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Model-Based Iterative Reconstruction of
Magnetization Using Vector Field
Electron Tomography

K. Aditya Mohan

Abstract—Vector field electron tomography (VFET) is exten-
sively used for three-dimensional (3-D) imaging of magnetic ma-
terials at nanometer resolutions. The conventional approach is to
reconstruct and visualize the magnetic vector potential or the mag-
netic field associated with the sample. There is a lack of algorithms
capable of reconstructing the 3-D distribution of magnetization
from VFET data. Unlike magnetic vector potential and magnetic
field, magnetization is a fundamental physical property of the sam-
ple that does not extend beyond the dimensions of the sample. We
present a model-based iterative reconstruction algorithm (MBIR)
that reconstructs the magnetization by minimizing a cost function
consisting of a forward model term and a prior model term. The
forward model uses the physics of imaging to model the VFET data
as a function of the magnetization, and the prior model enforces
sparsity in the magnetization reconstruction. We then formulate an
optimization algorithm based on the theory of alternate direction
method of multipliers to minimize the resulting MBIR cost func-
tion. Using simulated and real data, we show that our algorithm
accurately reconstructs both the magnetization and the magnetic
vector potential.
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I. INTRODUCTION

AGNETIC particles with nanometer dimensions have
M unique quantum mechanical properties that are enabling
new technologies in the fields of healthcare, life sciences, and
material science [1]. In order to understand and quantify these
magnetic nanostructures, there is a growing interest for new
methods of imaging the magnetic vector fields. In particular,
vector field electron tomography (VFET) was among the first
methods for imaging magnetic field properties at nanometer
scale [2].

In VFET, electrons from a transmission electron microscope
(TEM) are focused on the sample and the intensity of the trans-
mitted electrons after passing through the sample are measured
by a planar detector. The sample is then tilted across an axis
and measurements are made at multiple tilt angles as shown in
Fig. 1. This procedure is then repeated across a tilt axis that is
orthogonal to the earlier tilt axis. Next, the electron phase shift
at each tilt angle is retrieved from detector measurements using
the methods in [3], [4]. This procedure is known as phase re-
trieval and is achieved using either electron holography methods
[5], [6] or through-focal series measurements in Lorentz TEM
mode [3]. This is an essential step since information about the
magnetic sample is contained in the phase shift rather than the
intensity of the electrons exiting the sample.

The conventional approach to visualize a magnetic sample is
to reconstruct a vector field called the magnetic vector poten-
tial or the magnetic field [2], [3], [5]. These vector fields exist
both inside and outside the sample. To reconstruct these vector
fields, the conventional approach is to rely on a direct analytical
inversion of the standard Aharonov-Bohm [7] relation that ex-
presses the electron phase shift as a linear function of the vector
field projection [2]. This phase shift is the total electron phase
shift and has contributions from the electrostatic and magnetic
phase shifts. To isolate the magnetic contribution, the sign of
the magnetic phase shift is flipped by flipping the sample across
the direction of electron propagation. Then, the magnetic phase
shift is computed as half the difference between the electron
phase shifts before and after flipping the sample [2], [3], [S].
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Fig. 1. Tllustration of data acquisition in vector field electron tomography
(VFET). In VFET, the sample is mounted on a rotary stage and exposed to
electron radiation. The sample is then tilted across two orthogonal tilt axes
(u-axis and v-axis) and measurements are made at multiple tilt angles.

Henceforth, anytime electron phase shift is mentioned in this
paper, we are referring to the magnetic phase shift.

The algorithm presented in [2] is an analytic technique for
reconstruction of the 3D magnetic vector potential using a
variation of the filtered back-projection algorithm. It also as-
sumes that the divergence of the magnetic vector potential is
zero. The magnetic field is then computed as the curl of the
magnetic vector potential. There also exist analytical methods
to reconstruct the magnetic field directly from gradients of elec-
tron phase shift images [2], [5] while assuming zero divergence
for the magnetic field in the (u,v,w) spatial coordinate axes.
An algebraic reconstruction technique (ART) for unregularized
reconstruction of magnetic fields is presented in [8]. All these
methods result in reconstruction artifacts due to the ill-posed
nature of the inverse problem [9]. The reconstruction can be
fixed by acquiring a third set of tilt series where the rotation
axis is perpendicular to the axes of the first two tilt series [9].
However, this technique is difficult to implement in practice.

There is a lack of regularized iterative reconstruction algo-
rithms that enforce sparsity during reconstruction of the mag-
netic field and magnetic vector potential. Such algorithms have
been widely used to reconstruct vector fields in other applica-
tions such as fluid flow and optical flow [10]-[15]. Regularized
vector field reconstruction using penalty functions such as the
L2-norm or L1-norm are presented in [11], [12]. There also exist
techniques that allow us to use angular regularization for vector
fields [16], [17]. More advanced methods that rely on regular-
izing the divergence and curl of the vector fields are presented
in [18], [19].

Importantly, there is a need for algorithms that perform 3D
reconstruction of a vector field called magnetization which is
a fundamental material property of the sample. Magnetization
expresses the position-dependent density of magnetic dipole
moments within the magnetic sample. Note that all other vector
fields such as magnetic vector potential and magnetic field are
derived from the magnetization. It is challenging to perform 3D
reconstruction of the magnetization from the phase shift data
since the electron phase shift has a complex global dependence
on the 3D distribution of magnetization. Thus, scientists typi-
cally settle for visualizing the magnetic vector potential or the
magnetic field.

A model-based algorithm to reconstruct the in-plane com-
ponent of magnetization in 2D is presented in [20]. It uses
Tikhonov regularization to produce a unique 2D reconstruc-
tion of the magnetization using an iterative conjugate gradient
algorithm. Similar iterative algorithms for 3D regularized recon-
struction of magnetization from tomographic tilt series data are
outlined in the abstracts [21]-[23]. These abstracts also stress

the need for regularization and other constraints to solve the
ill-posed problem of 3D magnetization reconstruction.

