A?%) (divergence) : .
Geman and Reynolds | [11] [A] (gencralizcd This paper | (z; —2;) (2 —2l7) | p>1
1+]A] divergence)
Convex potential functions
Author (name) Reference | p(A, p)
(Gaussian) _ A* result in sharp discontinuities, which may be advantageous
Besag (Laplacian) (52] 1A in applications such as edge detection.
;ree“ e (3] log cosh A The GGMRF model will be of particular interest to us
(Iﬁ’ge“:)o“ and - Delp | [10] min{|A[% 2|A] -1} because it will result in a simple closed-form expression for
: the ML estimate ob. For this model, the density function for

Bouman and Sauer | [11] AP X e Qis ai b
(GGMRF) € Q1 is given by

1 pr

, o Pople)= o520 "P\ o7 Do biglei — ]
whereo is a parameter that controls scale or variationXin AP (ijreN
andp is a shape parameter that we will see appears in many (4)

common MRF models. We use the notatiprbecause this

is the traditional variable used in the GGMRF model whicwhere normallyp € [1,2]. Notice that (4) has a form that is
will be the focus of our analysis. The functiar(z /o, p) is analogous to a Gaussian distribution wherelays the role
referred to as the energy function. of standard deviation. Whem= 2, (4) reduces to a Gaussian

The normalizing constant of the distribution;” z(p), Model. Smaller values qf tend to produce sharper edges.
is known as the partition function’ and is Computed as The GGMRF model has the advantage that its behavior is

Joeq exp{—(1/p)u(z/o,p)} dz. It is easily verified that scale invariant [12], [13]. This property results from the fact
this function is proportional ta¥ where N is the number that for allz € €2, ando > 0

of pixels. 1 5
We consider energy functions of the form u(z/o,p) = P u(®, p)- ()
B Ti — Xy While Bouman and Sauer [12] showed that the functiof

wefop) = 3 bi_jp( ’p) () characterized all scale invariant functions &f = «; — z;,

tigyen Bretteet al. [13] have shown that the class of scale invariant

where N is the set of all neighboring pixel pairs, apd-,-) potential functions can be expanded if functions of beth

is the potential function which assigns a cost to differencesidz; are considered. For example, consider the divergence

between neighboring pixel valifes potential function proposed by O’Sullivan [53] and listed in
Depending on the choice of the potential function, (2)able Il. This function also leads to the scalable property of

includes many common MRF models that have been propog8&jl for p = 1, and therefore results in a scale invariant prior.

in the literature. Table | lists a variety of such potentidin addition, the divergence function is known to be a convex

functions. Notice that only the GGMRF model dependsponfunction of (z;,z;) [54]. A third example, which we call

through the potential function. All other models listed deperitie generalized divergence, is given in Table Il. This function

on p solely through its explicit role in (2). behaves like the divergence in the limit as— 1, but is well
While these MRF models include Gaussian MRF's, Gausgefined forz; = x; = 0. For a more detailed discussion of

ian MRF's are of less interest because they tend to beale invariant priors, see [13].

excessively smooth. In an effort to better model image edges,

a variety of functions have been suggesteddiah, p). These B. ML Estimation ofr

generally can be separated into functions which are conveXyse first derive the ML estimate of the scale parameer
or nonconvex inA. Convex potential functions often allow, the general case, and then specialize it to the GGMRF or

global optimization of (1) and are therefore computationallg(ny other scale invariant MRF model that obeys the property
preferable. In addition, convex potential functions have begp’ 5y

shown to lead to continuous or stable MAP estimates [12]. The normalized log-likelihood may be computed from (2)
On the other hand, nonconvex potential functions tend {g pe

2Notice that this distribution is not proper since its integral is infinite. The 1 1 1
distribution may be made proper by adding terms of the fep:; /o, p) to — log Po’,p(x) =——u(x/o,p) —logo — —log z(p).
the energy function. All results of the paper may then be obtained by taking N Np N
the limit ase — 0. (6)
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Differentiating (6) with respect te- and equating the result towhere the last equality uses the consistency of the ML estima-

zero yields the equation fat, the ML estimate ofr [41]. tor for o. The rest of the development in this section will be
5 0 for the GGMREF prior. The extension to other scalable priors
Np 90 wz/o,p)| =1 (7) is similar.
7= Rewriting (11) for the GGMRF prior, we obtain

While this expression may look complek,may be easily
evaluated to any desired precision using a standard root findingi log z(p) _ 1 1 Z bi; E[|X: — X, [P
algorithm such as half interval search. This is interesting dp N p* Np e 7 ’ ’
since in the general case ML estimation of MRF parameters ) ’ e
is considered intractable due to the complex nature of the log (|X; — X;[")le =1,7]
partition function. Note that a similar parameterization by nare the functionA? log (AP) is interpreted to be zero for
Ogata and Tanemura [55] did not lead to such a simple solutign_ Next, define the functiorf(p) so that

due to the assumption th#&(x) had bounded support.

