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Abstract—Inverse problems spanning four or more dimensions
such as space, time andother independent parameters have become
increasingly important. State-of-the-art 4D reconstruction meth-
ods use model based iterative reconstruction (MBIR), but depend
critically on the quality of the prior modeling. Recently, plug-and-
play (PnP) methods have been shown to be an effective way to
incorporate advanced prior models using state-of-the-art denoising
algorithms. However, state-of-the-art denoisers such as BM4D and
deep convolutional neural networks (CNNs) are primarily available
for 2D or 3D images and extending them to higher dimensions is
difficult due to algorithmic complexity and the increased difficulty
of effective training. In this paper, we present multi-slice fusion, a
novel algorithm for 4D reconstruction, based on the fusion of mul-
tiple low-dimensional denoisers. Our approach uses multi-agent
consensus equilibrium (MACE), an extension of plug-and-play, as a
framework for integrating the multiple lower-dimensional models.
We apply our method to 4D cone-beam X-ray CT reconstruction for
non destructive evaluation (NDE) of samples that are dynamically
moving during acquisition. We implement multi-slice fusion on
distributed, heterogeneous clusters in order to reconstruct large
4D volumes in reasonable time and demonstrate the inherent par-
allelizable nature of the algorithm. We present simulated and real
experimental results on sparse-view and limited-angle CT data to
demonstrate that multi-slice fusion can substantially improve the
quality of reconstructions relative to traditional methods, while also
being practical to implement and train.

Index Terms—Inverse problems, 4D tomography, Model based
reconstruction, Plug-and-play, Deep neural networks.

I. INTRODUCTION

IMPROVEMENTS in imaging sensors and computing power
have made it possible to solve increasingly difficult recon-

struction problems. In particular, the dimensionality of recon-
struction problems has increased from the traditional 2D and
3D problems representing space to more difficult 4D or even
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Fig. 1. Illustration of our multi-slice fusion approach. Each CNN denoiser
operates along the time direction and two spatial directions. We fuse the CNN
denoisers with the measurement model to produce a 4D regularized reconstruc-
tion.

5D problems representing space-time and, for example, heart or
respiratory phase [1]–[6].

These higher-dimensional reconstruction problems pose sur-
prisingly difficult challenges computationally and perhaps more
importantly, in terms of algorithmic design and training due to
the curse of dimensionality [7]. However, the high dimension-
ality of the reconstruction also presents important opportunities
to improve reconstruction quality by exploiting the regularity
in the high-dimensional space. In particular, for time-resolved
imaging, we can exploit the regularity of the image to reconstruct
each frame with fewer measurements and thereby increase tem-
poral resolution. In the case of 4D CT, the contributions of [2],
[8], [9] have increased the temporal resolution by an order of
magnitude by exploiting the space-time regularity of objects
being imaged. These approaches use model-based iterative re-
construction (MBIR) [10], [11] to enforce regularity in 4D using
simple space-time prior models. More recently, deep learning
based post-processing for 4D reconstruction has been proposed
as a method to improve reconstructed image quality [12].

Recently, it has been demonstrated that plug-and-play (PnP)
priors [13]–[16] can dramatically improve reconstruction quality
by enabling the use of state-of-the-art denoisers as prior models
in MBIR. So PnP has great potential to improve reconstruction
quality in 4D CT imaging problems. However, state-of-the-art
denoisers such as deep convolutional neural networks (CNN)
and BM4D are primarily available for 2D and sometimes 3D
images, and it is difficult to extend them to higher dimensions [7],
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[17], [18]. In particular, extending CNNs to 4D requires very
computationally and memory intensive 4D convolution applied
to 5D feature tensor structures. This problem is further com-
pounded by the lack of GPU accelerated routines for 4D convolu-
tion from major Deep-Learning frameworks such as Tensorflow,
Keras, PyTorch 1. Furthermore, 4D CNNs require 4D ground
truth data to train the PnP denoisers, which might be difficult or
impossible to obtain.

In this paper, we present a novel 4D X-ray CT reconstruc-
tion algorithm that combines multiple low-dimensional CNN
denoisers to implement a highly effective 4D prior model.
Our approach, multi-slice fusion, integrates the multiple low-
dimensional priors using multi-agent consensus equilibrium
(MACE) [19]. MACE is an extension of the PnP framework
that formulates the inversion problem using an equilibrium
equation—as opposed to an optimization—and allows for the
use of multiple prior models and agents.

Fig. 1 illustrates the basic concept of our approach. Multi-slice
fusion integrates together three distinct CNN denoisers each of
which is trained to remove additive white Gaussian noise along
lower dimensional slices (hyperplanes) of the 4D object. When
MACE fuses the denoisers it simultaneously enforces the con-
straints of each denoising agent, so that the reconstructions are
constrained to be smooth in all four dimensions. Consequently,
multi-slice fusion results in high-quality reconstructions that are
practical to train and compute even when the dimensionality of
the reconstruction is high. In our implementation, one MACE
agent estimates the cone-beam tomographic inversion. The re-
maining 3 agents are CNN denoisers trained to remove additive
white Gaussian noise along two spatial directions and the time
direction. The CNN agents work along complimentary spatial
directions and are designed to take as input a stack of five 2D
slices from five neighboring time-points. We refer to this as 2.5D
denoising [7], [20]. Further details are given in Section IV.

