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Abstract—For Bayesian image reconstruction applications in
which the measured image follows from physical considerations,
it is desirable to incorporate the corresponding physics into the
prior model. In this paper, we use a phase-field as the physics-
based prior model to implement the soft segmentation and re-
construction of noisy microstructural images of a polycrystalline,
covalent material (SiC). The functional form of this prior is based
on a coarse-grained Ginzburg–Landau free energy that embodies
the underlying physics, and its phenomenological parameters are
obtained from atomistic computer simulation. In particular, we
compare an existing functional form developed by Fan and Chen
for microstructural simulations with one developed here that is
better suited to noise reduction in image reconstruction, and find
that the latter form is indeed superior in this context. Numerical
and experimental results demonstrate that the proposed method
performs successful soft segmentation and reconstruction of mi-
croscopy images, even at very low signal levels. In addition, the
superior performance of the proposed model for several case stud-
ies in comparison with state-of-the-art methods, such as BM3D and
one using a MRF-based prior, is demonstrated.

Index Terms—Physics-based, phase-field, prior model, denois-
ing, soft segmentation, electron microscopy, grain boundaries.

I. INTRODUCTION

S CANNING and transmission electron microscopies (SEM
and TEM) are important tools for microscale/nanoscale

Manuscript received August 14, 2018; revised December 10, 2018 and Jan-
uary 18, 2019; accepted February 1, 2019. Date of publication February 14,
2019; date of current version November 5, 2019. This work was supported by
the Materials and Manufacturing Directorate of the Air Force Research Lab-
oratory, Dayton, OH, USA, under Contract FA8650-11-D-5800 Task Order
15. The associate editor coordinating the review of this manuscript and ap-
proving it for publication was Prof. Mathews Jacob. (Corresponding authors:
Charles A. Bouman and Amirkoushyar Ziabari.)

A. Ziabari is with the Department of Electrical and Computer Engineering,
Purdue University, IN 47907 USA (e-mail:,aziabari@purdue.edu).

J. M. Rickman is with the Departments of Physics and Material Science
and Engineering at Lehigh University, Bethlehem, PA 18015 USA (e-mail:,
jmr6@lehigh.edu).

L. F. Drummy and J. P. Simmons are with the Materials and Man-
ufacturing Directorate, Air Force Research Laboratory, Wright-Patterson
Air Force Base, OH 45433 USA (e-mail:, lawrence.drummy.1@us.af.mil;
jeff.simmons.3@us.af.mil).

C. A. Bouman is with the Departments of Electrical and Computer Engineer-
ing, and Biomedical Engineering at Purdue University, IN 47907 USA (e-mail:,
Bouman@purdue.edu).

Digital Object Identifier 10.1109/TCI.2019.2899499

characterization of materials, and novel image processing algo-
rithms have been used to advance these techniques. In particular,
image denoising algorithms are beneficial for identifying inter-
faces and second-phase particles from noisy microscopy images
and for extracting useful properties. From a Bayesian point of
view, the image prior modeling in such algorithms is especially
important when the likelihood is known, and various priors in-
cluding nonlocal self-similarity (NSS) models [1]–[3], sparse
models [4]–[6], gradient models [7]–[9] and Markov random
field (MRF) models [10]–[14] have been exploited for image
denoising.

Consider first a MRF model in which a prior, defined in image
space, is expressed in terms of a potential function that penalizes
dissimilarities between neighboring pixels. Depending upon the
choice of the potential function, a variety of MRF-based priors
has been developed and employed in different image processing
applications [10], [11], [15]. The correct priors can be esti-
mated based on statistical analysis [16], [17] or from a database
of natural images [8], [14], [18]. It should be noted, however,
that prior models that embody only local image characteristics,
and are blind to non-local behavior, have limited applicability.
Thus, NSS models are popular in state-of-the-art methods such
as BM3D [3], [19], LSSC [20], NCSR [5] and WNNM [21].
Finally, Sreehari et al. [22] developed a plug-and-play (PnP)
framework [23], [24] that decouples the forward fidelity and
prior terms, permitting the integration of any denoising algo-
rithm into a prior model and thereby improving image recon-
struction. Subsequently, Romano et al. [25] proposed a different
approach, also inspired by the PnP framework, for using denois-
ing as a prior.

The aforementioned models used priors developed without
regard to the underlying processes that dictate the structures
in the images. In the case of microstructural images of poly-
crystalline materials, for example, the geometrical features of
the constitutent grains (and grain boundaries) are determined by
both energetic and kinetic factors. These factors are embodied in
a coarse-grained description, namely a phase-field model [26],
that has been used to describe grain growth and other physi-
cal phenomena, such as solidification and fluid dynamics [27],
[28]. Phase-field models are in widespread use given their ability
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to reproduce realistic structures in materials; thus, one expects
that such a model would be a useful prior for performing im-
age reconstruction from TEM images of materials microstruc-
tures. We note that the phase-field model has, in fact, been
used in image processing applications, including segmentation,
denoising [29]–[31], inpainting [32], [33] and iterative recon-
struction [34]. These applications, however, used either phe-
nomenological hyperparameters in the phase-field free energy
and/or were limited to binary phases studies. For example, Sadiq
et al. [34] used a phase-field model to perform reconstructions of
tomographic imagery of metallic solidification. Their approach
was limited to two-class reconstructions and did not incorporate
physics directly in the estimation of nuisance parameters.

In this work, we develop a model based iterative reconstruc-
tion (MBIR) algorithm that employs a phase-field model in
which the spatio-temporal evolution of a system is based on
the minimization of a Ginzburg-Landau-like free energy [35].
Using a state-of-the-art phase-field model as a prior permits us
to describe spatially diffuse, evolving interfaces for performing
joint, soft segmentation and reconstruction from noisy images
of polycrystalline microstructures. The reconstruction focuses
on forming an image with continuously valued pixels, and seg-
mentation focuses on assigning each pixel to a specific discrete
class. Indeed, one novel aspect of this work is our use of an ex-
isting model of phase transitions as a regularizer. We employ the
model developed by Fan and Chen [36] that uses a non-convex
bulk free energy model, which describes phase transitions in the
physical system at a coarse level, as a regularizer. In addition,
we introduce a new, non-convex bulk free energy model that
we call the snap function, and highlight its advantages in this
context as compared to the Fan and Chen bulk free energy.

The resulting model constitutes a prior in the maximum-a-
posteriori (MAP) estimate cost function for MBIR. For con-
venience, we also use a plug-and-play [24] methodology to
separate the forward model from the prior model and to per-
form the minimization of the cost function.

We note that the forward model embodies the physics of an
imaging system having Poisson noise. To minimize the corre-
sponding cost function, a new algorithm using iterative coor-
dinate descent (ICD) is developed. In particular, we developed
a new algorithm that uses ICD along with the alternating di-
rection method of multipliers (ADMM) [37] to minimize the
constrained cost function.

As discussed below, the interfacial energy per unit area and the
grain-boundary width are the key input parameters for the phase-
field model, and they are obtained from atomistic simulation of
a model covalent system, namely silicon carbide (SiC).