For any scale invariant prior of Table I, we may evaluate df(p) _ -1 S by B[ - X
the expression of (7) by substituting in the scaling relation of dp ~ Np? &= 77 ! I
(5). This results in the simple expression L.y eN
-log (| Xi — X;|")[e =1, p]. 12)
6P = 1 w(z, p) (8)

N T Then the ML estimate of is given by
The above result is very appealing since it is quite simple, log N
and applies for the GGMRF, divergence, and generalized p = arg min {M +f(p)}_ (13)
divergence cases. In order to gain intuition, consider the case p p

when X;‘ are ii.d. Gaussian random variables. In this casge minimization of (13) may be evaluated by first computing
p=20" |s§2|mply the vanance, Qand (8) reduces to the familiag,y o (12) using stochastic integration. The stochastic
expressions” = (1/N) %L, 7. Lange obtained a resultintegration may be done by generating samples from the
equivalent to (8) in [31]. desired MRF using = 1, and computing the desired average.
We note that this result rests on the reduction of the two-
dimensional (2-D) parameter estimation problem to a 1-D
In this section, we will derive a method for computing thgroblem, since in 1-D a derivative ¢gf(p) is easily integrated
joint ML estimate ofp and o for the GGMRF model or any to yield f(p).
other model that obeys (5). Note that all expectations are normalized Ny While the
We can reduce this problem to a 1-D optimization since wWany_... log P, ,(x) generally does not exist, the normalized
have the closed-form ML estimate of (8) in terms ofp. To log-likelihood, limx_,, (1/N) log P, ,(z) does. Therefore,
do this, we substitute the ML estimate @ffrom (8) into the if we compute f(p) for a sufficiently large lattice, we may

C. Joint ML Estimate of and p for Scalable Priors

log-likelihood function of (6). assume that it does not vary with.
I —1  log(u(z,p)/N) logz(p)
N 108 Po.plz) = 7 P Y (9 D. ML Estimate of> and p for Nonscalable Priors
The ML estimate ofp is then given by In this section, we derive methods to compute the joint ML
log(u(z,p)/N) 1 log (p) estimates of andp when the potential function is not scalable.
p = arg min {A + -+ %} (10) This includes all the potential functions of Table | except the
P p p Gaussian, Laplacian, and GGMRF.
In this form, we can see that the functiofi = u(z,p)/N is Notice thatw(z,p) is not a function ofp for any of the
a sufficient statistic for the parameter nonscalable potential functions. This means thatfer 5 the

The first two terms of (10) are easily computed, but the thildg-likelihood of (6) may be simplified to be
term, log 2(p)/N, is generally an intractable function @f )
since it requires the computation off&-dimensional integral. 1 log P p(x) = -1 w(x/5) —log & — M. (14)
However, we may compute the partition function indirectly ’ Np N

through its derivative using stochastic simulation [56]. Th&nere 5 is given by (7). The termiog z(p)/N may be
derivative is given by computed in a manner similar tf(p) by first computing its

d logz(p) d 1 1 derivative.
— =— — log exps —— u(z,p) ¢ dx
dp N dp N @€ p d logz(p) 1

= —— FElu(X =1,p|
_ -1 d lu(x ) b N N2 [w(X) | o =1,p] (15)
Nx(p) Joeq \dp p
1 Therefore the solution may be computed as the simultaneous
-exp{——u(a:,p)} dz solution to (7) and
p
11 d S {U(x/ff) . 10gZ(p)}
- — _ __ BlZ wx =1 p=arg min { ——= +log 6 + ——= 5.
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Ill. PARAMETER ESTIMATION FROM INCOMPLETE DATA If both p and ¢ must be estimated, then the update of
9) must be computed first, and the result used to compute

the prior model parametets and p from the observed image ! 0). C_omputation of_ (19) is somewhat more difficult since
X. However, in many applications the imag¥€ is never it requires that multiple samples ok be_ stored so the
directly observed. For example, in tomography the photéiPectation may be computed as a functionpoHowever,
counts,Y, are only indirectly related to the imag. In this W€ Will show that often a single sample of is sufficient
case, there may be additional parametersrelated to the to perform each EM update, so only a single image need be
forward model,Py(y|x). stored.