The MACE solution can be computed using a variety of
algorithms, including variants of the plug-and-play algorithm
based on ADMM or other approaches [13], [14], [21], [22].
We implement multi-slice fusion on distributed heterogeneous
clusters in which different agent updates are distributed onto
different cluster nodes. In particular, the cone-beam inversion
computations are distributed onto multiple CPU nodes and con-
currently, the CNN denoising computations are distributed onto
multiple GPU nodes.

We present experiments using both simulated and real data
of 4D NDE tomographic imaging from sparse-views, and we
compare multi-slice fusion with MBIR using total variation (TV)
and 4D Markov random field (MRF) priors. Our results indicate
that multi-slice fusion can substantially reduce artifacts and
increase resolution relative to these alternative reconstruction
methods.

The rest of the paper is organized as follows. In Section II, we
introduce the problem of 4D CT reconstruction. In Section III,

1Currently only 1D, 2D, and 3D convolutions are supported with GPU
acceleration

Fig. 2. Illustration of 4D cone-beam X-ray CT imaging. The dynamic object
is rotated and several 2D projections (radiographs) of the object are measured
for different angles. The projections are divided intoNt disjoint subsets for each
of the Nt time-points.

we introduce the theory behind MACE model fusion. In Sec-
tion IV, we use the MACE framework to introduce multi-slice fu-
sion. In Section V, we describe our training pipeline for training
the CNN denoisers. In Section VI, we describe our distributed
implementation of multi-slice fusion on heterogeneous clusters.
Finally, in Section VII, we present results on sparse-view and
limited-angle 4D CT using both simulated and real data.

II. PROBLEM FORMULATION

In 4D X-ray CT imaging, a dynamic object is rotated and
several 2D projections (radiographs) of the object are measured
for different angles as illustrated in Fig. 2. The problem is then
to reconstruct the 4D array of X-ray attenuation coefficients
from these measurements, where three dimensions correspond
to the spatial dimensions and the fourth dimension corresponds
to time.

Let Nt be the number of time-points, Mn be the number
of measurements at each time-point, and Ns be the number of
voxels at each time-point of the 4D volume. For each time-point
n ∈ {1, . . . , Nt}, define yn ∈ RMn to be the vector of sinogram
measurements at time n, and xn ∈ RNs to be the vectorized
3D volume of X-ray attenuation coefficients for that time-point.
Let us stack all the measurements to form a measurement
vector y = [y�1 , .., y

�
Nt

]� ∈ RM where M =
∑Nt

n=1 Mn is the
total number of measurements. Similarly, let us stack the 3D
volumes at each time-point to form a vectorized 4D volume x =
[x�1 , . . . , x

�
Nt

]� ∈ RN , where N = NtNs is the total number
voxels in the 4D volume. The 4D reconstruction problem then
becomes the task of recovering the 4D volume of attenuation
coefficients, x, from the series of sinogram measurements, y.

In the traditional maximum a posteriori (MAP) approach, the
reconstruction is given by

x∗ = arg minx {l(x) + βh(x)} (1)
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where l(x) is the data-fidelity or log-likelihood term, h(x) is
the 4D regularizer or prior model, and the unit-less parameter
β controls the level of regularization in the reconstruction. The
data-fidelity term, l(x), can be written in a separable fashion as

l(x) =
1

2

Nt∑
n=1

‖yn −Anxn‖2Λn
(2)

where An is the system matrix, and Λn is the weight matrix for
time-point n. The weight matrix accounts for the non-uniform
noise variance due to a Gaussian approximation [23] of the
underlying Poisson noise. The weight matrix is computed as
Λn = diag{c exp{−yn} where the scalar c is empirically cho-
sen [2].

If the prior model, h(x), can be expressed analytically like a
4D Markov random field (MRF) as in [2], [4], then the expression
in equation (1) can be minimized iteratively to reconstruct the
image. However, in practice, it can be difficult to represent an
advanced prior model in the form of a tractable cost function
h(x) that can be minimized. Consequently, PnP algorithms
have been created as a method for representing prior models
as denoising operations [13], [14]. More recently, PnP methods
have been generalized to the multi-agent consensus equilibrium
(MACE) framework as a way to integrate multiple models in a
principled manner [4], [19], [24].

III. MACE MODEL FUSION

In this section, we use the multi-agent consensus equilibrium
(MACE) framework to fuse the data-fidelity term and multiple
denoisers; these multiple denoisers form a single prior model for
reconstruction. This allows us to construct a 4D prior model us-
ing low-dimensional CNN denoisers (described in Section IV).

To introduce the concept of consensus equilibrium, let us first
consider a variation of the optimization problem in equation (1)
with K regularizers hk(x), k = 1, . . . ,K. The modified opti-
mization problem can thus be written as

x∗ = arg minx

{
l(x) +

β

K

K∑
k=1

hk(x)

}
(3)

where the normalization byK is done to make the regularization
strength independent of the number of regularizers.