To validate our methodology, we present the results for two
types of tests. In the first test, numerical phantoms are, for
convenience, generated by evolving a phase-field model. We
then apply the methodology to TEM images obtained with high-
annular angular dark-field (HAADF) imaging.

We have selected SiC as a model experimental system for
image reconstruction given its technological relevance and the
importance of grain boundaries and grain triple junctions in
this system in determining its functionality. In particular, SiC
is an oxidation-resistant, refractory material having a rela-
tively high hardness, and it is therefore a good candidate for

high-temperature structural materials [38]. In the case of
nanocrystalline SiC having average grain sizes in the 5–20 nm
range, hardness is substantially enhanced relative to the bulk
due to the large fraction of grain boundaries that is inherent at
the nanoscale [39], [40].

In another application that highlights the importance of grain
boundaries, SiC is used to coat nuclear fuel particles and contain
radionuclides produced during their use. However, radioactive
Ag is found to diffuse through Ag grain boundaries, prompting
detailed studies of SiC boundaries.

As relatively little is known about these boundaries, elec-
tron microscopy has been employed to interrogate the struc-
ture of individual boundaries and triple junctions and, in the
presence of impurities, to characterize boundary chemistry as
well [41]. Such studies have revealed the presence of distinct
grain-boundary phases (known as complexions [42]) that dic-
tate the widths of individual boundaries, where interfacial width
may be inferred from Fresnel fringes in conventional TEM im-
ages of these boundaries [43]. Thus, clear images of individual
grain boundaries and triple junctions in SiC are critical for char-
acterizing material behavior.

In comparison with our conference paper [44], this work con-
tains several new features. First, since the electron microscopy
images considered here typically contain Poisson noise, we out-
line algorithms to describe Poisson, rather than additive Gaus-
sian, noise. To that end, we develop a new, iterative coordinate
descent algorithm with quadratic surrogates in Appendix A,
and integrated this algorithm into a PnP framework with a
physics-based prior. In addition, we perform joint soft segmen-
tation and reconstruction on real high annular angular dark-field
(HAADF) STEM images, as well as on several new numerical
phantoms, with Poisson noise applied. Finally, and perhaps most
significantly, we prov the convergence of the snap algorithm in
Appendix B, and demonstrate why it is preferred over other
non-convex, physics-based priors.

The structure of this paper is as follows. We first describe
the phase-field model and the associated key equations in
Section II. In Section III, we explain the procedure used to sim-
ulate microstructures. The generated microstructures are then
used in Section IV to create noisy numerical phantoms. In
Sections V and VI, we develop new physics-based algorithms
to perform soft segmentation and reconstruction from Poisson
noisy measurements. Finally, in Section VII, we demonstrate
the performance of our algorithm for several numerical and real
experimental case studies.

II. PHASE-FIELD MODEL

The phase-field method has been used extensively to de-
scribe and model microstructural evolution of materials [36],
[45]–[48]. Unlike the Potts model, in which a continuum mi-
crostructure is mapped onto a lattice using discrete class values,
the phase-field model is a description in which these discrete
values are replaced by a continuous field variable that is asso-
ciated with spatially homogenized classes [49]. The evolution
of the field variables is described by the Ginzburg-Landau evo-
lution equation [50]. In this sense, the phase-field model is
a “soft-spin” model in which the gradient penalty associated
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with the field variable leads to diffuse interfaces [27], [36] in
spatially inhomogeneous systems. The Ginzburg-Landau evo-
lution equation is described as follows.

In this work, we model a polycrystalline solid and use the
word phase to mean the orientation of one of its p constituent
grains. For this purpose, we let η : �3 → �p be a mapping from
3-dimensional space to a p dimensional vector in which each
component corresponds to a phase in a material at a particular
location. η(r) ∈ �p represents the phase at the location r ∈ �3 .

In the phase-field model, the phase field evolves according to

∂η(r, t)
∂t

= −LδF
δη

(r, t) , (1)

where L is the relaxation coefficient for the system, δF
δη (r, t) is

the functional derivative of F with respect to η and F is the total
free energy functional of the system. For convenience, we will
first consider the free energy functional

F (η) =
3ε

2
√

2

∫
�3

{
1
Wφ

f(η) +
Wφ

2
||∇η||2

}
d3r, (2)

where Wφ is the interface transition width (m), ε is the energy
density of the interface (J/m2) and f(η) is the bulk free energy.
Furthermore, we define ||∇η||2 ≡∑p

i=1 ||∇ηi(r)||2 .
The integrand of equation (2) is composed of two terms: the

bulk free energy and the gradient energy. The bulk free energy is
generally only locally convex, allowing for multiple local min-
ima in F (η) and therefore multiple crystalline domains. From
physical considerations, there is an energy penalty associated
with an interface (due, in part, to broken bonds), the bulk free
energy is balanced against the interfacial energy penalty. In a
phase-field model, this interfacial energy is given by the gradient
in η. Thus, the minimization of equation (2) yields the equilib-
rium distribution of material in the polycrystalline domains.

Fan and Chen [36] proposed a model of the bulk free energy
that allowed for evolution of polycrystalline materials and is
given by

fF C (η(r))=
p∑
i=1

(
−1

2
η2
i (r)+

1
4
η4
i (r)

)
+

p∑
i=1

p∑
j �=i

η2
i (r)η

2
j (r)

(3)

III. SIMULATION OF A POLYCRYSTALLINE MICROSTRUCTURE

To generate the numerical imaging phantoms of polycrys-
talline microstructures, we will need to create first a microstruc-
ture using the phase-field model. The three key steps for mi-
crostructure generation are:

1) Discretize the phase-field evolution equation.
2) Compute the nuisance parameters of the phase-field

model, η and Wφ , using atomistic simulations.
3) Solve the discretized evolution equation numerically.
In this section, we describe these steps and the associated

generation of microstructures.

A. Discretization of the Ginzburg–Landau Evolution Equation

To effect a numerical solution, the Ginzburg-Landau equa-
tions must be discretized. This is accomplished by first redefin-
ing r = sΔx such that ηs,i = ηi(r). ηs ∈ �p is a p-dimensional

vector defined at each location s, and each element of ηs is rep-
resented by ηs,i where i = 1, 2, ..., p are indices corresponding
to those elements. s = (s1 , s2 , s3) ∈ Z3 is a discrete index and
Δx is the sample period (m). From this perspective, η ∈ �N×p
can also be regarded as an N × p matrix.

Using the definitions above, we can rewrite the discretized
version of equation (3) as follows:

f(ηs) =
p∑
i=1

(
−1

2
η2
s,i +

1
4
η4
s,i

)
+

p∑
i=1

p∑
j �=i

η2
s,iη

2
s,i

= −1
2
||ηs ||2 − 3

4
||ηs ||44 + ||ηs ||4

(4)

where ||ηs ||P denotes the P -norm of ηs .
With these definitions one can approximate the total free

energy by

F̃ (η) ≈ 3 εΔ2
x

2
√

2

∑
s∈S

⎧⎨
⎩

1
w
f(ηs) +

w

2Kn

∑
{r,s}∈P

||ηs − ηr ||2
⎫⎬
⎭ ,

(5)
where w = Wφ

Δx
is the dimensionless transition width and P

denotes the set of Kn nearest neighbors of s i.e., Kn = 6 for a
simple-cubic lattice.