Ideally, the ML parameter estimate is then given by For nonscalable priors, the new parameters, andpy.+1
are given by the solution to the coupled equations.

The previous section dealt with the problem of estimati

(¢,0,p) = arg (Iqbnax) Po(ylz)Pyp(x) dz.  (16)
20.0) Jzcs X/oyg
. . e _ Pr41 = arg min {E{w Y =y, ¢ka0kapk:|
While (16) is often difficult to compute directly, the EM P Np

algorithm is an effective method for iteratively maximizing log z(p)
+ log o1 + ———
(16) [14], [15]. + N

In order to simplify notation, we will use the parameteri-
zation (v, p) where~y = o?. Then a single update of the EM

algorithm is given by Thtl d w(X /o) Y = 1, e o pe | = —1

Npry1 — |Ldo o R '

d)k—l—l = arg mgx E[log qu (y|X)|Y = yad)karykapk] e (22)

17)
o ) . These equations may be solved by iteratively computing the
(Y41, Prsr) = arg I(Er?)( Ellog P p(X)IY = ys ok e Pi] solution to each. Since each equation represents the mini-
(18) mization with respect to the corresponding variable, iterative
solution will not diverge (if the ML estimate exists). When
where ~;, and p;, are the parameters generated at flib p is assumed known, the EM update foris given by (22)
iteration of the EM algorithm. It can be shown that eachlone. However, computing the expectation of (22) requires
iteration of the EM algorithm increases the likelihood, sbuffering of the sample images.
that the likelihood value is guaranteed to converge to a local
maximum. A. Stochastic Data Models for Tomography
For the GGMRF prior, the EM update of (18), may be
explicitly computed as

(21)

In this section, we introduce the stochastic models that we
will need for emission and transmission tomography. For a
Prs1 = arg min description of photon counting mode_ls ir_1 tomog_raphy see _[16]
p and [4], and for a development which is notationally similar
1. . to the one presented here, see [50].
' {5 log E[u(X, p)/NIY =y, ¢ e ] + f(p)} Let = denote the column vector of emission intensities in the
(19) emission case or the attenuation densities in the transmission
1 case. For the emission case, lgt; be the probability that a
e+t = 7 Blu(X, oot )Y =y, i v P (20)  photon emitted from cel is registered at théth detector. Let
i i A be the projection matrix with elemen{si;; }, and letA,,
The expectations of (19) and (20) may be approximatefl,qte theith row of the projection matrix. Ley denote the

usingon-linestochastic integration. This is done by generating, ,mn vector of measurements of Poisson-distributed photon

samples from the posterior distribution of given Y, and 4 nts at the detectors for all angles and displacements. Then,

then computing the desired sample averages in place of {i¢ he emission case, the log conditional distribution of the
true expectations [1], [22], [40]. Unlike the off-line stochasu%h(mn countsy’ given « is

integration of (12), evaluation of EM updates must be com-
putationally efficient. In Section I1I-C, we will show how this  (emission)log P(Y = y|z)
is possible.

I? p is known, then onlys needs to be estimated. In - Z (=Aiz +yi log {Ainr} —log(yit)). (23)
fact, estimation ofs is essential in many inverse problems. '
Too small a value ofs results in overly smooth images This formulation is general enough to include a wide variety
and too large a value of results in images with excessiveof photon-limited imaging problems, and the entries .&f
noise. For this case, only (20) need be applied, and they also incorporate the effects of detector response and
expectation may be computed by averaging values(af,p) attenuation.
for multiple samples of the image& generated from the The transmission case is similar, but with; corresponding
posterior distribution ofX givenY. We will discuss efficient to the length of intersection between tlia cell and theith
algorithms for generating these samples in the next sectiongrojection. Let the input photon counts be Poisson-distributed
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with rateyr. Then the conditional log-likelihood of given pixel is generated from its marginal posterior distribution.
z for the transmission case is Experimental results presented in Section IV-B will support
this conjecture.
Let us first examine the form of the conditional distribution
= Z (—yre= " £ yi(log yr — Asex) —log(y;!)).  of z; required by the Gibbs sampler. Let be the image at
i the nth iteration. Then for the emission case, from (23), (2)
(24) and (3), we have

log P(z,{Xp =a3: k£ 4} y)

(transmission)log P(Y = y|z)