The framework of model-based iterative reconstruction
(MBIR) has resulted in significant gains in a wide range of imag-
ing applications such as X-ray computed tomography [24]-[31],
bright field electron tomography [32], [33], and HAADF-STEM
tomography [34]. In [35], we recently presented a model-based
algorithm for 3D reconstruction of magnetic vector potential us-
ing VFET. MBIR is based on the estimation of a reconstruction
that best fits a forward model and a prior model. The forward
model uses the physics of imaging to express the measured data
as a function of the unknown sample. The prior model regular-
izes the reconstruction of the sample using a suitable model of
sparsity.

In this paper, we will use the framework of MBIR to formu-
late an algorithm that will reconstruct both magnetization and
magnetic vector potential. This algorithm is presented in the con-
ference abstract [36] and the Ph.D. thesis [37]. Our algorithm
performs tomographic reconstruction of the 3D distribution of
the magnetization vector field from the VFET data. Further-
more, it also significantly reduces the artifacts that are typically
seen in reconstructions of magnetic vector potential using the
conventional method [9].

Our approach to reconstruction uses the MBIR formulation
to derive a cost function such that the reconstruction is the so-
lution that minimizes the cost function. We show that gradient
based optimization techniques result in inefficient implemen-
tations when directly applied to the resulting cost optimiza-
tion problem. So, we will use variable splitting and the theory
of alternate direction method of multipliers (ADMM) to solve
the original minimization problem as an iterative solution to
two simpler minimization problems. We show that the simpler
minimization problems can be solved efficiently using exist-
ing optimization techniques such as iterative coordinate descent
(ICD) [24] and gradient descent techniques [38]. We validate
our algorithm by presenting reconstructions of both simulated
and real experimental data. The software implementing this
reconstruction algorithm is available for download at the link
https://github.com/adityamnk/vfet_mbir.

The organization of this paper is as follows. In Section II, we
present the forward and prior models for MBIR and formulate
a cost function that when minimized yields a reconstruction of
the magnetization. In Section III, we present an optimization
algorithm to minimize the cost function derived in Section II.
We present simulated and real data results in Section IV that
validate the performance of our algorithm. Finally, we present
our conclusions in Section V.

II. MODEL-BASED ITERATIVE RECONSTRUCTION
(MBIR) OF MAGNETIZATION

Our goal is to reconstruct the magnetization from the electron
phase shift data. Let y be a vector of all the pixel values of
the electron phase shift images at the various tilt angles and x
be a vector of voxel values of all three vector components of
magnetization. In the MBIR framework, the reconstruction, Z,
is given by the solution to the optimization problem

& = argmin {—log p(y|z) — logp(x)}, ()
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where log p(y|x) is the forward model term that gives the log-
likelihood of the data, y, given the object  and log p(x) is the
prior model term that gives the log-likelihood of the object, x.
We will next derive expressions for log p(y|z) and log p(x).

A. Forward Model

The forward model expresses the phase shift of the electrons,
Yy, propagating through the sample as a function of the magne-
tization, x. The forward model has the form

y=FHz+ w, 2)

where F'is the sparse tomographic projection matrix, H is anon-
sparse convolution matrix that performs linear space-invariant
convolution, and w is the noise vector.

This form of the forward model is derived by first expressing
the magnetic vector potential as a function of the magnetiza-
tion and then expressing the electron phase shift as a function
of the magnetic vector potential. To do this, we first express
the magnetic vector potential as a convolution of the magneti-
zation with the vector form of the Green’s function [39]. Let
r = (u,v,w) and ' = (v/,v',w") be position vectors in 3D
space spanned by the mutually orthogonal (u,v,w) coordi-
nates. Note that (u,v,w) are in the coordinate system of the
sample and tilt along with the sample. Then, the magnetic vec-
tor potential, A(r), is given by the convolution cross-product
of the magnetization, M (r), with a vector form of the Green’s
function, he (r) = r/|r|3, as shown below [39], [40],

Ay =0

= M) x he(r —r")dr', 3)
47T R3

where x denotes the vector cross-product and (i is the perme-
ability of a vacuum. The magnetic field, B(r), is then the curl
of the magnetic vector potential given by B(r) =V x A(r).
In (3), the integration is performed over a spatial domain that
completely contains the sample. This ensures that there is no
error due to the finite domain of integration since magnetization
is zero outside the boundaries of the sample. During reconstruc-
tion, the user specifies the total size of the volume that must be
reconstructed. For instance, if the sample is contained within
the field of view (FOV) of the detector, then the user can spec-
ify the reconstructed volume to simply be the region within the
detector FOV.

In order to numerically compute the convolution in (3), we
must represent it with a discrete approximation as derived in
Appendix V. To do this, we will represent the three components
of the vector field A(r) by the three discrete vectors 2w v)
and 2(*), So for example, 2(W) is a discretization of the wu-
axial component of the continuous 3D magnetic vector potential.
Similarly, z(*), z(*), and z(*) represent the three discretized
components of the magnetization vector field M (r). Using this
notation, equation (3) can be expressed in discrete form as

L) — prw) () _ H(“>x(w), )
L) — ) p(w) H('W)x(lt)’ 5)
L) — ) (w) H<“)x(”), (6)

where H®, H(®) and H™) are matrices that implement 3D
convolution with point spread functions given by

IA

hy li, g, k) = wli, 5 k]m> (7
. . A

hy i g, k) = w[%]%]m» ®)
w . . . . kA

hip ' [i- . K = wli, . K ©)

where [, j, k] are discrete coordinates, A is the voxel width,
r{10,0,0] = 1¥)[0,0,0] = h{*[0,0,0] = 0, and w[i, j, k] is
a 3D Hamming window. Appendix A provides additional details
about the Hamming window and zero-padding that is used to

prevent aliasing during convolution.

Thus, we have that
z=Hux, (10)

where z = [z(") 2(0)) z<’“’)t]t, z = [z 2 x(“’)t]t, and

0 Hw) )
H— _H(w) 0 H(u) (11)
HW g 0

Next, we express the electron phase shift at each view as the
projection of the magnetic vector potential component along
the direction of electron propagation [39]. During a VFET ex-
periment, the sample is first tilted across the u-axis and mea-
surements are made at several tilt angles. The procedure is then
repeated by tilting the sample across the v-axis and making ad-
ditional measurements at multiple tilt angles. At each tilt angle,
the phase shift of the electrons exiting the sample is recovered
from measurements.