It is also convenient to define the discrete normalized energy
function

u(η) ≈ 1
γkBT

F̃ (η) , (6)

where γ = 3 εΔ2
x

2
√

2kB T
.

Finally, the discretized evolution equation is given by

η(k+1) = η(k) − ρ∇u(η(k)), (7)

where η(k) ∈ �N×p is the phase field at time t = kΔt , where
Δt is the time increment and ρ = ΔtkB TL/Δ3

x .

B. Molecular Dynamics Atomistic Simulations

The excess interfacial energy per unit area, ε, and the width
for grain boundaries, Wφ , are the parameters of the phase-field
model.

We employed atomistic simulations of grain boundaries in
silicon carbide (SiC) to estimate these parameters using a mod-
ified Tersoff potential [51]. For concreteness, we focused on
twist grain boundaries at 0K temperature and calculated ε by
constructing a spatially periodic unit cell and then minimizing
the energy of the system by relaxing the coordinates of the
constituent atoms. More specifically, we examined three twist
boundaries, namely the so-called Σ5, Σ13 and Σ29 bound-
aries [52], and found that in these cases ε ≈ 5 J/m2.

In addition, for these boundaries, we also determined the
effective boundary width by calculating the planar structure
factor S (k) for a selected Bragg peak wavevectors, k, lying
both above and below the grain boundary plane, as shown in
Figure 1 [53]. The effective interface width was obtained by
fitting a hyperbolic tangent to the interfacial profile, with the
result that Wφ ≈ 0.4 nm. It is worth noting that the structure
factor can be calculated from S (k) =

∑N
l=1

∑N
j=1 e

ik(
rl−
rj ) ,
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Fig. 1. The planar structure factor, S(k), for a Bragg peak wavevector, k,
lying in the plane below (green points) and above (red) the grain boundary in
the center of the simulation cell. The diminution of structure factor near the box
length fraction of 0.5 is a reflection of the disorder induced by the boundary.
The width of the boundary can be inferred from the profile near a boundary.

wherein N is the number of atoms and r is the position of each
atom.

C. Numerical Solution of Ginzburg–Landau Evolution
Equation

To simulate grain growth, the discretized evolution equa-
tion (7) is solved numerically using the parameters obtained
from atomistic simulation in Section III-B. For ease of compu-
tation, however, it is convenient to constrain the evolving field
to fall within the p-dimensional simplex set given by

Ωp =

{
η ∈ �p :

p∑
i=1

ηi = 1 and ∀ ηi ≥ 0

}
. (8)

This constraint may be enforced by employing the modified
(discretized) evolution equation

η(k+1)
s = PΩp

[
η(k)
s − ρ

{
1
w
∇f(ηs)+

w

Kn

∑
r∈∂s

(ηs − ηr )
}]

,

(9)
where PΩp

is the operator that computes the unique projection
onto the simplex set Ωp . The operator PΩp

can be computed
using a finite number of iterations using Algorithm 1 [54], [55]
presented below.

Algorithm 1: Projection of a p-dimensional Vector x Onto
Unit Simplex. After [54], [55].

I = {1, 2, . . . , p}
Repeat
{Projection onto plane}
x̄ =

(∑
i∈I

xi

)
/|I|

∀i ∈ I : xi ← xi − x̄+ 1/|I|
{Enforce inequality constraints}
I ← I \ {i : xi < 0}
∀i /∈ I : xi ← 0
until Σi∈I xi = 1

Fig. 2. The evolution of a simulated microstructure in space and time. The
boundary detection function ψ(η) =

∑p

i=1 η
2
s ,i is plotted in each panel (p =

16). Each image represents a a simulated image at (a) t = 800Δt , (b) t =
2400Δt , (c) t = 4000Δt , (d) t = 7200Δt , where Δt is a time step.

We solved equation (9) numerically to model grain growth,
with the evolving microstructure for p = 16. This is shown in
Figure 2. In this representation, the boundary detection func-
tion ψ(η) =

∑p
s∈S,i=1 η

2
s,i is plotted in each panel, and distinct

grains and delimiting grain boundaries are easily seen. For these
simulations the values of the field, η, were initialized as inde-
pendent, identically distributed (i.i.d) variables on [0 1], and
normalized at each lattice point (pixel) within a grain to sum to
unity. Each grain corresponds to a different component of the
phase field vector, η.

As expected, Figure 2 evinces grain coarsening with an at-
tendant increase in average grain size over time, and therefore
a decrease in the number of grains [36]. We recorded the out-
put microstructure at different time steps where microstructures
with 11, 7, 4 and 2 grains are generated. We then used them to
generate numerical phantoms with Poisson noise in Section IV.

IV. FORWARD IMAGING MODEL

In Section III, we obtained the order parameter, η, by nu-
merically solving the evolution equation. In this section, we use
the extracted η to create phantoms of microscopy images of
materials. Because of the interaction of electrons with solids,
the imaged intensity of a grain depends on its orientation. To
first order, these intensities can be represented as a linear super-
position of those due to the individual order parameters. Since
η ∈ �N×p , we define θ ∈ �p such that the intensity under ideal
conditions of each grain is

x = ηθ.

Per pixel s, x represents the order parameter ηs ∈ �p projected
onto the single dimension of intensity (∈ �), and a measurement
involves the interaction of xwith the imaging system and noise.

Suppose that y represents the observed, noisy image. In imag-
ing systems, such as electron microscopes, the observed quantity
corresponds to the counts of detected electrons, which are dis-
crete events occurring in a fixed time interval. It is known that
the Poisson statistics handles discrete processes taking place
in fixed time or space intervals [56]. Therefore, the probability
distribution of choice here that reflects the counting statistics is
a Poisson distribution [57]–[61], and each pixel intensity ys can
be modeled as a Poisson random variable.

Furthermore, we wish to estimate the rate of the Poisson
variable (x). To do so, we will use a Bayesian framework, al-
lowing this quantity to be represented by a random variable, and
perform a MAP estimation of its value. Thus, the conditional
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distribution of y ∈ Z+ given x ∈ �+ has the form

p(y|x) =
xy e−x

y!
. (10)

Our aim, then, is to use a Bayesian framework to estimate
x from measurement y. For numerical phantoms, we evaluated
η from phase-field simulations, performed the mapping x =
ηθ, and applied a different level of Poisson noise to x using
MATLAB’s imnoise function [62]. The phantoms were then
inverted to recover the original x as a ground truth. After testing
this procedure, we then apply it to real data from the SiC system
(see Section VII-C).

V. MAP ESTIMATE USING ICD WITH POISSON NOISE

Given the discussion above, we can now construct a
maximum-a-posteriori (MAP) estimate cost function and de-
scribe its minimization using iterative coordinate descent (ICD).
As our focus here is on the interpretation of electron micro-
graphs, we must first consider the nature of the measured quan-
tities. As discussed above, the probability distribution of choice
here that reflects the counting statistics for electrons is a Poisson
distribution.