B. ML Estimate of Dosager

The data for transmission tomography is often recorded in - Z (A + i log {Aij(x; — 2F) + Aiea™}
the form z; = In(yr/y;). This preserves the ML estimates 11 "
of integral densities, but results in the loss of the parameter _- Z bk p(a:j — X ,p) +C (26)
yr Which is required for the log-likelihood of (24). Wr P yen, a

is unknown, it can be estimated along with other parameter% ) .
using the EM algorithm update equation of (17). where C' is constant independent af; and z; > 0. Note

Using the result of the appendix, we obtain the followind'at directly generating samples from (26) would be very
EM update equation for computationally expensive. Green and Han [49] suggested

using a Gaussian distribution instead with parameters chosen

v (& Cax . to approximate the transition distribution of the Gibbs sampler.
YT =5 Z El{e™" " + A Xe™} However, due to the non-Gaussian nature of our prior term,
=1 this approximation is good only for the data term [50] in (26).

—1 . . . -
o o We can therefore obtain a good approximation by retaining
|Z = 2,00, pr,yn] — €77 — zie™ ™ . (25) the prior term as it is and using a second order Taylor series
expansion for the data term of (26)

C. Fast Simulation Technique log Pla;{ Xk =21k # 4} y)
The EM parameter updates derived in Section Ill require ~dy(z; — 27) + @ (z _x@)Q
the expectation of functions of. Direct computation of these ’ ! 2 !
expectations is intractable, but we can approximate them by 1 Z b p T;— Ty pl+C (27)
first generating sample images from the posterior distribution PR T o

of X givenY and then computing averages using the sample
images. The well-known Metropolis algorithm [46] can bavhered; andd, are the first and second derivative of the data
used to generate these samples from the posterior distributiim with respect ta:; evaluated at:7. In [50], it is shown

but it tends to suffer from slow convergence. that for the emission case
In this section, we propose a faster simulation method based Ui
. . d = Z A1 -2
on the algorithms of Hastings [47] and Peskun [48]. The L : i R
experimental results indicate that the required expectations can ¢ 21
be accurately estimated using only a single image sample. & —— Z ”i Aij
Let ¢(z’|x) be an arbitrary transition probability for gener- 2 A\ pr

ating a new state’ from the current state. Then in order to ‘
generate a sample with distributier(z), one should accept Wherep™ = Az™. The approximation holds for the transmis-

new samples with probability sion case also, with the corresponding expressiong fand
(el () d> as follows:
’ - . qlx|xr )mx n
alz’,x) = mln{l, W@ } dy =— Z Ay (yZ — ype P )
The Metropolis algorithm is a special case of this general d :_Z A2 e
formulation when we choose(z’|z) = g¢(z|z’). Another ? - YT

special case is the Gibbs sampler [8] when the new state for _
pixel j is generated using the conditional distribution, undéror efficient computation, we keep" as a state vector and
7(z), of z; given the values of all other pixels. For the GibbgiPdate it after each pixel update as follows:
sampler,«(z,z’) = 1, and we always accept the new state. cndtl _ 4 condl _omy | on

. . . . p Ay zi)+p".

A good choice of transition probabilitg(z’|x) results in ! ’

faster convergence of the stochastic simulation; but at present,_et the transition distribution for generating the new state
the optimal selection of(z’|x) is an open problem. For thefor the jth pixel be denoted ag;(x). Then we would like
tomography problem, it has been shown that greedy pixel-wiggx) to be a Gaussian distribution with mode equal
optimization of the posterior distribution has fast convergente the mode of the approximated conditional distribution
[6], [50]. We therefore conjecture that the Gibbs samplgR7). Unfortunately, generating positive samples fropi)
is desirable for the tomography problem because each nswcomputationally intensive whem < 0. However, we
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can use the fact that the tail of a Gaussian distribution may ML estimate of v
be accurately approximated as an exponential distribution. In op—1
the light of the above discussion, we choagér) with the
following form: 00051
: —(e—m)* >0,z>0 -
ex m x
C(s,m) P 252 ’ ool
gi(x) =<1 —x <0150 i
— €X — m X —
3 “P1Us ’ B oo
0 z <0
where C(s,m) is the normalizing constant of the truncated o — g
Gaussian distribution ang: is the mode of the approximated 003} o LS
conditional distribution (27)
-0.035 L N
0.1 0.15 02 0.25

Y—>

— are oty L 22 2
m= arg mfx d (x L ) + 2 (x x]) Fig. 1. The plot shows the normalized gradigfity) computed at the EM
updates ofy, for a emission phantom using a GGMRF prior wjth= 1.1.
The ML estimate ofy is given by the root ofy(v). The least squares (LS)

Z b <x -y ) fit obtained at the first seven points are numbered (1-7) and shown with a
j—k P P -

(28) dashed line. The intersection of the dashed lines with the top of the graph are

g e
the extrapolated parameter valueé,,).