The phase shift of the electrons propagating along the positive
w-axis is given by [2], [41],

2me
h
where 7| is a 2D position vector on the projection plane, w is a

unit vector directed along the positive w-axis, h is the Planck’s
constant, and e is the electron charge.

Let y} “) be a vector array containing all the pixel values of the
electron phase image at the sth tilt angle for tilt across the u-axis.
When the sample is tilted across the u-axis, the components of
the magnetic vector potential along the v-axis and w-axis change
direction as shown in Fig. 2. However, the direction of the vector
component z(*) will always be perpendicular to the propagation
direction (positive w-axis) since the direction of z(*) does not
change when tilting across u-axis. Thus, the dot product in (12)
ensures that only the z(*) and z(*) components of the magnetic
vector potential will have a influence on the phase shift. If P;“’)

denotes the projection matrix that implements the line integral
)

P(rL) = 12)

/ A(ry + Ib) - vl

in (12) at a clockwise tilt angle of 05“ across the u-axis, we can

show that,

y" = =P sin (60) + P2 cos (60) . (13)

2
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Fig. 2. Illustration of sample tilt across u-axis and v-axis. (a) shows how the
2(*) and z(@) components of magnetic vector potential change direction when
tilting across u-axis. (b) shows how the z(*) and z(*) components of magnetic
vector potential change direction when tilting across v-axis. Note that z(*),
2(*) and 2(*) are attached to the coordinate frame of the sample.

Similarly, only the z(*) and 2(*) components will influence the
phase shift for tilt across the v-axis. In this case, the vector
component z(") will always be perpendicular to the propaga-
tion direction since the direction of z(*) does not change when
tilting across v-axis. If Pj@) denotes the projection matrix that
implements the line integral in (12) at a anticlockwise tilt angle
of 95") across the v-axis, we can show that,

y](”) = _P](”)z(“) sin (9;“) + }3].(7")z<"“> cos (9](-”)) . (14
Note that our framework allows for a different number of tilt
angles across the u-axis and v-axis.

Then, we can express the relations in (13) and (14) in the
form of matrix-vector products as,

S e
g =F | 20 Land g = FY | 20) (15)
Sw) S(w)
where
Fi(“) = {0, —Pi(“> sin (9571')) , Pi(“) cos (95“))] (16)

P cos (9@)) } (17)

J J

(u)

i

Let y be a vector array that concatenates all the vectors y

(v)

and y;* for all the tilt angles indexed by ¢ and j. We can then

express ¥ in terms of z as

y=Fz+w, (18)

where w is the noise vector and F' is a matrix that implements
the linear relation in (15) for all indices 7 and j by appropriately
stacking the matrices F") and Fj(”).

By substituting (10) in (18), we get the forward model

y=FHzr+ w, (19)

where F' represents the tomographic projection matrix and H
represents the Green’s function convolution matrix.

The forward log-likelihood function under the Gaussian noise
assumption in (19) is then given by

1
—logp(ylx) = 257 [ly — FH:UH2 + constant, (20)

where o2 is the variance of noise.

B. Prior Model

For the prior model, we use a Gaussian Markov Random Field
(GMRF) [42] potential function to regularize the magnitude
squared of the gradient of the magnetization. The expression for
the prior log-likelihood function is

Wk u u 2
I

{k,l}eN
) ) 2 w w 2
+ (ajg) — acgl')) + (a:g e >) } + constant, (21)

where o, is the regularization parameter and N is the set of
all pairwise cliques in 3D space (set of all pairwise indices of
neighboring voxels). The weight parameter wy; is set such that
itis inversely proportional to the spatial distance between voxels
indexed by k and [. Also, Ele/\fk wy; = 1, where NV, is the set
of all indices of neighbors of voxel xj,. We can then express the
prior model as

1 - -
—logp(z) = B [x(“)th<“) + 2V Bz )
+ 2B | 4 constant,  (22)
where B is a matrix such that
s Ve i k=l o
kot = 7wkl/0"723 if e A/k
The prior model in terms of z = [z("!, 2("), w<w>t]t is given
by
L
—logp(x) = 2% Bz + constant, (24)
where
B 0 0
B=1|0 B 0 (25)
0 0 B

C. Cost Function

The reconstruction is then obtained by solving the optimiza-
tion problem
N . 1 s 1,
& =argmin{ — ||y — FHx||” + z2'Bx ;. (26)
T 202 2
Even though (26) can be solved directly using gradient de-

scent algorithms [38], such implementations are inefficient since
FH and its transpose (F'H)' cannot be implemented using fast
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Fourier transforms due to the presence of the projection matrix
F'. Due to the presence of the convolution matrix H in (26), it is
also not possible to solve this problem by adapting fast recon-
struction algorithms such as [24], [43] developed in the field of
X-ray computed tomography.

Our approach solves the magnetization reconstruction prob-
lem by iteratively solving two simpler optimization problems
that allow for highly efficient algorithmic solutions [37]. We
will use variable splitting and the theory of alternate direction
method of multipliers [44] to perform reconstruction by alter-
nately solving a tomographic reconstruction problem and a de-
convolution problem. The tomographic reconstruction problem
is described in Section III-A and is solved by adapting an imple-
mentation of the fast tomographic reconstruction algorithm in
[24]. The deconvolution problem is presented in Section III-B
and is solved using a gradient descent algorithm that uses fast
Fourier transform (FFT) for rapid calculation of gradient and
optimal step size.

To formulate our reconstruction algorithm, we will express
the unconstrained problem in equation (26) as a constrained
optimization problem of the form

1 1
(%,2) = ar%glin {M ly — Fz||> + thBx} st.z=Hx.

27)
The augmented Lagrangian function [44] for this constrained
optimization problem is

1 1
Lia,zt) = 5 lly = F2I’ + 5 | He — = +t|* + 5o’ B,
(28)
where z is the auxiliary vector, ¢ is the scaled dual vector, and
1 > 0 is the augmented Lagrangian parameter.

III. OPTIMIZATION ALGORITHM

To solve the augmented Lagrangian formulation of the op-
timization problem, we use the theory of alternate direction
method of multipliers (ADMM). Using the ADMM method
[44], we can show that the optimization algorithm that solves
(27) is given by Algorithm 1. Thus, the original minimization
problem in (26) is solved by iteratively solving simpler mini-
mization problems shown in (29) and (30). Our modular frame-
work allows us to develop independent software modules to
solve (29) and (30). Both (29) and (30) can be solved efficiently
using a variety of well known optimization algorithms. We solve
(29) using the steepest gradient descent algorithm [38] and (30)
using a variant of the iterative coordinate descent algorithm [24].