Now we transform the optimization problem of equation (3)
to an equivalent consensus equilibrium formulation. However,
in order to do this, we must introduce additional notation. First,
we define the proximal maps of each term in equation (3). We
define L(x) : RN → RN to be the proximal map of l(x) as

L(x) = arg minz∈RN

{
l(z) +

1

2σ2
‖x− z‖22

}
(4)

for some σ > 0. Similarly, we define Hk(x) : RN → RN to be
the the proximal map of each hk(x), k = 1, . . . ,K as

Hk(x) = arg minz∈RN

{
1

2σ2
‖x− z‖22 + hk(z)

}
. (5)

Each of these proximal maps serve as agents in the MACE
framework. We stack the agents together to form a stacked

Fig. 3. Illustration of consensus equilibrium as analogous to a force balance
equation: each agent pulls the solution toward its manifold and at equilibrium
the forces balance each other.

operator F : R(K+1)N → R(K+1)N as

F (W ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L(W0)
H1(W1)

...

HK(WK)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

where W ∈ R(K+1)N is stacked representative variable. The
consensus equilibrium is the vector W ∗ ∈ R(K+1)N that satis-
fies

F (W ∗) = G(W ∗), (7)

where G is an averaging operator given as

G(W ) =

⎡
⎢⎢⎢⎣
W
...

W

⎤
⎥⎥⎥⎦ , (8)

and the weighted average is defined as

W =
1

1 + β
W0 +

β

1 + β

(
1

K

K∑
k=1

Wk

)
. (9)

Notice the weighting scheme is chosen to balance the forward
and prior models. The unitless parameter β is used to tune the
weights given to the prior model and thus the regularization
of the reconstruction. Equal weighing of the forward and prior
models can be achieved using β = 1.

If W ∗ satisfies the consensus equilibrium condition of equa-
tion (7), then it can be shown [19] that W ∗ is the solution to
the optimization problem in equation (3). Thus if the agents in
MACE are true proximal maps then the consensus equilibrium
solves an equivalent optimization problem.

However, if the MACE agents are not true proximal maps,
then there is no inherent optimization problem to be solved, but
the MACE solution still exists. In this case, the MACE solution
can be interpreted as the balance point between the forces of each
agent as illustrated in Fig. 3. Each agent pulls the solution toward
its manifold and the consensus equilibrium solution represents
a balance point between the forces of each agent. Thus MACE
provides a way to incorporate non-optimization based models
such as deep neural networks for solving inverse problems.
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To see how we can incorporate deep neural network based
prior models, first notice that equation (5) can be interpreted as
the MAP estimate for a Gaussian denoising problem with prior
model hk and noise standard deviation σ. Thus we can replace
each MACE operator,Hk, for each k = 1, . . . ,K in equation (5)
with a deep neural network trained to remove additive white
Gaussian noise of standard deviation σ.

It is interesting to note that when Hk is implemented with
a deep neural network denoiser, then the agent Hk is not, in
general, a proximal map and there is no corresponding cost
function hk. We know this because for Hk to be a proximal
map, it must satisfy the condition that ∇Hk(x) = [∇Hk(x)]

�

(see [13], [25]), which is equivalent to Hk being a conservative
vector function (see for example [26, Theorem 2.6, p. 527]).
For a CNN, ∇Hk is a function of the trained weights, and in
the general case, the condition will not be met unless the CNN
architecture is specifically designed to enforce such a condition.

The consensus equilibrium equation 7 states the condition
that the equilibrium solution must satisfy. However, the ques-
tion remains of how to compute this equilibrium solution. Our
approach to solving the consensus equilibrium equations is to
first find an operator that has the equilibrium solution as a fixed
point, and then use standard fixed point solvers. To do this, we
first notice that the averaging operator has the property that
G(G(W )) = G(W ). Intuitively, this is true because applying
averaging twice is the same as applying it once. Using this fact,
we see that

(2G− I)(2G− I) = 4GG− 4G+ I = I (10)

where I is the identity mapping. We then rewrite equation (7) as

FW ∗ = GW ∗

(2F − I)W ∗ = (2G− I)W ∗

(2G− I)(2F − I)W ∗ = W ∗ .

So from this we see that the following fixed point relationship
must hold for the consensus equilibrium solution.

(2G− I)(2F − I)W ∗ = W ∗, (11)

and the consensus equilibrium solution W ∗ is a fixed point of
the mapping T = (2G− I)(2F − I).

We can apply a variety of iterative fixed point algorithms
to equation (11) to compute the equilibrium solution. These
algorithms have varying convergence guarantees and conver-
gence speeds [19]. One such algorithm is Mann iteration [19],
[24], [27]. Mann iteration performs the following pseudo-code
steps until convergence where ← indicates assignment of a
psuedo-code variable.

W ← (1− ρ)W + ρTW, (12)

where weighing parameter ρ ∈ (0, 1) is used to control the speed
of convergence. In particular, when ρ = 0.5, the Mann-iteration
solver is equivalent to the consensus-ADMM algorithm [19],
[28]. It can be shown that the Mann iteration converges to a
fixed point of T = (2G− I)(2F − I) if T is a non-expansive
mapping [19].

Algorithm 1: Partial update Mann iteration for computing
the MACE solution.