1
p kCN;
Choosings? is more difficult due to the prior term. Since we

can at best do an approximate fit to the original distributicfSe- It is well known that

(26), it is not clear whether a more precise choicefvould d ) .
yield a significant improvement in performance. We therefore dy EllogP,(X)Y =94l =0
7=y

choose

1 where+ is the ML estimate ofy. From this it can be shown

st = that

do

to be the variance of the data term. Note that the variance of 7= Elu(X,p)/NY = y,5]- (29)

the approximated distribution (27) is over estimated by this
particular choicej is determined by setting the derivative o
the log of the exponential distribution equal to the derivati
of (27) at T; = 0

The EM algorithm iteratively solves for the fixed point of
his equation. However, a faster method is to search directly
Mfor its root. Define the function

1 9(7) = E[u(X,p)/NY =y,7] — 7. (30)
1 £
p =< —di+daz} +— Z bk p’< Tk ,p) Then the ML estimate ofy is the solution tog(%) = 0. At
P NN g iterationk of the EM algorithm, the value gf(+ ) is given by
wherep’(-, ) is the derivative of(-, -) with respect to its first g(vi) = Eu(X,p)/NY =y, %] —
argument. = V41 — Yk (31)

Onced; andd, are computed, the optimization of (28) is

computationally inexpensive since the sum associated with fhieerefore, we can plot the functigr{y) computed from (31).
prior typically involves few pixels. We use the half interval Fig. 1 shows such a plot aof(y) with respect toy for an
method to computer. Note that during MAP reconstruction,emission phantom when we use only one sampleXoto

m is also the updated value of pixel;, in the iterative estimate the expectation ef.X,p). At each iteration, we use
coordinate descent (ICD) algorithm of Bouman and Sauer [5@he last three values dfy, g(x)) to compute a least squares

fit to a straight line. The zero crossing of the least squares fit

D. Extrapolation of Parameter Estimates then yields the extrapolated value @f). Note thatfy,f’) is

Even with exact computation of thé-step, the convergencedose to the ML estimate after just four iterations.

of the EM algorithm can sometimes be slow. One way to The tgerlllerallzatloln tt?].the Cas?hwrl‘\f["s T.Ot I:novg 5’
further reduce the computation is to improve the current fpneeptually ea:ﬁy. n ¢ 'Sf(iﬁsef’ I € €s 'T.a esrfy n
parameter estimates by extrapolating them. This extrapolatti@fn"fIre given as the roots of the following equations.

requires very little computation, so it may be applied at each d L

EM iteration. At each iteratioit, the extrapolated parameter, dy Eflog Py (XY = v,%, 7] . =0

6\, is then an improvement over the EM parametgr y tat
First consider the case of the GGMRF wherés known — Ellog P ,(X)Y =y,5.5] =0.

andy = o must be estimated. This is an important special dp p=p
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Similar to the case whergis known, we can now define the o
vector valued function )

EQ[U(X,p)/iVIY =v,7,p] — 7
p
P Bl E 2 uXx,ply =
g(,y’p) — N dp P U’( 7p) Y, 7, P
df (p)

1-log 2 252
(1 —logy) +ap” =

Then the ML estimates of andp are given as the roots of
g(%,p) = 0. Note that we can easily compug€y, pr.) when 653 ; 5 2
computing the EM updates for andp. The computed values p—
of g(-,-) at the past» EM updates are used to obtain least Fig. 2. Solid line shows'’(p) and dashed line show&(p).
squares fits to two planes. The roots of the fitted planes are
then the extrapolated values.” andp®.

The nonscalable priors are handled in a similar fashion.

this case, the functiog(-, -) is given as

model with known values of ando. In both cases, the ML
estimates are close to the true values.
Note that for most natural images except for a few texture

d images, the ML estimate was less than 1.0, and for
2 B|-= u(X/o)Y = y.p.o| +p g ob

N do many images containing man made objegtwas less than

_ |1 B 0.4. In fact, a similar result has been independently reported
9(o:p) N Eu(X/o)lY =y,p,0] by Higdon et. al. [35]. Very small values oy may not lead
1 E[u(X)|p,o = 1] to the bes_t quality MAP reconst_ructioﬁdn particu!ar, the