In Algorithm 1, we use an adaptive update strategy [44]—-[46]
for the augmented Lagrangian parameter p. We update 1 based
on the primal and dual residuals at each ADMM iteration. The
primal residual is defined as » = Z — Hx and the dual residual
is defined as s = 2 — 2(°!) where # and 2 are the estimates
after performing the updates in (29) and (30) and z(°'9) is the
estimate before performing the update. If the primal residual is
greater than ~y times the dual residual, we increase the parameter
1 by afactor of 7, where v > 1 and 7 > 1. Similarly, if the dual
residual is greater than v times the primal residual, we decrease
the parameter p by a factor of 7. The idea here is to keep the

Algorithm 1: Reconstruction.

1: Initialize , u, 7,y

2: Z«+— Hz,t « zero vector
3: while not converged do

4: Zlold) 2

5: DECONVOLUTION -

1
% « argmin {'; ||Hz — 2+ t|]* + 295th} (29)
6: TOMOGRAPHIC INVERSION -
1
2 argzmin{%‘2 lly — Fz||” + g || Hz —z+t||2}
(30

7. tet+ (Hi—32)

8: r— (2— Hz) // compute primal residual

9: 5 (2 — z(om)) /I compute dual residual
10: if ||s||2 > ~||7||2 then

11: po— )T

12: t— 7t

13: end if

14: if [|7[]2 > 7||s||2 then

15: W T

16: t—t/T

17: end if

18: end while

norms of the primal and dual residuals within a factor of  from
one another. As the iterations progress, both the primal and dual
residuals converge to zero. Note that the scaled dual vector ¢
must also be updated appropriately after updating p [44].

A. Tomographic Inversion

The solution to the minimization problem in (30) is the value
of z that minimizes the cost function
1 .
9(2) = 55 =PIl + S [|HE =2+ @D
20 2
To minimize (31), we will use a variant of the iterative co-
ordinate descent (ICD) algorithm [24]. In this algorithm, we

sequentially minimize (31) with respect to the magnetic vector

() _(v) z,(;“’) ¢

potential value z; = {zk V2 at each voxel location

k while keeping the voxel values at other locations fixed. We
repeat this minimization procedure for each voxel chosen in a
random order until the algorithm converges.

To minimize (31) with respect to z; while keeping other
voxel values constant, we will reformulate (31) in terms of just
zr while ignoring all terms that do not depend on z;. Let 2
denote the current estimate for zj, before performing the update.
The cost function with respect to z; is

1 R R
Goow(21) = w'zy, + 5 (3 — 20" Q (2 — 21)

+ S la -+l (32)
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Algorithm 2: Tomographic Inversion.

Algorithm 3: Deconvolution.

1: Initialize e{") and e\ using (33) and (34).

2: while not converged do

3 for all voxel indices & do

4: 2y, — 2

5: Compute w using (62), (63), and (64).

6 Compute 2 using (65), (66), (67), (68), (69),

and (70).
7 Compute Zr by substituting 2 in (35).
8: — (4 pl) 7 (—w + Q2 + pd + pty)
9: e§”> — e FY (3 - 2)
10: eg ) SU) +F(*)k (Zx — %)
11: 2 — zk
12: end for

13: end while

where w and () are the respective gradient and Hessian of
Ly ||y — Fz| \2 with respect to z;. and Zj, is a parameter that de-
pends on z. Expressions for w and 2 are derived in Appendix B
where we show that w and {2 depend on Z through the error
sinogram parameters

e;v) _ j(_v) _ Fj(v)é. (34)

We will see that the error sinogram vectors allow for efficient
implementation of the ICD algorithm. The value of Z, is

(35)

where H ) JH ]i ,2, and H (w ) denote the elements along the kth

row of the matrices H( ) H (v), and H™) respectively. Note
that minimization of the cost function (32) with respect to z;, is
equivalent to minimizing (31) while assuming constant values
for other voxels. Since (32) is quadratic in zj, there exists a
closed-form expression for the value of zj that minimizes (32).
Thus, the new update for 2, is

G = (U4 pul) " (—w+ Q2 + pi +puty).  (36)
where w and € are given in Appendix B.

The optimization algorithm that minimizes the cost function
in (31) is shown in Algorithm 2. The error sinograms, e(*) and
e(?) | are precomputed at the beginning of the algorithm. After
each voxel update, only a few values in the error sinograms
are updated depending on the non-zero elements of Ffli)k and

(v)
Fje

1: Compute @) from (39).

2: while not converged do

3: ¥ —

4 Compute g < puH' (Hx' — 2 +t) + Bx'.
5 Compute o « %

6: T+— 12 —ag

7: end while

B. Deconvolution

The solution to the minimization problem in (29) is given by
the value of x that minimizes the cost function

f(z) = g |Hz — 2 +t|° + %xtB:c. 37)

We will use the steepest gradient descent algorithm [38] to
iteratively minimize (37) with respect to the magnetization, x,
until the algorithm converges. Gradient descent is based on the
idea that the cost function (37) reduces in the direction of its
negative gradient. By choosing an optimal step size that mini-
mizes the cost in that direction, we will get closer to the global
minimum of (37). Since the cost function in (37) is convex, our
algorithm converges to the global minimum [38].

To formulate the optimization algorithm, we will derive ex-
pressions for the gradient, ¢, and Hessian, (), of the cost function
f(z). In every iteration, we will update x in the direction of the
negative gradient, —g. Since f(x) is quadratic in x, there exists a
closed form expression for the stepsize, «, that minimizes f(x)
in the direction of —g. The gradient of f(z) is

g=Vf(r)=pH" (Hx—2+1t)+ Br
and the Hessian of f(x) is

(38)

Q= uH'H + B. (39)

Since (37) is quadratic, the optimal stepsize o can be shown to
be [38]
_ 99
9'Qg
Thus, the optimization algorithm that minimizes (37) is shown
in Algorithm 3.