In order to fit within a Bayesian framework, we considered
the conditional probability p(y|x) for the Poisson measurement.
As it is described in Appendix A, the negative log-likelihood of
this conditional probability distribution can be written as


(x) = − log p(y|x) = −y log x+ x+ log(y!),

where y ∈ Z+N and x ∈ �+N denote the observed quantity
(intensity) and its rate, respectively.

The MAP cost function can then be written as

x̂ = arg min
x∈�+ N


(x) + Ψ(x),

where Ψ(x) corresponds to a general prior model and x ∈ �+N

enforces the positivity constraint.
To minimize the MAP cost function, we used the ICD algo-

rithm with a surrogate cost function. The details of the method
are described in Appendix A and Algorithm 4.

VI. PLUG-AND-PLAY (PNP) FRAMEWORK WITH A

PHASE-FIELD PRIOR

In the previous section we showed the general ICD algorithm
for Poisson measurement, but the prior model for the MAP cost
function was not discussed. In this section we discuss the phase-
field prior model and develop a plug-and-play (PnP) framework
that uses this prior model to minimize the cost function and
obtain the map estimate.

It is worth noting that the phase-field model is remarkably
similar to the Mumford-Shah potential [63] used in active con-
tour segmentation, except that, for the latter: (1) there is a non-
convex bulk free energy that causes partitioning between phases,
and (2) it does not explicitly treat the interface region. The width
of an interface and the interfacial energy are dictated by the
physics of the problem. As described above, for the SiC system
considered here, we estimate this width and interfacial energy
from atomic-level simulations.

Fig. 3. A simplex plot for (a) the double-well potential (fF C (η)); and (b) for
the snap function (fsn ap (η)). A constant equal to 1

4 is added to original bulk
free energy (f (η)) in equation 3 to offset the negative values, thereby making
the energy function everywhere non-negative. (c) Comparison between cross-
sections along A-A’ shows the sharper vertices of the snap energy function.

A. Phase-Field Prior Model With Snap Free Energy

For phase-field regularization, the GL equation, rewritten be-
low, will be used as a prior term to incorporate the underlying
microstructural physics into image processing.

F̃ (η) = c1
∑
s∈S

⎛
⎝f(ηs) + c2

∑
{r,s}∈P

||ηs − ηr ||2
⎞
⎠ (11)

The first term in the sum is the bulk free energy, and the
second term corresponds to an interfacial energy penalty. c1
and c2 are coefficients that are determined below from physical
considerations.

The conventional choice for the bulk free energy, fηs is
the Fan/Chen double-well potential defined in equation (4)
(rewritten below).

fF C (ηs) = −1
2
||η||2 − 3

4
||η||44 + ||η||4

The associated simplex plot for the double-well potential en-
ergy function for p = 3 is shown in Figure 3a. This function is
based on fF C (η), and its smoothness near the simplex vertices
permits small deviations in the order parameter in response to
measurements, i.e. small crystalline misorientations. The reason
is that Fan and Chen’s free energy, for small deviations in η from
equilibrium, varies as ||η||2 . But, well-annealed polycrystalline
materials are generally sparse in orientation, so it is desirable to
have a potential that behaves more like ||η||1 .

Thus, as an alternative to the Fan and Chen free energy, we
have developed the snap potential, which is expected to preserve
sparsity more effectively. The snap function is defined by

fsnap(η) =
5
21

(1− ||η||2), (12)

where the prefactor is chosen so that fsnap(η) and fF C (η)
asymptotically become equivalent (in the limit of the number
of phases, p). The corresponding simplex plot for the snap free
energy function of order p = 3 is shown in Figure 3b. It should
be noted that, as with fF C (η), fsnap(η) also has its minima at
the vertices of the simplex. However, by contrast with fF C (η),
fsnap(η) has sharp features and a non-vanishing derivative near
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Algorithm 2: Plug-and-Play (PnP) Algorithm.
Initialize η, θ ← clustering of noisy measurement y

x = ηθ
v̂ ← x u← 0

until convergence {
1: x̂← arg min

x

∑
s∈S
{xs − ys log(xs) + log(ys !)}

+ ξ
2 ||x− v̂ + u||2

2: ṽ ← x̂+ u
Denoising using A Phase-field Prior
3: (η̂, θ̂)← arg minη ,θ ξ

2 ||ṽ − ηθ||2 + Ψ(η)
s.t. η ∈ �N × Ωp

4: v̂ = η̂θ̂
5: u = u+ x̂− v̂}

the vertices of the simplex that makes it better suited to pro-
cessing noisy images. This idea is analogous to the difference
between total variation and Gaussian priors in Bayesian opti-
mization [64]. Moreover, as compared to the fourth-order free
energy of fF C , the quadratic free energy of fsnap has the virtue
of greater simplicity.

B. PnP Algorithm

The PnP framework [23] provides the flexibility to mix and
match the forward and the prior models of choice in Bayesian
image processing and is, therefore, of great utility. Here we
employ the phase-field with the snap function as the prior model.
Thus, we rewrite equation (11) with the correct coefficients as
follows:

Ψ(η) =
λ

σp

∑
s∈S

⎛
⎝1− ||ηs ||2 +

ω2

2Kn

∑
{r,s}∈P

||ηs − ηr ||2
⎞
⎠ ,

(13)
where λ = 5γ

21w , ω2 = 21
5 w

2 and γ is defined in Section III-A.
P denotes the set of Kn nearest neighbors of s, and the regular-
ization σp = 1.

The procedure for the PnP algorithm with the phase-field
prior model is provided in Algorithm 2.

One notable difference with the standard PnP algorithm [23]
is that, in the denoising step of the standard algorithm (i.e. step
3 in Algorithm 2), the cost function is minimized with respect
to both η and θ, with their dot product then corresponding to the
updated ν̂.

The minimization shown in step 3 of Algorithm 2 can be
performed by the snap algorithm proposed in Algorithm 3. For
this purpose, the associated cost function is then given by

φ(η, θ) =
ξ

2
||ṽ − ηθ||2 + Ψ(η) s.t. η ∈ �N × Ωp ,

(14)
The minimization procedure proposed in the snap algorithm

is based on the iterative coordinate descent (ICD). We also took
two further steps to enforce the constraint in equation (14).
First, we enforced the positivity constraint using ADMM. The

Algorithm 3: Snap Algorithm.
Initialize η, θ ← clustering of noisy measurement y

ν̂ ← η δ ← 0
untile convergence {

for each pixel s ∈ S{
for k iterations {

1: ds = ∇ηs c(η, θ, ν)
2: gs = −P0d

T
s

3: α← ∂c(ηs +αgTs ,θ ,ν )
∂α = 0

4: η̂s ← η̂s + αgTs
5: ν̂s ← clip(η̂s + δs, 0)
6: δs ← η̂s − ν̂s + δs } }
7: θ̂ = (η̂T η̂)−1 η̂T y }

corresponding cost function is:

c(η, θ, ν) = φ(η, θ) + g(ν) +
β

2
||η − ν + δ||2

s.t. η ∈ �N ×
{
η ∈ �p :

p∑
i=1

ηi = 1

}
and η = ν,

(15)

where g(v) is the indicator function of the positivity set, ν
and δ are ADMM auxiliary variables and β > 0 is the penalty
parameter.