N tomographic cross sections of Fig. 3(0) and (p) yield values

The two components of the vector valued functig(’)7 ) of p < 0.4, which we have found to be undesirable for MAP
can be rooted simultaneously or individually to obtain thEmographic reconstruction. Since the ML estimator has well-
extrapolated valuesr,(f') and pgf'). known optimality properties, this behavior of the ML estimate
may be due to the mismatch between the typical tomographic
cross sections and the GGMRF model. In light of this result,
IV. EXPERIMENTAL RESULTS alternative methods for estimatipgsuch as those of Jeffs and
In the following two sections, we experimentally study th&un [39], might be advantageous depending on the intended
convergence speed and accuracy of the proposed paramepglication.
estimation method. Section IV-A presents results of direct
parameter estimation from observed images; while Section 18- Estimation of> and p from Incomplete Data

B presents results for parameter estimation from incompleteIn this section, we study the performance of our proposed

data. algorithms for estimatingr andp from incomplete observa-
_ o tions. We present examples using both real and synthetic data
A. Direct Estimation o> and p for both tomographic reconstruction and image restoration.

In order to compute the ML estimates ¢f we first For the tomographic reconstruction examples, wepfix 1.1
computed the functiorf’ (p) using (12) and then integrated itand estimater because the results of Section IX-A indicate
using a second-order spline to yiefdp). To computef’(p), that ML estimates op from tomographic cross sections are
we computed batches of 10000 full iterations of a%464 e€xcessively small. However, we emphasize that estimation
periodic MRF with an eight-point neighborhood usiig; = 0f o is a problem of primary importance in tomographic
(2v/2+4)~* for nearest neighbors agl_; = (4y/2+4)~! for reconstruction, sincer determines the overall smoothness
diagonal neighbors. From each batch of 10000 iterations, @hthe reconstruction. MAP image reconstructions are then
estimate off’(p) was computed. This procedure was repeatdéjesented, which indicate that the ML estimatecofields
for a single value op until the estimate was found to stabilize2 good tradeoff between detail and noise reduction.

Then the value of was updated and the complete procedure To illustrate the utility of our method for optimal joint
repeated. Once the functigf{p) was computed, the accuracyestimation ofp and o, we apply our method to an image
of the result was tested by estimatipfrom sample GGMRF's restoration problem, and show that for this case we can
with known values ofp. accurately estimate and o simultaneously from the noisy

Fig. 2 shows the plots of (p) for 0.4 < p < 2.0. Since Observations.

the computation off (p) need only be done once, the speed of For tomographic reconstruction, we found that it was im-

convergence is not a great issue. However, we found that megstant to restrict the parameter estimates to the support of the
iterations were required ag decreased. Also, the functionObjeCt. If the flat background was included, then the estimation

f'(p) was sampled more finely fgr < 1. of o tended to be too small and the reconstructions too smooth.
Fig. 3 shows a host of natural and synthetic images wifrPr synthetic images, the support was known, but for real

their CorreSpond'ng joint ML estimates pfand ‘7_' Fig. 3(m) 3For p less than one, convergence of the MAP estimate can not generally
and (n) show two sample images generated using the GGMRfguaranteed, since the functional being minimized is not convex.
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(m) p=10.646 6 =2.72 | (n) p=1.860 6 = 0.74 (o) p< 0.4 (p) p<0.4

Fig. 3. The above figure shows joint estimatiorpainde for a variety of different images. In particular, (a)—(h) are images of natural scenes, (i)—(I) are images
of different textures, (m) and (n) are synthetic images generated from the GGMRF distribution with parameters,c = 2.34 andp = 1.8,0 = 0.72,
respectively, (0) is the CBP image obtained from transmission data for a flashlight, and (p) is a synthetic phantom that we will use for emissiphytomogra

(@) (b)

Fig. 4. (a) Original emission phantom and (b) convolution backprojection (CBP) reconstruction.

images it was extracted by first computing the convolutiomrray of 128x 128 pixels of size 1.56 mf and 128 Poisson
backprojection (CBP) reconstruction, thresholding with a zedbstributed projections are generated at each of 128 uniformly
threshold, eroding three times, dilating six times and thespaced angles. The total photon count was approximately 3
eroding three times. million.

Fig. 4 shows a synthetic emission phantom and the correig. 5 shows the convergence of the ML estimate dor
sponding CBP reconstruction. The emission rates are on wsing the GGMRF prior. We will refer to the three simulation
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(@) (b)

Fig. 5. Convergence plots ef for the emission phantom modeled by a GGMRF pfipr= 1.1). (a) CM method where denotes the standard deviation
of the symmetric transition distribution. (b) EAM method, AM method, and CM method. All the updates are done using a single saénfecofmpute
the expectation. However, the true ML estimate is the converged valuevdien 50 samples are used to compute the expectation.