Note that directly computing the expressions in (38) and
(40) using matrix-vector multiplication is computationally in-
tensive. Instead, by formulating these expressions in terms of
H™  H® and H™) that represent linear space invariant filter-
ing matrices as shown in appendix C, we can efficiently compute
(38) and (40) [42].

(40)

C. Algorithm Initialization

Since the cost function in (26) is convex, our optimization
algorithm (Algorithm 1) is convergent. We use multi-resolution
initialization [24], [47] to improve convergence speed. In this
method, we reconstruct the magnetic vector potential and mag-
netization vector fields at coarse resolution scales and use the
solution to initialize the reconstruction at finer scales. We use
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Ground Truth - Magnetization (v — v axes)

(a)

(b) ()

Ground Truth - Magnetization (u — w axes)

(2

(d) (e) ®

Ground Truth - Magnetic Vector Potential (v — v axes)

(h) (i)

Ground Truth - Magnetic Vector Potential (u — w axes)

Fig. 3.

) (k) o

Ground-truth of magnetization and magnetic vector potential. (a)-(c) and (d)—(f) show slices of the magnetization vector field along the © — v plane

(perpendicular to electron propagation) and u — w plane (parallel to electron propagation) respectively. Similarly, (2)—(i) and (j)—(1) show slices of the magnetic
vector potential along the u — v plane and v — w plane respectively. The 1st, 2nd, and 3rd columns show the vector field components oriented along the w-axis,
v-axis, and u-axis respectively. Note that (d)—(f) and (j)—(1) show slices in the © — w plane that lie along the red line in (a).

N = 3 number of multi-resolution stages during reconstruction
such that the voxel width at the nth multi-resolution stage is
2N A where 1 < n < N and A is the voxel width at the finest
resolution scale. Hence, n = 1 corresponds to reconstruction at
the lowest voxel resolution and n = N corresponds to recon-
struction at the highest voxel resolution. In Algorithm 1, we set
v =10and 7 = 2(N — n + 1) at the nth multi-resolution stage
of reconstruction. At the coarsest resolution scale, we start by
initializing the magnetization and magnetic vector potential re-
constructions to zeros. The voxel width of the reconstruction at
the finest resolution scale is equal to the pixel width of the input
phase shift images. The prior model regularization parameter o,
is set empirically such that we get the best visual quality of re-
construction. The noise variance o is estimated from a uniform
region in the data. The ratio 5 = g—: is a measure of the relative
influence of the forward and prior models on the reconstruction.
Increasing ( tends to favor the prior model resulting in reduced
noise and increased smoothness in the reconstruction. Alterna-
tively, reducing ( favors the forward model resulting in sharper
and more noisy reconstruction.

IV. EXPERIMENTAL RESULTS
A. Simulated Data Results

In this section, we present reconstructions of simulated data
using the new MBIR algorithm and compare it to reconstructions
using traditional methods.

1) Data: We will generate simulated data from a phantom
that is representative of the magnetization states observed in
magnetic materials. The magnetization of a sample is described
using the concept of magnetic domains i.e., regions in the sam-
ple where the neighboring magnetization vectors are oriented
in the same direction. The 3D magnetization ground truth of
a NisMnGa simulated phantom is shown in Fig. 3(a)—(f). The
bright regions in Fig. 3(a) and (d) correspond to magnetic do-
mains where the magnetization direction is oriented along the
positive w-axis. Similarly, the dark regions in Fig. 3(a) and (d)
correspond to magnetic domains oriented along the negative w-
axis. Near the interface between the bright and dark regions, we
can see the domain walls where the magnetization changes di-
rection. This change in direction can be visualized by observing



MOHAN et al.: MODEL-BASED ITERATIVE RECONSTRUCTION OF MAGNETIZATION USING VFET 439

Electron Phase Images for Tilt across u-axis

-
() (b)

Electron Phase Images for Tilt across v-axis

Fig. 4.

(d) (e)

Simulated phase shift data generated from magnetization ground-truth phantom. (a)—(c) and (d)—(f) show the simulated electron phase shift images for

®

various tilt angles when the sample is tilted across the u-axis and v-axis respectively. The 1st, 2nd, and 3rd columns correspond to the tilt angles —70°, 0°, and

70° respectively.

the v, u-axial components of magnetization shown in Fig. 3(b),
(e) and (c), (f).

The magnetization results in a magnetic vector potential that
is simulated using (10). The magnetic vector potential ground
truth is shown in Fig. 3(g)—(1). As the electrons in a TEM exper-
iment propagate through the magnetic sample they undergo a
change in phase. We forward project the magnetic vector poten-
tial using the expression in (18) to generate the electron phase
shift images at multiple tilt angles for both the u-axis tilt series
and v-axis tilt series. We simulate electron phase images at tilt
angles ranging from —70° to 70° at steps of 2° for tilt across
both the u-axis and v-axis. The simulated electron phase images
at tilt angles of —70°, 0°, and 70° across the u-axis are shown in
Fig. 4(a)—(c). Similarly, the electron phase images at the same
angles but for tilt across the v-axis are shown in Fig. 4(d)—(f).
Note that even though the number of tilt angles across the two
axes are the same in this simulation, it is not a pre-requisite for
our reconstruction algorithm. Also, the simulated angular range
of —70° to 70° is reminiscent of typical TEM microscopy setups
that do not permit data acquisition over a complete 180° angular
range.

2) Reconstruction: Fig. 5(a)-(f) shows the MBIR recon-
struction of the 3D magnetization from the simulated phase
shift data. Since we could not find any other implementation of
an algorithm to reconstruct the 3D magnetization in the litera-
ture, there is no other conventional reconstruction shown. No-
tice that the reconstruction accurately corresponds to the ground
truth images shown in Fig. 3(a)—(f). The normalized root mean
square error (NRMSE)! for the w, v, and u components of mag-
netization relative to the ground truth are 7.66%, 4.29% and
4.33% respectively.

Fig. 5(g)—(r) shows the reconstruction of the 3D magnetic vec-
tor potential from the simulated data using both MBIR and the

'Normalized using the simulated magnitude of magnetization of the sample.

conventional method presented in [2]. The conventional method
in [2] is an algorithm that reconstructs magnetic vector potential
using a filtered back projection algorithm. It uses an additional
constraint that the divergence of magnetic vector potential is
zero to reduce the feasible solution space. The drawback of this
algorithm is the artifacts seen in Fig. 5(k) and (1). These artifacts
are caused since [2] uses an analytical solution that results in
singularities when solving the inverse problem.