Next, we implemented the simplex constraint given in equa-
tion 8 by projecting the gradient into the tangent plane via the
projection operator P0 ≡ I− 1

p 11T [65]. In the preceding ex-
pression, I is a p× p identity matrix, 1 ∈ �p is a vector of all
ones and v and u are the ADMM auxiliary variables employed
to enforce the positivity constraint. Finally, the second step in
the snap algorithm is a quadratic minimization with respect to
θ (step 7 in Algorithm 3).

We should emphasize that the cost function in equation (14)
is still non-convex. However, in Appendix B, we provide the
conditions necessary to guarantee that the MAP negative log-
likelihood is convex.

VII. RESULTS AND DISCUSSION

We used the proposed algorithm to perform soft segmentation
and reconstruction from both numerical experiments and from
images acquired by TEM. As described in Section III-C and
IV, we used the proposed forward modeling procedure and the
Ginzburg-Landau energy with the Fan/Chen bulk free energy
to create binary and multiphase phantoms. The TEM data for
polycrystalline SiC was obtained using the high angular annular
dark-field (HAADF) microscopy technique.

A. Binary-Phase Cases

Consider first the case of a numerically-generated microstruc-
ture with two phases that has been modified with the application
of Poisson noise. To quantify the microstructural noise level, it

Authorized licensed use limited to: Purdue University. Downloaded on June 28,2022 at 11:57:34 UTC from IEEE Xplore.  Restrictions apply. 



666 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 5, NO. 4, DECEMBER 2019

Fig. 4. Soft segmentation and reconstruction of a numerically-generated,
two-phase microstructure having Poisson noise. (a) The ground truth im-
age x = ηθ. (b) A noisy image, y, obtained by applying Poisson noise to
the ground truth image (PSNR = 29.39 dB). (c) A reconstructed image
x̂ = η̂θ̂ (PSNR = 39.3 dB). (d) The ground-truth boundary detection function

ψ(η) =
∑p=2

i=1 η
2
s ,i . (e) The estimated order parameters (η̂) plotted as ψ(η̂).

is convenient to define the peak signal-to-noise ratio (PSNR)

PSNR ≡ 10 log
(
x2

max

MSE

)
,

where the mean-squared error

MSE ≡ 1
N

N∑
i=1

(x(i)− (x̂)(i))2 .

Figure 4 shows the joint segmentation and reconstruction
results for a binary case study. In particular, Figure 4a shows
the ground truth image, while Figure 4b depicts the noisy image
having a PSNR = 29.39 dB that resulted from the application of
Poisson noise to the ground-truth image. To create the ground-
truth image, the phase-field η obtained from the solution of the
Ginzburg-Landau equations in Section III-C was employed. It
was assumed that θ = [0.25 0.75]T . The reconstructed image
(x̂ = η̂θ̂), shown in Figure 4c, was obtained using the snap
method, that is the PnP with the snap energy function as prior,
by estimating both the segmentation label matrix (η̂) and the θ̂
matrix. It was found that the estimated θ̂ = [0.2519 0.7509]T ,
which is in close agreement with the ground truth values. Finally,
in Figures 4d and e, we present ψ(η) and ψ(η̂), respectively, to
emphasize the accurate reconstruction of the boundary itself.

As described in Section VI-A, the snap function is em-
ployed here given its superior denoising properties relative to
other plausible phase-field free energies. To demonstrate the
improved performance in this context, we compared the snap
and Fan/Chen priors in additional examples with different noise
levels. The results are shown in Figure 5, with three separate
case studies corresponding to three different noise levels shown
in Figures 5a–c.

The PSNR values in Figures 5a–c are (in dB) 20.4, 9.9 and
6.9, respectively. The reconstructed images using the PnP with
Fan/Chen prior are shown in Figures 5d–f and those obtained
using the snap method are shown in Figures 5k–m. As the PSNR
decreases, or the noise increases, the Fan/Chen prior ceases
to operate appropriately and does not restore the ground truth

Fig. 5. Comparison between the snap method, PnP with Fan/Chen as prior
and BM3D. Noisy images are shown in (a), (b), and (c). Reconstructed images
using PnP with Fan/Chen as prior are in (d), (e), and (f). BM3D images are in
(h), (i), and (j). Snap images are in (k), l, and (m). The PSNR values are listed
in Table I.

TABLE I
PSNR VALUES (IN dB) FOR BINARY PHASE CASE STUDIES IN FIGURE 5

image. The PSNR for the snap images are (in dB) 39.3, 33.54
and 32.47, respectively. We conjecture that the artifact observed
in Figure 5f is due to a local minimum in the free energy. This
result indicates the problem in using the Fan/Chen prior in this
context due to non-convexity of the cost function. Furthermore,
the better performance of the PnP algorithm with the Fan/Chen
prior at a relatively low noise level (Figure 5d) is attributed to
the fact that the numerical phantoms are generated by solving
exactly the same Fan/Chen equation. At larger noise levels,
however, the non-convexity of the corresponding cost function
inhibits convergence to the global minimum.

In addition, we compared the snap and Fan/chen results with
the denoised images obtained using BM3D [3], [66]. The BM3D
images are also shown in Figure 5. In all these cases the use of
snap results in an image with a lower PSNR as compared to
BM3D. The PSNR values for different cases in Figure 4 are
listed in Table I. For implementation of BM3D, we used the
software package provided in [66] for Poisson noise.

B. Multiphase Cases

In addition to the binary-phase cases described above, we
assessed the utility of the snap algorithm to perform joint
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Fig. 6. Joint segmentation and reconstruction for the multiphase (p = 11)
case study. (a) The ground truth image x = ηθ. (b) A noisy image y (PSNR
= 23.25 dB). (c) The reconstructed image x̂ = η̂θ̂ (PSNR = 36.37 dB).
(d) The ground-truth order parameters (η) plotted as ψ(η) =

∑p

i=1 η
2
s ,i .

(e) The estimated order parameters (η̂) plotted as ψ(η̂).

TABLE II
COMPARISON BETWEEN THE GROUND TRUTH AND ESTIMATED θ̂

Fig. 7. Comparison between the snap and BM3D results for microstructure
phantoms with different number of phases (p = 2, 4, and 7). Ground truth
images are in: (a) p = 2; (e) p = 4; (i) p = 7. Noisy images are in: (b) p = 2;
(f) p = 4; and (j) p = 7. BM3D images are in: (c) p = 2; (g) p = 4; and
(k) p = 7. Snap images are in (d) p = 2; (h) p = 4; and (l) p = 7.

segmentation and reconstruction from multiphase numerical
experiments. The results of this effort are displayed in Figure 6,
where Figure 6a–c show the ground truth, a noisy image and the
reconstructed image using the snap method, respectively. The
PSNR of the noisy image is 23.25 dB and that for the snap result
is 36.37 dB. As before, the ground-truth segmentation label vec-
tor η and the estimated result are also displayed in Figure 6d and
e. From these figures it can be seen that there is good agreement
between the ground truth and the reconstructed images.