Input:Initial Reconstruction: x(0) ∈ RN

Output:Final Reconstruction: x∗

1 X ←W ←

⎡
⎢⎣
x(0)

...
x(0)

⎤
⎥⎦;

2 whilenot convergeddo
3 X ← F̃ (W ;X)
4 Z ← G(2X −W )
5 W ←W + 2ρ(Z −X)
6 x∗ ← X0

Note that each Mann iteration update in equation (12) involves
performing the minimization in equation (4). This nested itera-
tion is computationally expensive and leads to slow convergence.
Instead of minimizing equation (4) till convergence, we initialize
with the result of the previous Mann iteration and perform only
three iterations of iterative coordinate descent (ICD). We denote
this partial update operator as L̃(W0, X0)whereX0 is the initial
condition to the iterative update. The corresponding new F
operator approximation is then given by

F̃ (W ;X) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

L̃(W0;X0)
H1(W1)

...

Hk(WK)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

Algorithm 1 shows a simplified Mann iteration using partial
updates. We perform algebraic manipulation of the traditional
Mann iterations [24], [27] in order to obtain the simplified but
equivalent Algorithm III. It can be shown that partial update
Mann iteration also converges [24], [27] to the fixed point in
equation (11). We used a zero initialization, x(0) = 0, in all our
experiments and continue the partial update Mann iteration until
the differences between state vectors Xk become smaller than a
fixed threshold.

IV. MULTI-SLICE FUSION USING MACE

We use four MACE agents to implement multi-slice fusion.
We set K = 3 and use the names Hxy,t, Hyz,t, Hzx,t to denote
the denoising agents H1, H2, H3 in equation (6). The agent L
enforces fidelity to the measurement while each of the denoisers
Hxy,t, Hyz,t, Hzx,t enforces regularity of the image in orthogonal
image planes. MACE imposes a consensus between the opera-
torsL,Hxy,t,Hyz,t,Hzx,t to achieve a balanced reconstruction that
lies at the intersection of the solution space of the measurement
model and each of the prior models. The MACE stacked operator
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Fig. 4. Architecture of our 2.5D CNN denoiser. Different sizes of input and
output necessitate a selection operator for the residual connection. Each green
rectangle denotes a tensor, and each ellipse denotes an operation. Blue ellipses
specify the shape of the convolution kernel.

Fig. 5. Illustration of our training data generation. We extract 3D patches from
a typical CT volume and add additive white Gaussian noise (AWGN) to generate
training pairs. This makes the training process self-supervised.

TABLE I
TOTAL RECONSTRUCTION TIME OF MULTI-SLICE FUSION FOR EACH

EXPERIMENTAL CASE

F encompassing all four agents can be written as

F (W ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

L(W0)

Hxy,t(W1)

Hyz,t(W2)

Hzx,t(W3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Here the representative variable W ∈ R4˜N is formed by stack-
ing four vectorized 4D volumes.

The three denoisers Hxy,t, Hyz,t, and Hzx,t share the same
architecture and trained model but are applied along different
planes of the 4D space. The CNN architecture is shown in
Fig. 4. We have modified a typical CNN architecture [29] to

Fig. 6. Illustration of distributed computation of multi-slice fusion. We per-
form distributed computation of theF operator which is the main computational
bottleneck in Algorithm III. Each operator within F , namely Hxy,t, Hyz,t, Hzx,t,
andL can be executed in parallel. Furthermore, operatorsHxy,t,Hyz,t,Hzx,t, and
L are 3D operators that can process the 4D volume “slice by slice” leading to
a large number of concurrent operations that can be distributed among multiple
compute nodes.

input information from a third dimension. The channel dimen-
sion of a convolution layer is typically used to input multiple
color channels for denoising 2D color images using CNNs. We
re-purpose the channel dimension to input five adjacent 2D slices
of the noisy image to the network and output the denoised center
slice. The other slices are being denoised by shifting the 5-slice
moving window. We call this 2.5D since the receptive field along
the convolution dimensions is large but in the channel dimension
is small. It has been shown that this type of 2.5D processing
is a computationally efficient way of performing effective 3D
denoising with CNNs [7], [20]. We use the notation Hxy,t to
denote a CNN space-time denoiser that performs convolution in
the xy-plane and uses the convolution channels to input slices
from neighboring time-points. The denoisers Hyz,t and Hzx,t are
analogous to Hxy,t but are applied along the yz and zx-plane,
respectively. This orientation of the three denoisers ensures that

1) The spatial dimensions x, y, z are treated equivalently. This
ensures the regularization to be uniform across all spatial
dimensions;

2) Each dimension in x, y, z, and t is considered at least once.
This ensures that model fusion using MACE incorporates
information along all four dimensions.

Since the three denoising operators Hxy,t, Hyz,t, and Hzx,t pro-
cess the 4D volume “slice by slice,” they can be implemented in
parallel on large scale parallel computers. Details on distributed
implementation are described in Section VI.

V. TRAINING OF CNN DENOISERS

All three prior model agents Hxy,t, Hyz,t, and Hzx,t in multi-
slice fusion share the same 2.5D model shown in Fig. 4 but are
oriented along different planes. Consequently we train a single
2.5D CNN model using 3D data. Even though the CNN needs
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Fig. 7. Comparison of different methods for simulated data 360◦. Each image is a slice through the reconstructed object for one time-point along the spatial
xy-plane. The reconstruction using FBP suffers from high noise and fails to recover the small hole in the bottom of the image. MBIR+TV and MBIR+4D-MRF
suffer from jagged edges and fail to recover the small hole in the bottom of the image. MBIR+Hyz,t and MBIR+Hzx,t suffer from horizontal and vertical streaks,
respectively, since the denoisers were applied in those planes. MBIR+Hxy,t cannot reconstruct the small hole in the bottom of the image since the xy-plane does
not contain sufficient information.