In Table I, we compare the NRMSE? for the two reconstruc-
tion methods and Fig. 6 shows line plots through the sample
for the reconstructions and ground truth. Table I shows that the
NRMSE is much lower for MBIR than for the conventional
method. This can also be seen in the line plots of Fig. 6 in which
the MBIR line is close to the ground truth while the conventional
reconstruction is much less accurate. In addition, notice that the
v and u components of the conventional reconstruction shown
in Fig. 5(k) and (1) have substantial vertical streaking artifacts
that are not in the MBIR reconstructions.

The MBIR algorithm has a longer run-time when compared
to the conventional method since MBIR is an iterative algorithm
that reconstructs both magnetization and magnetic vector poten-
tial. In contrast, the conventional method is an analytical filtered
back-projection algorithm that only reconstructs magnetic vec-
tor potential. The MBIR algorithm reconstructed the simulated
data in 27.5 minutes while the conventional method completed
the reconstruction in 3.5 minutes.

3) Experimental Parameters: Both the magnetization and
magnetic vector potential ground truths have a size of 256 x
256 x 256 and a voxel width of 2.5 nm. Each simulated phase
image has a size of 128 x 128 and a pixel size of 5 nm. We
also add Gaussian noise to the simulated phase images such that
the average SNR is 56.85 dB. Note that the magnetization has

>Normalized using the maximum magnitude of magnetic vector potential
ground-truth.
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MBIR Reconstruction of Magnetization (u — v axes)

(8)

Conventional Method Reconstruction of Magnetic Vector Potential (v — w axes)

U} (k) M

MBIR Reconstruction of Magnetic Vector Potential (v — v axes)

(m)

MBIR Reconstruction of Magnetic Vector Potential (v — w axes)

(9] (@ (U]

Comparison of reconstructions of magnetization and magnetic vector potential using the conventional method and MBIR. (a)—(c) and (d)—(f) show the

Fig. 5.

(b)
MBIR Reconstruction of Magnetization (v — w axes)

(d) (e) ®

Conventional Method Reconstruction of Magnetic Vector Potential (v — v axes)

(©

(@

reconstruction of magnetization using MBIR along the u — v plane and v — w plane respectively. (g)—(i) and (j)—(1) show the reconstruction of magnetic vector
potential using the conventional method along the v — v plane and u — w plane respectively. (m)—(0) and (p)—(r) show the reconstruction of magnetic vector
potential using MBIR along the © — v plane and u — w plane respectively. The 1st, 2nd, and 3rd columns show the vector field components oriented along the
w-axis, v-axis, and u-axis respectively. The conventional method reconstruction of magnetic vector potential results in artifacts as seen in (k) and (I). We can see
that MBIR accurately reconstructs both the magnetic vector potential and magnetization of the sample.

TABLE I
NRMSE (NM 1) BETWEEN THE MAGNETIC VECTOR POTENTIAL
RECONSTRUCTION AND THE GROUND-TRUTH FOR SIMULATED DATA

Conventional Method | MBIR
w-axial component 5.6% 0.46%
v-axial component 10.07% 0.88%
u-axial component 10.03% 0.85%

a constant magnitude of 4 x 10> nm~2 within the sample (the
inner rectangular region in Fig. 3(a)—(f)). All reconstructions

have a size of 128 x 128 x 128 in 3D space and a voxel size of
5 nm.

The phase shift images in Fig. 4(a)—(f) are scaled from a
minimum of —1.2 radians to a maximum of 1.1 radians. The
images showing the magnetic vector potential in Figs. 3(g)—(1)
and 5(g)—(r) are scaled from a minimum of —11 x 107* nm~! to
a maximum of 11 x 1073 nm~'. The images of magnetization
in Figs. 3(a)—(f) and 5(a)—(f) are scaled from a minimum of
—4 % 107° nm 2 to a maximum of 4 x 107 nm 2.
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Fig. 6. Line plot comparison of magnetic vector potential. The above curves are along the red colored line in Fig. 3(a). We can see that all components of the

magnetic vector potential reconstruction using MBIR accurately follows the ground-truth.

Electron Phase Tilt Series Images across u-axis

Electron Phase Tilt Series Images across v-axis

(@

Fig. 7.

®

Electron phase images of a Ni-Fe sample acquired using a TEM. (a)—(c) and (d)—(f) show the phase images at various tilt angles for tilt across the u-axis

and v-axis respectively. (a,d), (b,e), and (c,f) are phase images at tilt angles of —50°, 0°, and 50° respectively.

B. Real Data Results

In this section, we present reconstructions of real data using
the new MBIR algorithm and compare it to reconstructions using
traditional methods.

1) Data: A dedicated Lorentz TEM equipped with a spher-
ical aberration corrector was used to image a NiFe sample pat-
terned into interacting islands using vector field electron to-
mography [2], [48]. At each tilt angle, the electron phase is
recovered from measurements using the transport-of-intensity
phase retrieval algorithm presented in [4]. The data consists of
electron phase images at tilt angles ranging from —50° to 50° at
steps of 1° for tilt across both the u-axis and v-axis. The phase
images at tilt angles of —50°, 0°, and 50° for tilt across the
u-axis are shown in Fig. 7(a)—(c). Similarly, the phase images

at the same tilt angles but for tilt across the v-axis are shown in
Fig. 7(d)—(f).

2) Reconstruction: Fig. 8(a)—(f) shows the MBIR recon-
struction of the 3D magnetization. There is no other conven-
tional reconstruction shown since we could not find any other
implementation of an algorithm that reconstructs 3D magneti-
zation in the literature. We can see that the vertically aligned
magnetic domains have magnetization oriented along the v-axis
and the horizontally aligned magnetic domains have magneti-
zation oriented along the wu-axis.