@ (b)
() (d)

Fig. 6. Reconstructed emission phantom using GGMRF prior with 1.1 The scale parameter is (a) &, (b) 6¢rp, (€) 1/26, and (d)26.

methods as the conventional Metropolis (CM) method, theitialized with the CBP reconstruction and the ML estimate
accelerated Metropolis (AM) method of Section IlI-C, an@f o obtained from the CBP reconstruction. Each plot also
the extrapolated-accelerated Metropolis (EAM) method abntains a line labeled as the true ML estimate. This value is
Section llI-D. For each case, each EM update is done afmmputed by using 50 samples &f for each EM update and

a single full sample ofX is computed. The EM algorithm is running the EM updates until convergence.
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@ (b) (©

Fig. 7. Reconstructed emission phantom usingcosh(-) prior with the scale parameter optimally estimated for different values gf The value
of p is (a) 1, (b) 10, and (c) 100.

() (b)

Fig. 8. (a) Ground truth obtained from high-resolution transmission data, (b) CBP image, and (c) reconstructed image using GGMRF prierlwith
and o = &. (Data courtesy of T. Neel, Wright-Patterson Air Force Base, and N. Dussausoy, Aracor.)

©

Fig. 5(a) shows the results using the CM method with a Fig. 6 compares the quality of MAP reconstructions using
transition distribution chosen to be Gaussian with the varianées /2,24, and 6¢cpp, the estimate obtained directly from
as the free parameter. Notice that the convergence rate vaties CBP. Of the four results, the ML estimate ©fseems to
substantially with the choice of variance. In practice, it iproduce the most desirable tradeoff between detail and noise
unclear how to choose the best variance before performireguction. Fig. 7 shows the corresponding reconstructions for
the simulations. the logcosh(-) prior with p = 1,10, and 100, and the ML

Fig. 5(b) compares the EAM, AM, and CM methods wherestimates ofsc. The valuep = 10 for the logcosh(-) prior
the CM method uses the variance that produced the most rayields reconstructions similar to that of a GGMRF prior with
convergence. Notice that the EAM method has the most rapid= 1.1. The value ofp = 100 for the logcosh(-) prior tends
convergence and all three methods converge to the desitedhe GGMRF withp = 1 and the MAP reconstruction is
ML value. difficult to compute due to the extremely slow convergence.
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(@) (b) ©

Fig. 9. Blowup of images corresponding to Fig. 8. (a) Ground truth, (b) CBP image, and (c) reconstructed image using GGMRF prieriwitando = &.
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x 10 . i i . x 10

4.5

T
True ML estimete

Sigma ———>
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(2R
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R

2.6 : : : :
. . 0 20 40 60 80 100
No. of iterations ———> No. of iterations ——>
(@) (b)
Fig. 10. Comparison of’s convergence for CM, AM, EAM algorithms for the flashlight phantom modeled by a GGMRF fgies 1.1). The true ML
estimate is the converged value efwhen 50 samples are used to compute the expectation.

25 : : ‘ : :
0 5 10 15 20 25 30

Fig. 8 shows the images corresponding to real transmissiout Fig. 10(b) shows that after a large number of iterations,
data for a flashlight. The original data consisted of 102%e CM method tends toward the ML estimate.
projections taken at 792 equally spaced angles. From thigig. 11 shows the reconstructions corresponding to a three-
original data, we generated a low resolution data set dymensional (3-D) SPECT data set obtained from cardiac
retaining every fourth projection at every fourth angle. Wperfusion imaging using Tc-99m sestamibi. For each slice, 128
used the full resolution data to form a “ground truth” imagerojections were taken at 120 uniformly spaced angles between
using CBP reconstruction which is shown in Fig. 8(a). Altero and2x. Fig. 11(a) shows the CBP reconstruction of one
other reconstructions were then done with the lower resolutiglice. The reconstruction was done at 128128 resolution
data. This approach allows us to determine if the reconstrugsing 0.356 cm square pixels. The total photon count for
tions using the GGMRF prior actually produce more accuratieis slice was 148761. Fig. 11(b)—(d) compares the MAP
detalil. reconstructions corresponding to different values of the scale
Fig. 8(b) shows the CBP reconstruction and Fig. 8(c) showarameter. Again we see that the ML estimate @foroduces
the GGMRF reconstruction using the ML estimate of the scadereasonable tradeoff between detail and noise reduction.
parameter. Fig. 9 shows blowups of the same three imageskig. 12 shows the parameter estimation plots using the CM,
Notice that the GGMRF reconstruction is sharper than thévi and EAM method for the SPECT data. In this case it takes
CBP reconstruction, and in some regions, it contains magest one iteration for the AM or EAM method to converge
detail than the ground truth image reconstructed with 16 times the ML estimate, whereas the CM method takes about 15

