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Abstract—Model-Based Image Reconstruction (MBIR) methods
significantly enhance the quality of computed tomographic (CT)
reconstructions relative to analytical techniques, but are limited by
high computational cost. In this article, we propose a multi-agent
consensus equilibrium (MACE) algorithm for distributing both the
computation and memory of MBIR reconstruction across a large
number of parallel nodes. In MACE, each node stores only a sparse
subset of views and a small portion of the system matrix, and each
parallel node performs a local sparse-view reconstruction, which
based on repeated feedback from other nodes, converges to the
global optimum. Our distributed approach can also incorporate
advanced denoisers as priors to enhance reconstruction quality.
In this case, we obtain a parallel solution to the serial framework
of Plug-n-play (PnP) priors, which we call MACE-PnP. In order
to make MACE practical, we introduce a partial update method
that eliminates nested iterations and prove that it converges to
the same global solution. Finally, we validate our approach on a
distributed memory system with real CT data. We also demonstrate
an implementation of our approach on a massive supercomputer
that can perform large-scale reconstruction in real-time.

Index Terms—CT reconstruction, MBIR, multi-agent consensus
equilibrium, MACE, Plug and play.

I. INTRODUCTION

TOMOGRAPHIC reconstruction algorithms can be roughly
divided into two categories: analytical reconstruction

methods [1], [2] and regularized iterative reconstruction
methods [3] such as model-based iterative reconstruction
(MBIR) [4]–[7]. MBIR methods have the advantage that they
can improve reconstructed image quality particularly when pro-
jection data are sparse and/or the X-ray dosage is low. This
is because MBIR integrates a model of both the sensor and
object being imaged into the reconstruction process [4], [6]–[8].
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However, the high computational cost of MBIR often makes
it less suitable for solving large reconstruction problems in
real-time.

One approach to speeding MBIR is to precompute and store
the system matrix [9]–[11]. These algorithms can dramatically
speedup MBIR computation by reorganizing the elements of
a precomputed system matrix in a way that improves memory
bandwidth, cache efficiency and SIMD vector parallelization. In
fact, the system matrix is typically precomputed in applications
such as scientific imaging, non-destructive evaluation (NDE),
and security scanning where the system geometry does not vary
from scan to scan; so these applications can benefit from the new
faster algorithms. However, for large tomographic problems, the
system matrix may become too large to store on a single compute
node. Therefore, there is a need for iterative reconstruction
algorithms that can distribute the system matrix across many
nodes in a large cluster.

More recently, advanced prior methods have been introduced
into MBIR which can substantially improve reconstruction qual-
ity by incorporating machine learning approaches. For exam-
ple, Plug-n-play (PnP) priors [7], [8], consensus equilibrium
(CE) [12], and RED [13] allow convolutional neural networks
(CNN) to be used in prior modeling. Therefore, methods that dis-
tribute tomographic reconstruction across large compute clusters
should also be designed to support these emerging approaches.

In order to make MBIR methods useful, it is critical to
parallelize the algorithms for fast execution. Broadly speak-
ing, parallel algorithms for MBIR fall into two categories:
fine-grain parallelization methods that are most suitable for
shared-memory (SM) implementation [9], [10], [14], [15], and
coarse-grain parallelization methods that are most suitable for
distributed-memory (DM) implementation [16]–[18]. So for
example, SM methods are best suited for implementation on
a single multi-core CPU processor or a GPU, while DM meth-
ods are better suited for computation across a large cluster of
compute nodes. Further, DM methods ensure that the overhead
incurred due to inter-node communication and synchronization
does not dominate the computation.