Fig. 8(g)—(r) shows the reconstruction of the 3D magnetic
vector potential using both MBIR and the conventional method
presented in [2]. The conventional method results in prominent



442 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 4, NO. 3, SEPTEMBER 2018

(a)

Reconstruction of Magnetization using MBIR (v — w axes)

(d) (e)

Reconstruction of Magnetization using MBIR (u — v axes)

®

Reconstruction of Magnetic Vector Potential usmg Conventional Method (u — v axes)

()

Reconstructlon of Magnetic Vector Potential using Conventional Method (v — w axes)

\
(0] (k) M

Reconstruction of Magnetic Vector Potential using MBIR (u — v axes)

() (0)
Reconstruction of Magnetic Vector Potential using MBIR (v — w axes)

() (@ (1)

Fig. 8. Reconstructions of magnetization and magnetic vector potential of a Ni-Fe sample using the conventional method and MBIR. (a)—-(c) and (d)—(f) show
the reconstruction of magnetization using MBIR along the © — v plane and v — w plane respectively. (2)—(i) and (j)—(1) show the reconstruction of magnetic vector
potential using the conventional method along the « — v plane and v — w plane respectively. (m)—(0) and (p)—(r) show the reconstruction of magnetic vector
potential using MBIR along the v — v plane and v — w plane respectively. The 1st, 2nd, and 3rd columns show the vector field components oriented along the

w-axis, v-axis, and u-axis respectively.

artifacts in the magnetic vector potential reconstruction of the
v-axial component shown in Fig. 8(h) and (k) and the u-axial
component shown in Fig. 8(i) and (1). Ideally, the » and v com-
ponents of the magnetic vector potential must be zero. This is be-
cause the sample is engineered such that the w-axial component

of magnetization is zero while the u-axis and v-axis components
of magnetization do not vary along the w-axis. Hence, it fol-
lows that the u-axis and v-axis components of magnetic vector
potential are zero from equations (4), (5), (7)—(9). From the root
mean square error (RMSE) comparison in Table II, we can see
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TABLE II
RMSE (NM~!) BETWEEN THE MAGNETIC VECTOR POTENTIAL
RECONSTRUCTION AND ZERO VALUED GROUND-TRUTH

Conventional Method MBIR
v-axial component 7.6 x 107 7.0x 1072
u-axial component 7.7 x 1072 6.4 x 102

that the v and v axial reconstructions using MBIR have a lower
RMSE than the conventional method.

3) Experimental Parameters: Each phase image has a reso-
lution of 3.0 nm per pixel and a size of 384 x 384. All recon-
structions of magnetization and magnetic vector potential have
a voxel width of 3.0 nm.

The phase shift images in Fig. 7(a)—(f) are scaled from a
minimum of —0.40 radians to a maximum of 0.43 radians. The
images showing the magnetic vector potential in Fig. 8(g)—(r)
are scaled from a minimum of —4 x 10~ nm~! to a maximum
of 4 x 107 nm~'. The images showing the magnetization in
Fig. 8(a)—(f) are scaled from a minimum of —1.5 x 107° nm~2
to a maximum of 1.5 x 10~ nm~2. Note that the slices in
Fig. 8(d)—(f), (j)—(1), and (p)—(r) go through the red colored line
in Fig. 8(g).

V. CONCLUSION

In this paper, we presented an algorithm to reconstruct a sam-
ple’s 3D magnetization from data acquired using transmission
electron microscopy (TEM) experiments. This algorithm was
formulated using the framework of MBIR. It uses a forward
model for the imaging system and a prior model for enforcing
sparsity during reconstruction. Our algorithm is also capable of
reconstructing magnetic vector potential in addition to magneti-
zation. Furthermore, our algorithm also significantly reduces the
artifacts that are typically seen in reconstructions of magnetic
vector potential using conventional methods.

APPENDIX A
DISCRETE IMPLEMENTATION OF GREEN’S
FuNcTION CONVOLUTION

We will express the individual vector components of A(r) in
terms of the vector components of M (r) by expanding the vector
cross-product in the convolution relation shown in equation (3).
Let M(r) = (M (r), M® (r), M) (r)) represent the three
orthogonal vector components of magnetization, M (r), along
each of the orthogonal (u, v, w) coordinate axes. Similarly, the
Green’s function in (3) is expressed in terms of its components

as ho(r) = (hg)(r),h(cv)(f), h(gf)(r)) where

u

(u) _

hC (uvvaw) - |u2 +’U2 +w2‘3/27 (41)
(v) _ v

hO (U” v, w) - |u2 + /UZ + w2 ‘3/2 ) (42)
w w

h) (u, 0, w) = L (43)

B [u? + v? + w?|

Then, the corresponding orthogonal components of the magnetic
vector potential denoted by A™) (1), A")(r), and A™)(r) are

given by

u Ho v w ’

A () =12 N [M< (YR (- — 1)
M@ (YR (r — r')} dr',  (44)

) () = HO @) (R (!

Ay = | [ R o)
M (r’)h(cm) (r — r')} dr’',  (45)

(w) :& (w) oy (W) o

AWy =2 | M6 =)
~MO R (=) @' @6)

To derive a discrete approximation to equations (44)—(46),
it is necessary to first formulate discrete approximations to
the Green’s functions in (41)—(43). This is done by substi-
tuting (u,v, k) = (1A, jA, kA) in (41)—~(43) where A is the
sampling width (voxel width). However, the sampled value
at (i=0,7=0,k=0) is undefined since h(C“’)(u7v7w) —
oo,h(cv)(u,v,w) — oo,andhgﬂ)(muw) — ocasu — 0,v —
0, and w — 0. To prevent numerical instabilities due to the sin-
gularity at the origin, we will approximate the value at (0,0, 0)
by integrating (41)—(43) over a voxel cube of width A centered
at (0,0, 0). Thus, an approximation to the value at (0,0, 0) for

h(cm(um,w) is

T T T
/ / / h(éf) (u, v, w)du dv dw 47
w=—% Ju=—5 Ju=-4%

T T 0 u

:/u——% /L——é‘ /1=_$ u2 + 02 4 w?]*/? (%)
%
‘ u
du dv dw
A:U [u? 4 v? +w2|3/2]

(49)

T T 0 u
N /w_g /U_; /u_g u? + 02 4 w?*/? G0

0 U
f/ 372 du dv dw
u=-4 |u? +v? + w?|

&1V

=0. (52)

The above approximation computes the Cauchy principal value
of the integral in equation (47). It eliminates the possibility
of numerical instabilities that will otherwise occur due to the
unbounded nature of the Green’s function at the origin.