more data. iterations.
Fig. 10(a) compares the EM updatescofor the flashlight Fig. 13(a) shows the original texture image that we use
data using the CM, AM, and EAM methods. It seems from thier a restoration example. Fig. 13(b) shows the noisy image

plot that the estimate obtained from the CM method has a biabtained by adding uncorrelated Gaussian noise. The SNR of
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-
@ (b)
() (d)

Fig. 11. (a) CBP reconstruction; Reconstructions using GGMRF prior wite 1.1 and (b)o = &, (c) 0 = 6/2, (d) o = 26. (Data courtesy of
T.-S. Pan and M. A. King, University of Massachusetts.)

iterations for the AM and EAM methods to converge to the

0.02 . , : . K
ML estimate as compared to 20 iterations for the CM method.
Fig. 13(c) shows the MAP restoration for this example using
0.018¢ pro. ‘ 1 the ML estimates op and o.

- 1 V. CONCLUSION

To.016
é We have shown in this paper that ML estimation of free
20.014 parameters for Bayesian image reconstruction is feasible for
a broad selection of image models and problem settings. Our
-~ CM method is based on parameterization of continuous MRF’s by
0.012} —AM 7 a scale parametes, and a shape parameter,For the class of
--EAM J scalable MRF's, the ML estimate efmay be easily computed
0.01 . ‘ . A —— in closed form. For other continuous MRF’s, the ML estimate
0 5 D itenons 20 25 30 of o may be easily computed as the solution to an equation.
’ Using this result, we also derive a method for computing the
Fig. 12. Comparison of's convergence for CM, AM, and EAM algorithms N\ estimate of the shape parametgr,
for the SPECT data modeled by a GGMRF prigr = 1.1). The true ML . .
In most practical problemss and p must be estimated

estimate is the converged value @fwhen 50 samples are used to compute .
the expectation. indirectly from measured data. For this case, we employ

the EM algorithm, and develop a fast simulation algorithm
together with a method for extrapolating the estimates when
the observations is 37 dB. Fig. 14 shows the joint estimationthfe EM algorithm is prematurely terminated. Together these
p and o for this case using the CM, AM and EAM methodsmethods allowed good parameter estimates to be computed in
Note that the ML estimates obtained are very close to tewer than ten iterations for the real and synthetic data sets
estimates obtained from the original image. It takes about tdrat were used.
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@) (b) (©
Fig. 13. (a) Original image. (b) Image corrupted with Gaussian noise (37 dB). (c) Restored image using GGMRF prior and ML estimateilpof
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Fig. 14. These plots show the EM updates for 4a)and (b)p for the restoration example using a GGMRF prior. The plots also show the ML estimate
obtained fore andp using the original image. All the updates are done using a single sampie tof compute the expectation.

APPENDIX transmission photon counts [57]:

In this appendix, we derive the ML estimatespf. For the o /2 e L
following development, we assume our observations are tHere ~)! = (2myre™ )"/ “(yre™= )" " exp{—yre™'}.

random integral projection measuremefits = ln(yr/Y;)}. _ _ o _ o _
Consider the log-likelihood function of in terms of the Using this substitution, differentiating the logarithm of (32)

unknown dosage parametgr. Let theith actual discretized With respect tayr and setting the result to zero yields the ML
projection measurement acro&sbe z; = A;.x. Note thaty; estimate ofy;.
are Poisson distributed with mean and variagge—*. Then v

by a simple transformation, we have gr =

M
2 Z [e=% — e~ + e %i(z; — 2)]
exp{—yre " Hyre )wre ™) =1
(yre==)!

P(Z=2X=2)=]]

i=1 ACKNOWLEDGMENT

(32)
for values ofz; corresponding to positive integer valuesyf  The authors would like to thank T. Neel, Wright-Patterson
and M denotes the number of projections. Stirling’s formuldir Force Base, and N. Dussausoy, Aracor, for providing the
provides a simplifying approximation for the factorial, whictlashlight data; and T.-S. Pan and M. A. King, University of
is relatively accurate for numbers in the typical range dflassachusetts, for providing the SPECT data.
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