TABLE II
EXPERIMENTAL SPECIFICATIONS FOR SIMULATED DATA 360◦

TABLE III
QUANTITATIVE EVALUATION FOR SIMULATED DATA 360◦. MULTI-SLICE

FUSION HAS THE HIGHEST PSNR AND SSIM METRIC AMONG ALL THE

METHODS

to denoise 3D time-space data, we train it using 3D spatial data
since 3D volumes are widely available unlike time-space data.

Fig. 5 outlines our training data generation. We start with a
low-noise 3D CT volume that is representative of the objects to
be reconstructed. We extract 3D patches from the CT volume
and add pseudo-random additive white Gaussian noise (AWGN)
to the patches to generate the training pairs. We then train the
CNN to remove the noise. The use of AWGN is due to the
mathematical form of the quadratic norm term in the proximal

map in equation 5 and follows from the theory of Plug-and-
play [13], [14].

VI. DISTRIBUTED RECONSTRUCTION

The computational structure of multi-slice fusion is well-
suited to a highly distributed implementation. The main com-
putational bottleneck in Algorithm III is the F operator. Fortu-
nately, F is a parallel operator and thus its individual compo-
nents L, Hxy,t, Hyz,t, and Hzx,t can be executed in parallel. The
operatorsL,Hxy,t,Hyz,t, andHzx,t can themselves be parallelized
internally as well. The distributed implementation of multi-slice
fusion is illustrated in Fig. 6.

The CNN denoisers Hxy,t, Hyz,t, and Hzx,t are 2.5D denoisers
that denoise the 4D volume by processing it slice by slice and
thus can be trivially parallelized leading to a large number of
concurrent operations. The concurrent operations for all three
denoisers are distributed among multiple GPUs due to the
availability of optimized GPU routines in Tensorflow. In our
experiments we used a GPU cluster with three Nvidia Tesla
P100 GPUs to compute the CNN denoising operators.

The cone-beam inversion operator, L, can also be computed
for each time-point independently due to the separable structure
in equations (4) and (2). This leads to a large number of con-
current operations which are distributed among multiple CPU
nodes. The cone-beam inversion for each time-point is computed
using a coordinate-descent minimization with multi-threaded
parallelism. Further details about the cone-beam inversion can
be found in [3].
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Fig. 8. Plot of cross-section through the phantom and reconstructions from
simulated data 360◦. Multi-slice fusion results in the most accurate reconstruc-
tion of the gap between materials.

TABLE IV
EXPERIMENTAL SPECIFICATIONS FOR SIMULATED DATA 90◦

TABLE V
QUANTITATIVE EVALUATION FOR SIMULATED DATA 90◦. MULTI-SLICE FUSION

HAS THE HIGHEST PSNR AND SSIM METRIC AMONG ALL THE METHODS

VII. EXPERIMENTAL RESULTS

We present experimental results on two simulated and two
real 4D X-ray CT data for Non-Destructive Evaluation (NDE)
applications to demonstrate the improved reconstruction quality
of our method. The four experimental cases are outlined below

1) Simulated Data 360◦: Sparse-view results on simulated
data with a set of sparse views ranging over 360◦ at each
reconstructed time-point;

TABLE VI
EXPERIMENTAL SPECIFICATIONS FOR REAL DATA 360◦: VIAL COMPRESSION

2) Simulated Data 90◦: Sparse-view limited-angle results
on simulated data with a set of sparse views ranging over
90◦ at each reconstructed time-point;

3) Real Data 360◦: Sparse-view results on real data with a
set of sparse views ranging over 360◦ at each reconstructed
time-point;

4) Real Data 90◦: Sparse-view limited-angle results on real
data with a set of sparse views ranging over 90◦ at each
reconstructed time-point.

The selection of the rotation range per time-point is arbitrary
and can be chosen after the measurements have been taken.
For example, a full rotation with 400 views can be used as a
single time-point or as four time-points with 100 views each.
The four time-points per rotation can provide extra temporal
resolution, however, they require a more difficult reconstruction
with incomplete information.

We compare multi-slice fusion with several other methods
outlined below
� FBP: Conventional 3D filtered back projection reconstruc-

tion;
� MBIR+TV: MBIR reconstruction using a total variation

(TV) prior [30] in the spatial dimensions;
� MBIR+4D-MRF: MBIR reconstruction using 4D Markov

random field prior [2] with q = 2.2, p = 1.1, 26 spatial
neighbors and 2 temporal neighbors;

� MBIR+Hxy,t: MBIR using the CNN Hxy,t as a PnP prior;
� MBIR+Hyz,t: MBIR using the CNN Hyz,t as a PnP prior;
� MBIR+Hzx,t: MBIR using the CNN Hzx,t as a PnP prior.
We used two CPU cluster nodes, each with 20 Kaby Lake

CPU cores and 96 GB system memory to compute the cone-
beam inversion. We used three GPU nodes, each with a Nvidia
Tesla P100 GPU (16 GB GPU-memory) and 192 GB system
memory to compute the CNN denoisers. To compute the multi-
slice fusion reconstruction, we run Algorithm III for 10 Mann
iterations, with 3 iterations of cone-beam inversion per Mann
iteration. The total reconstruction time of multi-slice fusion for
each experimental case are given in Table I.