In addition, as it is shown in Table II, the estimated θ̂ values
are in close agreement with the ground-truth values of θ.

We next examine the performance of the snap method for
case studies with different numbers of phases. The results of
this study are shown in Figure 7 for p = 2, 4 and 7 and in
Figure 8 for p = 11. More specifically, Figures 7a, e, and i are
the ground-truth images for these cases, while panels b, f, and
j are the corresponding noisy images. (The photon counts in

Fig. 8. Comparison between the snap and BM3D results for a multiphase case
study (p = 11). (a) Ground-truth image. (b)–(d) Noisy images. (e)–(g) BM3D
images. (h)–(j) Snap images.

TABLE III
PSNR VALUES (IN dB) FOR MULTIPHASE CASE STUDIES IN Fig. 7

TABLE IV
PSNR VALUES (IN dB) FOR CASE STUDY WITH p = 11 IN Fig. 8

all the noisy images are the same). For these different noisy
images, Figures 7c, g and k are the denoised images obtained
using BM3D, while panels d, h and l are obtained from the
snap method. The PSNR values for BM3D and snap images are
listed in Table III, which demonstrate the superior performance
of snap for these cases studies.

We also compared the different noise levels with 11 phases
present. This is shown in Figure 8. The noisy images are shown
in Figure 8b–d, and the BM3D and snap images are shown in
Figures 8e–g, and Figures 8h–j, respectively. The PSNR values
are in Table IV. Based on these results, as we increase the
noise, the snap method does not remain superior to BM3D for
the multiphase case studies with p = 11 classes. In addition,
compared to the ground truth images, the snap results have
small artifacts at some of the interfaces. To address this issue,
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Fig. 9. Joint soft segmentation and reconstruction of noisy HAADF images of
a triple junction at 1 μs dwell time. (a) HAADF images taken with 20 μs dwell
time (pseudo-ground truth). (b)–(f) Noisy HAADF images with 1 μs dwell time.
The average PSNR of these noisy images is 28.14 dB. Reconstructed images
corresponding to (b) through (f) were obtained using: (g)–(k) the PnP algorithm
with Fan/Chen prior; and, (l)–(p) the snap algorithm. (q)–(u) The estimated order
parameters for each snap image in (l) through (p). (ψ(η) are plotted which has
values in [0 1]).

that is mainly present at larger noise levels and a larger number
of grains, we may need to further optimize the regularization
and physics-based parameters.

C. TEM Experiments

1) Sample Preparation and Imaging: A longitudinal cross
section of a single silicon carbide (SiC) fiber (Tyranno SA, Ube
Industries Ltd.) suitable for transmission electron microscopy
(TEM) was prepared, lifted out, and welded to an OmniProbe
grid using a FEI Nova Dual Beam Focused Ion Beam (DB-FIB)
instrument.

Scanning transmission electron microscopy (STEM) of the
fiber was done on a 300 kV FEI Titan transmission electron
microscope. Data was collected in high angle (HA) dark field
(DF) STEM mode using a Gatan annular DF-STEM detector
with a camera length of 130 mm. Contrast in high angle annular
dark-field STEM (HAADF-STEM) is related to the crystallo-
graphic orientation of the grains relative to the incident electron
beam. Individual grains are approximately 200 nm in size and
have a random three- dimensional crystallographic orientation
distribution, or texture, in the fiber. A series of short exposure
time images (20 HAADF-STEM images each with a pixel dwell
time of 1 μs) were taken from the same region of sample, and
then a single long exposure time image (pixel dwell time of
20 μs) was captured from the same region. Portions of three
individual grains and three grain boundaries are visible in the
Figure 9a.

2) Results: We used the snap method to perform joint soft
segmentation and reconstruction of the HAADF-STEM images
obtained for polycrystalline SiC. Since ground truths are not

Fig. 10. (a) Comparison between the performance of the snap method and
the PnP with Fan/Chen prior in terms of PSNR. Values correspond to five
different cases shown in Figure 9. (b) PSNR values at different dwell times. For
each dwell time, we created 5 different images (given data set number 1 to 5)
and performed the reconstruction. We computed the PSNR with respect to the
pseudo-ground truth at 20 μs dwell time.

available for real data, we carried out a measurement at 20 μs
dwell time to obtain the pseudo-ground truth, and twenty DF-
STEM measurements at 1 μs dwell time to obtain the noisy
images.

Ideally, by averaging the twenty 1 μs images, one would
expect to obtain an image with the same quality as an image
obtained at 20 μs dwell time. Figure 9 shows the results for
measurements numbered 1, 5, 10, 15 and 20, respectively. The
pseudo-ground truth image (20 μs dwell time) is shown in panel
a. Figures 9b–f show the noisy images (all with 1 μs dwell
time). The reconstructed images using PnP with the Fan/Chen
prior are shown in Figures 9g–k, and those for the snap method
are shown in Figures 9l–p. The PSNR values for each image
were calculated with respect to the pseudo-ground truth image
and plotted in Figure 10a. The red curve corresponds to the snap
method and the green data points correspond to the PnP method
with the Fan/Chen prior. For all of these cases, the superior per-
formance of the snap method is evident. In Section VII-A, we
showed that the use of the Fan/Chen prior can produce artifacts
in the reconstruction. This is because using the Fan/Chen prior
in the cost function results in a non-convex optimization and we
cannot guarantee its convergence. Even if using the Fan/Chen
prior produces good results with real TEM images, its short-
coming in guaranteeing convergence limits its applicability. To
investigate this situation further, we also estimated order param-
eters using the snap method. The corresponding ψ(η) values of
the estimated order parameters are plotted in Figures 9q–u. It
is clear in the figures that snap recognizes the three grains and
segments the results appropriately.

To analyze the performance of the snap method at different
noise levels, we divided the twenty 1 μs images into groups of
3, 5 and 10 images, averaged the data in each group, and created
data sets with five 3 μs, 5 μs, and 10 μs effective dwell time
images. We performed joint segmentation and reconstruction
on images in each data set, and calculated the PSNR. The cal-
culated PSNRs are plotted in Figure 10b. These results suggest
that as we increase the dwell time the consistency between the
reconstructed images increases. We also compared the images
in Figure 11. Figure 11a, b, c, d are the HAADF images of triple
junction at 1 μs, 3 μs, 5 μs, and 10 μs effective dwell time.
PSNR values for these images are 28.3 dB, 32.2 dB, 33.7 dB,
and 35.4 dB, respectively. The reconstructed images are shown
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Fig. 11. Reconstruction of noisy HAADF images of a triple junction at differ-
ent dwell times. Noisy HAADF images with: (a) 1 μs; (b) 3 μs; (c) 5 μs;
and (d) 10 μs dwell time. Snap images at: (e) 1 μs; (f) 3 μs; (g) 5 μs;
and (h) 10 μs dwell time. Diagonal cross section comparison between noisy
(blue curve), pseudo-ground truth (red curve) and snap (black curve) results at:
(i) 1 μs; (j) 3 μs; (k) 5 μs; and (l) 10 μs dwell time. pseudo-ground truth was
obtained with 20 μs dwell time (Figure 9a).