In particular, some DM parallel methods can handle large-
scale tomographic problems by distributing the system-matrix
across multiple nodes, while others do not. For example, the DM
algorithm of Wang et al. [16] parallelizes the reconstruction
across multiple nodes, but it requires that each node have a
complete local copy of the system matrix. Alternatively, the
DM algorithms of Linyuan et al. [17] and Cui et al. [18] could
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Fig. 1. Illustration of the MACE algorithm for distributing CT reconstruction across a parallel cluster of compute nodes. (a) An illustration of the MACE
algorithm using a conventional prior model. The MACE algorithm works by splitting the data into view subsets and reconstructing them in parallel. The individual
reconstructions are them merged in an iterative loop that results in the true MAP reconstruction for the full data set. (b) An illustration of the MACE-PnP algorithm
which extends the MACE framework to the use of Plug-n-Play prior models to improve reconstruction quality. In this case, a denoiser is run in the MACE loop in
order to implement an advanced prior model. The MACE and MACE-PnP algorithms distribute both computation and memory across parallel clusters of computers,
thereby enabling the reconstruction of large tomographic data sets.

potentially be used to parallelize reconstruction across a cluster
while distributing the system matrix across the nodes. However,
the method of Linyuan [17] is restricted to the use of a total
variation (TV) prior [19], [20] and in experiments has required
100 s of iterations for convergence, which is not practical for
large problems. Alternatively, the method of Cui [18] is for use
in unregularized PET reconstruction.

It is worth noting that DM methods that distribute the system-
matrix can also be extended to applications that compute the
system-matrix on-the-fly, which is typically the case in medical
scanners where the geometry may vary continuously based on
scan parameters. However, on-the-fly system matrix computa-
tion typically both increases the complexity and reduces the
speed of reconstruction algorithms.

In this paper, we build on our previous work in [21], [22] and
present a Multi-agent Consensus Equilibrium (MACE) recon-
struction algorithm that distributes both the computation and
memory of iterative CT reconstruction across a large number
of parallel nodes. The MACE approach uses the consensus
equilibrium [12] framework to break the reconstruction problem
into a set of subproblems which can be solved separately and
then integrated together to achieve a high-quality reconstruction.
By distributing computation over a set of compute nodes, MACE
enables the solution of reconstruction problems that would oth-
erwise be too large to solve.

Fig. 1 illustrates our two approaches to this distributed CT
reconstruction problem. While both the approaches integrate
multiple sparse-view reconstructions across a compute cluster
into a high-quality reconstruction, they differ based on how
the prior model is implemented. Fig. 1(a) depicts our basic
MACE approach that utilizes conventional edge-preserving reg-
ularization [4], [23] as a prior model and converges to the

maximum-a-posteriori (MAP) estimate. Fig. 1(b) shows our sec-
ond approach called MACE-PnP which allows for distributed CT
reconstruction using plug-and-play (PnP) priors [7], [8]. These
PnP priors substantially improve reconstructed image quality by
implementing the prior model using a denoising algorithm based
on methods such as BM3D [24] or deep residual CNNs [25].
We prove that MACE-PnP provides a parallel algorithm for
computing the standard serial PnP reconstruction of [7].

A direct implementation of MACE is not practical because
it requires repeated application of proximal operators that are
themselves iterative. In order to overcome this problem, we
introduce the concept of partial updates, a general approach for
replacing any proximal operator with a non-iterative update. We
also prove the convergence of this method for our application.

Our experiments are divided into two parts and are based
on real CT datasets from synchrotron imaging and security
scanning. In the first part, we use the MACE algorithm to par-
allelize 2D CT reconstructions across a distributed CPU cluster
of 16 compute nodes. We show that MACE both speeds up
reconstruction while drastically reducing the memory footprint
of the system matrix on each node. We incorporate regularization
in the form of either conventional priors such as Q-GGMRF, or
alternatively, advanced denoisers such as BM3D that improve
reconstruction quality. In the former case, we verify that our
approach converges to the Bayesian estimate [4], [6], while in
the latter case, we verify convergence to the PnP solution of [7],
[12].

In the second part of our experiments, we demonstrate an
implementation of MACE on a large-scale supercomputer that
can reconstruct a large 3D CT dataset. For this problem, the
MACE algorithm is used in conjunction with the super-voxel
ICD (SV-ICD) algorithm [9] to distribute computation over
1200 compute nodes, consisting of a total of 81,600 cores.
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Importantly, in this case the MACE algorithm not only speeds
reconstruction, but it also enables reconstruction for a problem
that would otherwise be impossible in real-time since the full
system matrix is too large to store on a single node.