The 2.5D CNN denoiser model used in the reconstructions
was trained using a low-noise 3D CT reconstruction of a bottle
and screw cap made from different plastics. The object is rep-
resentative of a variety of Non-Destructive Evaluation (NDE)
problems in which the objects to be imaged are constructed
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Fig. 9. Comparison of different methods for simulated data with 90◦ rotation of object per time-point. The FBP reconstruction has severe limited-angle artifacts.
MBIR+TV improves the reconstruction in some regions but it suffers in areas affected by limited angular information. MBIR+4D-MRF reduces limited-angle
artifacts, but allows severe artifacts to form that are not necessarily consistent with real 4D image sequences. In contrast, the multi-slice fusion result does not suffer
from major limited-angle artifacts.
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Fig. 10. Illustration of the reconstruction quality obtained for extreme sparse-
view data with different levels of limited angle per time-point. FBP results
in strong artifacts due to sparse-views and limited angles. MBIR+TV and
MBIR+4D-MRF mitigates most of the major sparse-view artifacts but suffers
from limited angle artifacts in the 90◦ limited angle case. Multi-slice fusion
results in fewer limited-angle and sparse-view artifacts and an improved PSNR
metric. Moreover, multi-slice fusion results in reduced artifacts compared to
MBIR+TV and MBIR+4D-MRF as the rotation per time point is decreased.

from a relatively small number of distinct materials. The ex-
tracted patches were normalized to [0,1] and random rotation,
mirroring, intensity shift were applied. The standard deviation
of the additive white Gaussian noise added during training was
0.1.

A. Simulated Data 360◦

In this section we present results on simulated data to
evaluate our method in a sparse-view setting. Each time-point

TABLE VII
EXPERIMENTAL SPECIFICATIONS FOR REAL DATA 90◦: INJECTOR PEN

is reconstructed from a sparse set of views spanning 360◦. We
take a low-noise CT reconstruction of a bottle and screw cap
and denoise it further using BM4D [18] to generate a clean
3D volume to be used as a 3D phantom. We then vertically
translate the 3D phantom by one pixel per time-point to
generate a 4D phantom x0. We generate simulated sinogram
measurements asN (Ax0,Λ−1)whereA is the projection matrix
and the inverse covariance matrix Λ = diag{c exp{−Ax0}
accounts for the non-uniform noise variance due to a Gaussian
approximation [23] of the underlying Poisson noise. We then
perform a 4D reconstruction from the simulated sinogram
data and compare with the 4D phantom. The experimental
specifications are summarized in Table II.

Fig. 7 compares reconstructions using multi-slice fusion with
several other methods. Each image is a slice through the recon-
structed object for one time-point along the spatial xy-plane.
The reconstruction using FBP suffers from high noise and fails
to recover the small hole in the bottom of the image. The
reconstructions using MBIR+TV and MBIR+4D-MRF suffer
from jagged edges and fail to recover the small hole in the
bottom of the image. MBIR+Hyz,t and MBIR+Hzx,t suffer from
horizontal and vertical streaks, respectively, since the denoisers
were applied in those planes. MBIR+Hxy,t does not suffer from
streaks in the figure since we are viewing a slice along the
xy-plane, but it suffers from other artifacts. MBIR+Hxy,t cannot
reconstruct the small hole in the bottom of the image since the
xy-plane does not contain sufficient information. It is to be noted
that multi-slice fusion enhances the size and contrast of the small
hole highlighted by the blue circle relative to the phantom. This
can cause deviations when measuring the size of small features
in the reconstruction.

Next we plot a cross-section through the object for multi-slice
fusion, MBIR+4D-MRF, MBIR+TV, FBP, and the phantom in
Fig. 8. Multi-slice fusion results in the most accurate reconstruc-
tion of the gap between materials.

Finally we report the peak signal to noise ratio (PSNR) and the
structural similarity index measure (SSIM) [31] with respect to
the phantom for each method in Table III to objectively measure
image quality. We define the PSNR for a given 4D reconstruction
x with a phantom x0 as

PSNR(x) = 20 log10

(
Range(x0)

RMSE(x, x0)

)
, (15)
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Fig. 11. Comparison of different methods for Real Data360◦: vial. Each image is a slice through the reconstructed vial for one time-point along the spatial xy-plane.
Both FBP and MBIR+4D-MRF suffer from obvious windmill artifacts, higher noise and blurred edges. In contrast to that, the multi-slice fusion reconstruction
has smooth and uniform textures while preserving edge definition. MBIR+Hyz,t and MBIR+Hzx,t suffer from horizontal and vertical streaks. MBIR+Hxy,t cannot
reconstruct the outer ring since the slice displayed is at the edge of the aluminum seal and the xy-plane does not contain sufficient information. Multi-slice fusion
can resolve the edges of the rings better than either of MBIR+Hxy,t, MBIR+Hyz,t, and MBIR+Hzx,t since it has information from all the spatial coordinates.

where range is computed from the 0.1st and 99.9th percentiles of
the phantom. As can be seen from Table III, multi-slice fusion
results in the highest PSNR and SSIM scores.