Fig. 12. Signal-to-noise and error analysis for measurements at different dwell
times. (a) PSNR comparisons at different dwell times. (b) Relative error at
different dwell times.

in Figure 11e, f, g, and h. It is evident that the snap algorithm can
recover the grains at different noise levels. Comparison between
the cross sections along the diagonal of the images are shown
in Figure 11i–l.

At exposure times used in this work (1 s to 10 s in Figure 11)
the noise distribution can be safely assumed Poisson. In all
the cases the snap method segmented the grains correctly. For
larger exposure times, beyond the experiments we performed,
the noise will be weaker, and its distribution is Gaussian. The
Gaussian noise is a special case for our algorithm for which
the cost function will be quadratic and a surrogate function
(like Appendix A) is not needed. In addition, we previously
proposed a simpler version of our algorithm in [44] which can
be used for Gaussian noise and can handle cases with longer
exposure times and larger number of electrons. It is worth noting
that, Venkatakrishnan et al. in [67] demonstrated the use and
applicability of a Poisson model for HAADF-STEM imaging.
The electron doses that were used to produce experimental data
in our work are equal to or much lower than anything used
in [67].

We carried out analysis on the segmented images in Figure 12.
The average PSNR for each dataset is compared in panel a.
In this figure, the x-axis corresponds to the average PSNR of

Fig. 13. Impact of changing the interface width (ω in equation (13)) on the
reconstruction. As the interface width increases, the last term in equation (13)
dominates the prior model (i.e., the Gaussian Markov random field (GMRF)
prior). The GMRF prior over-smooths the interfaces and cannot segment the
image properly.

the noisy images in the set with respect to the pseudo-ground
truth image, and the y-axis present the average PSNR of the
segmented images in each set.

As it is described each set in Figure 11 contains 5 images.
Using these images we obtained

(5
2

)
= 10 pair of images for

each dataset. We then computed the root mean squared error
(RMSE) for each pair. The RMSE values were then averaged
(relative error) for each dataset and plotted as a function of
dwell time in Figure 12b. It is evident from the figure that the
relative error is decreasing as dwell time increases, suggesting a
more consistent reconstruction at higher dwell time (less noisy
images).

In addition, we investigated the impact of increasing interface
width on the segmentation by changing ω in equation (13).
This is shown in Figure 13. As we increase the interface width,
the last term in equation (13) becomes the dominant term in
the prior model which means we are approaching the Gaussian
Markov random field (GMRF) prior. It is evident that the GMRF
prior over-smooths the interfaces and cannot segment the image
properly.

VIII. CONCLUSION

In this work we employed a phase-field model as a prior in a
plug-and-play (PnP) framework to perform joint soft segmenta-
tion and reconstruction of noisy images of grain boundaries. In
particular, we first used the Fan and Chen phase-field model [36]
as a regularizer and then developed a modification of this model,
which we called snap, to improve noise reduction and in order
to assure convergence. Atomistic simulations were performed
to compute phase-field model parameters consistent with the
silicon carbide (SiC) system. Moreover, we developed and val-
idated a new ICD algorithm with quadratic surrogates for de-
noising images having Poisson noise. Given that the phase-field
model has a non-convex bulk free energy term, a method using a
non-convex prior was needed. Thus, we obtained the conditions
necessary to guarantee that the MAP negative log-likelihood is
convex.

It was demonstrated that the snap method was able to
perform joint segmentation and reconstruction of both binary
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and multiphase case studies. Results for several case studies on
phantoms, created by phase-field modeling, demonstrated the
superior performance of the snap method as compared to the
state-of-the-art image denoising algorithms. Furthermore, the
snap method showed superior performance in soft segmentation
and reconstruction of HAADF-STEM observations of (real)
polycrystalline SiC. Consistent performance for soft segmen-
tation and reconstruction of HAADF-STEM case studies for
different exposure times (and, in turn, noise levels) were
demonstrated.
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APPENDIX

A. ICD Optimization With Surrogate Functions for Poisson
Measurement

In the case of real measurement systems, such as electron
microscopes, the physical phenomena comes in discrete events.
As the typical choice to accurately model process these dis-
crete measurements, we should choose the Poisson distribution.
We first start by considering the attributes of Poisson random
variables. The probability mass function (PMF) of a Poisson
random variable Y ∈ Z+ is given by

pλ(y) � Pλ{Y = y} =
λy e−λ

y!
(16)

where λ ≥ 0 represents event rate that is the average number of
detected events that occur in a measurement period normalized
by the detection time.

In the Bayesian framework, we will often assume that the
rate of the Poisson random variable is itself random. Thus, the
conditional distribution of y ∈ Z+ given x ∈ �+ has the form

p(y|x) =
xye−x

y!
(17)

We would like to use a Bayesian framework to estimate x
from measurement y. From Bayes rule we have:

p(x|y) =
p(y|x)
p(y)

p(x) (18)

To obtain the maximum a posteriori (MAP) estimate for x,
we need to minimize the negative log likelihood of equation (18).

x̂MAP = arg min
x

(− log p(x|y))

= arg min
x

(− log(p(y|x) + log p(y)− log p(x))
(19)

In this equation p(y) is independent of x, so it can be ne-
glected. − log p(x) is modeled by prior distribution and is dis-
cussed in the text. Here, we assume − log p(x) = Ψ(x) where
Ψ(x) is a general prior model.

The negative log likelihood (− log(p(y|x)) and its derivative
are given by the following equations.


(x) = − log(p(y|x) = x− y log x+ log(y!) (20)


′(x) = 1− y

x
(21)

An important observation about both these functions is that
they are unbounded at x = 0. While the negative log likelihood
is convex and useful for computing a unique global minimum
of corresponding MAP cost function, its form make it more
difficult to deal with compared to the quadratic log likelihood as
forward model. A typical approach to mitigate this problem is
to use a quadratic surrogate to the negative log likelihood [68],
[69].

We apply Theorem 1 to obtain the surrogate for the Poisson
log likelihood in equation (20). If we assume x′ as our point
of approximation, then the search interval will become x ∈
[x′, inf). Subsequently, the surrogate function is given by

q(x;x′) = b(x− x′) +
c

2
(x− x′)2 (22)

where

b = 1− y/x′ (23)

c =
(b− 1)xmin + y

xmin(x− xmin)
(24)

The Poisson log likelihood, 
(x), at y = 1, and its corre-
sponding quadratic surrogates for x′ = 2 at xmin = 0.2 and
xmin = 0.5 are plotted in Figures 14(a) and 14(b), respectively.
The larger value of xmin = 0.5 in Figure 14(b), results in a
tighter bound; however, this is at the expense of a smaller inter-
val of [0.5, inf). Thus, in this case, the surrogate function is only
valid for x ≥ 0.5. When the interval is enlarged to [0.2, inf),
then the surrogate function bound becomes looser. In general,
a tighter surrogate provides a better approximation, so each up-
date is more aggressive, and convergence is likely to be faster.