The Green’s function in (41)—(43) have infinite support along
each of the (u,v,w) axes. If we abruptly cut-off the support
of these functions using a rectangular window, it will result
in ringing artifacts in the reconstruction of magnetization. To
avoid such artifacts, we use a smooth window function such as
a Hamming window to limit the support of (41)—(43). Thus, our
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discrete approximations to the Green’s functions are,

~ 1

hD [7’?]$k] - W[Z7j3 k] ‘12 +J2 + k_2|3/2A2? (53)
RO TR J
hD [Z?]7k] - W[’L?]? k] ‘22 +]2 + k_2|3/2A27 (54)
BT 5 k] = Wi, §, k] r 55
D v - 150, "i2+j2+k2|3/2A27 ( )
where  A%%[0,0,0] = 1{[0,0,0] = A{*[0,0,0] =0 and

Wi, 3, k] = W, [i)|W, [§]W,, [k] is a 3D window function where
Wy li], Wy[j], and W, [k] are 1D Hamming windows. Since
discrete convolution is implemented using discrete summation
rather than continuous domain integration, the differential
terms du, dv, and dw in (3) are accounted for by the sample
width, A. Thus, A is absorbed into the expressions ?LSD“) [i, 7, K],
ﬁg) i, 7, k], and B%”) [i, 7, k]. Thus, the modified point spread
functions that are used to compute the magnetic vector potential
using discrete convolution are given by

w)r. . L. VAN

T, g, k] =Wl Mo 50)
). ) JA

hy i g, k) = Wi, j, k ]W7 (57)
V. . L. kA

Wi, g, k) = Wi, j, k] (58)

|7;2 +]2 +k2|3/2'

Let z(*), z(*) and z(*) be vector arrays containing all
voxel values of M) (r), M) (r), and M™)(r) respectively.
We can then express the vectors arrays z(*), 2(") and z(*)
containing the voxel values of A™)(r), A®)(r), and A™)(r)
respectively as

L) — prw) p(v) _ H(”)x(u), (59)
20 = g glw) _ plw (60)
L) = g(0) plw) _ ) 40) 61)

where H (“>, H (”), and H®) are matrices that implement
3D convolution with the point spread functions in (56), (57),
and (58) respectively. Before performing convolution, we
symmetrically zero-pad the 3D volume vectors z(*), (") and

x(") to twice its width along each spatial dimension. The width
of the window function Wi, j, k] along each dimension is equal
to half the width of the zero-padded volumes. Zero padding is
necessary to avoid artifacts caused by circular convolution in
equations (59), (60), and (61).

APPENDIX B
PARAMETERS OF TOMOGRAPHIC INVERSION UPDATE

In this appendix, we will present closed-form expressions for
the gradient w and Hessian €2 in (32). The error sinogram vectors
in (33) and (34) can be rewritten in terms of the matrices P(*)
and P") as

egu) = y,Eu) — Pi(") (fz“> sin (95“)) + 2" cos (95"))),

e;”) = yﬁl’) - p® (—z< ) sin (9;” ) + 2(*) cos (9;“)) .

If w; is the 7th element of the 3 x 1 vector w, we can show that

1 M,
w1=ﬁZ

] . k sin (9;”) , (62)
wy = Z . k sin (9(“ ) (63)
LSS (0t plo) )
o v)t (v (v
wy = —ﬁjzzl ;P cos (9] )
| M
— e P cos (01)), (64)
g i=1 ’

where M, and M, are the total number of tilt angles across the
u-axis and v-axis respectively and Pf?k and Pj(l*) , Tepresent
the elements of the kth column of the projection matrices PZ-(")
and P\") respectively (defined in (13) and (14)). Similarly, if
2; ; denotes the element at the ith row and jth column of the
3 x 3 Hessian matrix €2, then

Q= o Z H j@AH sin? (9}”) , (65)
Q3 =0Q31 = ZH J*kH bln( j(v)> cos (9;”),
(66)
M,
Do = el Z‘ 7*kH sin? (05“)> , (67)

i=1

M
1 - u 2 . m w
0 = 00 = 1 3| s (6 con (6
i=1
(68)
M,
1 - v 2 v

833 = po) Z (’(’*?kH cos? (95 ))

j=1

M,

0-2 Z‘ z*kH C052 (95“)), (69)

Q=0 =0. (70)

APPENDIX C
EFFICIENT IMPLEMENTATION OF DECONVOLUTION STEP

The gradient vector g = [g(“ﬁ,g(”)t,g(wﬁ] in (38) can be
reformulated in terms of H (%) H () and H™) as
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4 = [H(w)tf('u) _ H@)tf(w)} + Bz (71)
g =y [H(u)tf(w) _ H(vtf)tf(ur)} + BWg) - (72)
o) = [ HOO] 4 g (73)

where

e R ) I ¢
£ = (H(%(w) _ ) ) _ ) +t(”)> . (75
) _ (me(u) _ ) o) _ ) +t<“’>) . (76)

Thus, the gradient is computed efficiently since matrix multipli-
cation with H*), H(*) and H(") is equivalent to linear space
invariant convolution with the point spread functions in (7)—(9)
respectively. And matrix multiplication with H(*)*, H(*)! and
H() is equivalent to linear space invariant convolution with the
space reversed version of the point spread functions in (7)—(9)
respectively [42]. All convolution operations are implemented
using FFT based Fourier transforms.

Similarly, the Hessian can be expressed in block-matrix rep-
resentation as

Qluw)  Qluv)  Qluw)
Q=|Qww Qv Qlw | (77)
Q) Qwv)  Qlww)
where
Q(uu) = glwltgw) L glotgl) 4 B(“), (78)
Q) = gitgw) o gt gle) 4 ) (79)
Q(ww) = gt  platpe) 4 B(w)7 (80)
Q) = —gWtge) Q) — _ gt gl (81)
Q) = —gwtgw) glew) — _ gt ) (82)
Q) = —gWtgw) glvy) — _ gt ), (83)
The stepsize « is then computed as
o — Zde{u,vﬂu} g Dtgld 84)

(d)tQ(drda) g(da)
Zdl e{u,v,w} Zdz e{u,v,w} g Q g

Similar to the computation of gradient, the computation of « is
implemented using filtering operations.
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