B. Simulated Data 90◦

In this section we present results on simulated data to evaluate
our method in a sparse-view and limited-angle setting. Each
time-point is reconstructed from a sparse set of views spanning

90◦. The simulated measurement data is generated in a similar
fashion as Section VII-A using the experimental specifications
summarized in Table IV.

Fig. 9 shows a comparison of different methods for simu-
lated data with 90◦ rotation of object per time-point. The FBP
reconstruction has severe limited-angle artifacts. MBIR+TV
improves the reconstruction in some regions but it suffers in
areas affected by limited angular information. MBIR+4D-MRF
reduces limited-angle artifacts, but allows severe artifacts to
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form that are not necessarily consistent with real 4D image
sequences. In contrast, the multi-slice fusion result does not
suffer from major limited-angle artifacts.

Table V shows peak signal to noise ratio (PSNR) and structural
similarity index measure (SSIM) with respect to the phantom for
each method. Multi-slice fusion results in the highest PSNR and
SSIM scores.

In order to determine the effectiveness of our method for more
challenging data, we generate extreme sparse-view simulated
data with different angle of rotation per time-point while keeping
the rest of the experimental setup the same as Table IV. Fig. 10
illustrates the reconstruction quality obtained for the extreme
sparse-view data with different levels of limited angle. FBP
results in strong artifacts due to sparse-views and limited angles.
MBIR+TV and MBIR+4D-MRF mitigates most of the major
sparse-view artifacts but suffers from limited angle artifacts in
the 90◦ limited angle case. Multi-slice fusion results in fewer
limited-angle and sparse-view artifacts and an improved PSNR
metric. Moreover, multi-slice fusion results in a reduced mo-
tion and sparse view artifacts as compared to MBIR+TV and
MBIR+4D-MRF as the rotation per time point is decreased.

C. Real Data 360◦: Vial Compression

In this section we present results on real data to evaluate our
method in a sparse-view setting. The data is from a dynamic
cone-beam X-ray scan of a glass vial, with elastomeric stopper
and aluminum crimp-seal, using a North Star Imaging X50 X-ray
CT system. The experimental specifications are summarized in
Table VI.

The vial is undergoing dynamic compression during the scan,
to capture the mechanical response of the components as shown
in Fig. 15. Of particular interest is the moment when the alu-
minum seal is no longer in contact with the underside of the
glass neck finish. This indicates the moment when the force
applied exceeds that exerted by the rubber on the glass; this is
known as the “residual seal force” [32].

During the scan, the vial was held in place by fixtures that
were placed out of the field of view as shown in Fig. 15. As
the object rotated, the fixtures periodically intercepted the path
of the X-rays resulting in corrupted measurements and conse-
quently artifacts in the reconstruction. To mitigate this prob-
lem, we incorporate additional corrections that are described in
Appendix A.

Fig. 11 compares multi-slice fusion with several other meth-
ods. Each image is a slice through the reconstructed vial for one
time-point along the spatial xy-plane. Both FBP and MBIR+4D-
MRF suffer from obvious artifacts, higher noise and blurred
edges. In contrast to that, the multi-slice fusion reconstruction
has smooth and uniform textures while preserving edge def-
inition. Fig. 11 also illustrates the effect of model fusion by
comparing multi-slice fusion with MBIR+Hxy,t, MBIR+Hyz,t,
and MBIR+Hzx,t. MBIR+Hyz,t and MBIR+Hzx,t suffer from
horizontal and vertical streaks respectively since the denoisers
were applied in those planes. MBIR+Hxy,t does not suffer from
streaks in the figure since we are viewing a slice along the

Fig. 12. Plot of cross-section through the vial at a time when the aluminum
and glass have physically separated. Multi-slice fusion is able to resolve the
junction between materials better while simultaneously producing a smoother
reconstruction within materials compared to MBIR+4D-MRF and FBP.

Fig. 13. Illustration of temporal resolution for real data 360◦ : vial. We
plot a cross-section through the vial with time for each method: multi-slice
fusion, MBIR+4D-MRF, FBP. Multi-slice fusion results in improved space-time
resolution of the separation of aluminum and glass.
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Fig. 14. Volume rendering of the reconstructed spring and its cross-section for four time-points. A 90◦ limited set of views is used to reconstruct each time-point.
The FBP reconstruction contains severe limited-angle artifacts. MBIR+4D-MRF mitigates some limited-angle artifacts but some artifacts remain.

Fig. 15. Experimental setup for Real Data 360◦: Vial Compression. The vial
is undergoing dynamic compression during the scan, to capture the mechanical
response of the components. The glass vial (center) and the actuator (top)
are held together by a frame constructed of tubes and plates. The tubes were
placed outside the field of view of the CT scanner, thus causing artifacts in the
reconstruction. We describe a correction for this in Appendix X.

xy-plane, but it suffers from other artifacts. MBIR+Hxy,t cannot
reconstruct the outer ring since the slice displayed is at the edge
of the aluminum seal and the xy-plane does not contain sufficient
information. In contrast, multi-slice fusion can resolve the edges
of the rings better than either of MBIR+Hxy,t, MBIR+Hyz,t,
and MBIR+Hzx,t since it uses information from all the spatial
coordinates.