Theorem 1: surrogate for convex functions with concave
derivatives

Let f : [xmin ,∞)→ � be a convex function whose derivative
f ′(x) is concave. Then the function

Q(x;x′) = b(x− x′) +
c

2
(x− x′)2

where b and c are given by

b = f ′(x′) (25)

c =
f ′(x′)− f ′(xmin)

x′ − xmin
(26)

is a surrogate function for minimization of f(x) on x ∈
[xmin , inf).

While the surrogate function provides an upper bound, the
selection of a value for xmin remains a challenge. On solution to
overcome this challenge is to make the choice of xmin adaptive.
To that end, we define a user selectable parameter, 0 < γ <
1 and then bound the solution adaptively by setting xmin =
γx′. So for example if γ = 0.1, then with each iteration of the
surrogate function we can reduce the error by 90%.
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Fig. 14. Plots showing the negative log likelihood, l(x), (red), and the
quadratic surrogate function, q(x; x′), (blue) for two different values of xm in .
In both cases, y = 1 and x′ = 2, but in (a) xm in = 0.2 and in (b) xm in = 0.5.
Notice that the surrogate function upper bound l(x) for x ∈ [xm in , inf). When
xm in = 0.2, the interval [xm in , inf) is larger, but the bound is looser. Alterna-
tively, when xm in = 0.5, the interval [xm in , inf) is smaller, but the bound is
tighter.

Algorithm 4: ICD Algorithm for Poisson Measurement.
Initialize 0 < γ < 1
Initialize x > 0
K iterations{

for each pixel s ∈ S{
xmin ← γxs
b← 1− ys

xs
c← ys

γx2
s

xs←arg minα≥xm in {b(α−xs)+ c
2 (α−xs)2 +Ψi(α)} } }

In the following we show how the surrogate function can be
used to compute the MAP estimate with Poisson observations.
We rewrite the MAP cost function

x̂ = arg min
x∈�+ N


(x) + Ψ(x)

where Ψ(x) corresponds to a general prior model and x ∈ �+N

enforces the positivity constraint.
To minimize the MAP estimate, we use the ICD algorithm.

The ICD update for the sth pixel is given by

x̂s ← arg min
α≥0


s(α) + Ψs(α),

where


s(α) = α− ys log(α) + log(ys !).

We can then define a quadratic surrogate function

qs(α;x′) = b(α− x′) +
c

2
(α− x′)2 ,

where x′ is the pixel’s initial value.
The ICD update then becomes

x̂s ← arg min
α≥0

qs(α;x′) + Ψs(α),

As already discussed, we set xmin = γx′. Typically, one
might select 0.1 ≤ γ ≤ 0.25. Next, we compute coefficients b
and c, from equations (23) and (24):

b = 1− y/x′ (27)

c =
y

γx2
s

(28)

Putting this all together results in the ICD update Algorithm 4.

B. Discussion of Convergence

In Algorithm 2 and 3, we discussed the PnP algorithm. The
algorithm has two parts. While in the first part we minimize a
strictly convex function, in the second part the function is not
convex. The non-convexity of the bulk free energy is a char-
acteristic of the Landau Theory of Phase Transitions [35]. A
phase transition occurs when a non-convexity in the bulk free
energy develops, leading to multiple degenerate solutions to
{η ∈ �p : η = arg minη f(η)}. In the case of polycrystalline
materials, typically, they formed as a phase transition from a
liquid phase because of this non-convexity. This is a novel in-
novation in this work that we use an existing theory of phase
transitions for a regularizer. However, non-convex regularizers
need to be manipulated in order to make the whole expression
convex, for which the procedure is described in the following.

Below we write a simplified version of the second cost func-
tion in the PnP algorithm that needs to be minimized at a single
pixel s ∈ S.

η̂s ← arg min
ηs

c(ηs) =
ξ

2
||ṽs − ηsθ||2 +

α

2
(1− ||ηs ||2)

+
β

2
||ηs − νs + δs ||2 +

ζ

2

∑
{r,s}∈P

||ηs − ηr ||2)

s.t. ηs ∈
{
ηs ∈ �p :

p∑
i=1

ηs,i = 1

}
and ηs = νs

(29)

where ξ, α, β and ζ are hypothetical coefficients that are
all positive and should be replaced by the original parame-
ters/coefficients from the equations in the main text (ξ, α =
2λ
σp
, β and ζ = λω 2

σp Kn
). ṽs is the output of the first step of the PnP

Algorithm 2 at pixel s ∈ S, and νs and δ are ADMM auxiliary
variables to enforce positivity.

Here we would like to discuss the convergence of this cost
function. It is evident that only the second term will cause trou-
ble for convergence of the cost function as it is unbounded
concave function of ηs . The third term was added to enforce
the positivity constraint using variables νs and δs in ADMM
algorithm. Intuitively, by choosing a large value for coefficient
β, we expect the cost function always remain convex with its
minima at the vertices of simplex.

To further study the convergence theoretically, and understand
impacts of different coefficients, we assumed the following case
with: ṽs ∈ �, p = 2, ηs = [ηs,1 ηs,2 ] ∈ �p , and θ = [θ1 θ2 ] ∈
�p .

With these assumptions in mind, the Hessian of the cost func-
tion, H , can be written as:

H =

⎡
⎢⎢⎢⎣

∂2c

η2
s,1

∂2c

ηs,1ηs,2

∂2c

ηs,2ηs,1

∂2c

η2
s,2

⎤
⎥⎥⎥⎦

=

[
ξθ2

1 − α+ β + ζ ξθ1θ2

ξθ1θ2 ξθ2
2 − α+ β + ζ

]
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For the cost function to become convex, the eigenvalues of
the H must be positive so that the Hessian becomes positive
definite.

The eigenvalues χ = [χ1 χ2 ] can be obtained from the
following equation:

det(H − χI) = 0

Thus, we get:

χ2 − ξ(||θ||2 − 2r)χ+ (r2 − ξr||θ||2) = 0 (30)

where we assumed r = α− (β + ζ).
By computing the discriminant of the quadratic equation, Δ,

it can easily be shown that the equation 30 has always two real
roots.

Δ = ξ2 ||θ||42 − 4rξ||θ||22 + 4r2 − 4r2 + 4rξ||θ||22
= ξ2 ||θ||42 > 0

Also, for those roots to be positive we must have:

ξ||θ||2 − 2(α− (β + ζ)) > 0

If we replace ξ = 1, α = 2λ
σp
, β and ζ = λω 2

σp Kn
from the text

we have:

σp(||θ||2 + β)− 2λ

(
2− ω2

Kn

)
> 0 (31)

It is clear that by choosing β and/or σp very large we can
guarantee positive eigenvalues. However, large regularization
parameter σp will cause the impact of prior to be diminished and
therefore, one should pay attention in choosing that parameter.
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