Next, we plot a cross-section through the object for multi-
slice fusion, MBIR+4D-MRF and FBP in Fig. 12. For this, we
choose a time-point where we know the aluminum and glass
have separated spatially, thus creating an air-gap. Multi-slice
fusion results in a deeper and more defined reconstruction of
the gap between materials. This supports that multi-slice fusion
is able to preserve fine details in spite of producing a smooth
regularized image.

Finally in Fig. 13 we plot a cross-section through the object
with respect to time to show the improved space-time resolution
of our method. We do this for FBP, MBIR+4D-MRF and multi-
slice fusion. Multi-slice fusion results in improved space-time
resolution of the separation of aluminum and glass.

D. Real Data 90◦: Injector Pen

In this section we present results on real data to evaluate our
method in a sparse-view and limited-angle setting. The data is
from a dynamic cone-beam X-ray scan of an injector pen using
a North Star Imaging X50 X-ray CT system. The experimental
specifications are summarized in Table VII.

The injection device is initiated before the dynamic scan
starts and completes a full injection during the duration of the
scan. We are interested in observing the motion of a particular
spring within the injector pen in order to determine whether it
is working as expected. The spring in question is a non-helical
wave-spring [33] that is constructed out of circular rings that are
joined together. The spring exhibits a fast motion and as a result
we need a high temporal resolution to observe the motion of the
spring. To have sufficient temporal resolution we reconstruct
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Fig. 16. Pipeline of the blind fixture correction in Algorithm 2. The vertical stripes in the yz-plane of the reconstruction and the ring at the edge of the field of
view in the xy-plane of the reconstruction have been rectified after performing the correction.

one frame for every 90◦ rotation of the object instead of the
conventional 360◦ rotation.

Fig. 14 shows a volume rendering of the reconstructed spring
and a cross-section through it for four time-points and re-
construction methods FBP, MBIR+4D-MRF, and multi-slice
fusion. The FBP reconstruction contains severe limited-angle
artifacts. MBIR+4D-MRF mitigates some limited-angle arti-
facts but some artifacts remain. In contrast, multi-slice fusion
mitigates most limited-angle artifacts. The cross-sections of
the spring in the multi-slice fusion reconstruction are more
circular than the other methods, which align with our prior
knowledge about the spring. The fast compression of the spring
causes the rings within the spring to move significantly within
a time-point, resulting in the observed blur in the multi-slice
fusion reconstruction. Strong limited-angle artifacts in the other
reconstructions mask this effect.

VIII. CONCLUSION

In this paper, we proposed a novel 4D X-ray CT reconstruc-
tion algorithm, multi-slice fusion, that combines multiple low-
dimensional denoisers to form a 4D prior. Our method allows the
formation of an advanced 4D prior using state-of-the-art CNN
denoisers without needing to train on 4D data. Furthermore, it
allows for multiple levels of parallelism, thus enabling recon-
struction of large volumes in a reasonable time. Although we
focused on 4D X-ray CT reconstruction for NDE applications,
our method can be used for any reconstruction problem involving
multiple dimensions.

IX. APPENDIX

X. CORRECTION FOR FIXTURES OUTSIDE THE FIELD OF VIEW

Here we describe our correction for fixtures placed out of the
field of view of the scanner. As shown in Fig. 15, the setup is held

Algorithm 2: Blind fixture correction.
Input:Original Sinogram: y
System Matrix: A,
Output:Corrected Sinogram: ycorr

1 x← recon(y,A)
2 xm ← mask(x)
3 e← y −Axm

4 p← blur(e)
5 c← arg minc∈R‖e− cp‖2
6 ycorr ← y − cp

together by a fixture constructed of tubes and plates. The tubes
were placed outside the field of view of the CT scanner, thus
causing artifacts in the reconstruction. Our method performs
a blind source separation of the projection of the object from
that of the tubes. Our blind separation relies on the fact that the
projection of the tubes is spatially smooth. This is true since the
tubes themselves do not have sharp features and there is motion
blur due to the large distance of the tubes from the rotation axis.

Algorithm 2 shows our correction algorithm for the fixtures.
Fig. 16 illustrates the algorithm pictorially. The initial recon-
struction x suffers from artifacts within the image and at the
edge of the field of view. We mask x using a cylindrical mask
slightly smaller than the field of view to obtain the masked image
xm. This is done so that the majority of the artifacts at the edge of
the field of view are masked but the object remains unchanged in
xm. Consequently the error sinogram e = y −Axm primarily
contains the projection of the tubes with some residual projection
of the object. The blurring of e filters out the residual object pro-
jection but preserves the spatially smooth projection of the tubes.
The corrected measurements ycorr are found after performing a
least squares fit. The correction can be repeated in order to get
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an improved reconstruction x and consequently an improved
correction ycorr.

Fig. 16 shows the sinogram and reconstruction both before
and after performing the blind correction. Not only does the
reconstruction after fixture correction remove the artifacts in
the air region, but it also improves the image quality inside the
object. It can be seen that the vertical stripes in the object in
the yz view of the reconstruction have been eliminated after
performing the correction.
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