II. DISTRIBUTED CT RECONSTRUCTION USING

CONVENTIONAL PRIORS

A. CT Reconstruction Using MAP Estimation

We formulate the CT reconstruction problem using the
maximum-a-posteriori (MAP) estimate given by [26]

x∗ = argminx∈Rnf(x;β) (1)

where f is the MAP cost function defined by

f(x;β) = − log p(y|x)− log p(x) + const

y is the preprocessed projection data, x ∈ Rn is the unknown
image of attenuation coefficients to be reconstructed, and const
represents any possible additive constant.

For our specific problem, we choose the forward model p(y|x)
and the prior model pβ(x) so that

f(x;β) =

Nθ∑
k=1

1

2
‖yk −Akx‖2Λk

+ βh(x) (2)

where yk ∈ RND denotes the kth view of data, Nθ denotes
the number of views, Ak ∈ RND×n is the system matrix that
represents the forward projection operator for the kth view, and
Λk ∈ RND×ND is a diagonal weight matrix corresponding to
the inverse noise variance of each measurement. Also, the last
term

βh(x) = − log p(x) + const

represents the prior model we use where β can be used to
control the relative amount of regularization. In this section,
we will generally assume that h(·) is convex, so then f will
also be convex. A typical choice of h which we will use in
the experimental section is the Q-Generalized Gaussian Markov
Random Field (Q-GGMRF) prior [27] that preserves both low
contrast characteristics as well as edges.

In order to parallelize our problem, we will break up the MAP
cost function into a sum of auxiliary functions, with the goal of
minimizing these individual cost functions separately. So we
will represent the MAP cost function as

f(x;β) =

N∑
i=1

fi(x;β)

where

fi(x;β) =
∑
k∈Ji

1

2
‖yk −Akx‖2Λk

+
β

N
h(x) (3)

and the view subsetsJ1, . . . , JN partition the set of all views into
N subsets.1 In this paper, we will generally choose the subsets
Ji to index interleaved view subsets, but the theory we develop

1By partition, we mean that ∪Ni=1Ji = {1, 2, . . . ,Nθ} and ∩Ni=1Ji = ∅.

works for any partitioning of the views. In the case of interleaved
view subsets, the view subsets are defined by

Ji = {m : m mod N = i, m ∈ {1, . . . , Nθ} } .

B. MACE Framework

In this section, we introduce a framework, which we refer to
as multi-agent consensus equilibrium (MACE) [12], for solving
our reconstruction problem through the individual minimization
of the terms fi(x) defined in (3).2 Importantly, minimization
of each function, fi(·), has exactly the form of the MAP CT
reconstruction problem but with the sparse set of views indexed
by Ji. Therefore, MACE integrates the results of the individual
sparse reconstruction operators, or agents, to produce a consis-
tent solution to the full problem.

To do this, we first define the agent, or in this case the proximal
map, for the ith auxiliary function as

Fi(x) = argminz∈Rn

{
fi(z) +

‖z − x‖2
2σ2

}
(4)

where σ is a user selectable parameter that will ultimately affect
convergence speed of the algorithm. Intuitively, the function
Fi(x) takes an input image x, and returns an image that reduces
its associated cost function fi and is close to x.

Our goal will then be to solve the following set of MACE
equations

Fi(x
∗ + u∗i ) = x∗ for i = 1, . . ., N (5)

N∑
i=1

u∗i = 0 (6)

where x∗ ∈ Rn has the interpretation of being the consensus
solution, and each u∗i ∈ Rn represents the force applied by each
agent that balances to zero.

Importantly, the solution x∗ to the MACE equations is also
the solution to the MAP reconstruction problem of equation (1)
(see Theorem 1 of [12]). In order to see this, notice that since fi
is convex we have that

∂fi(x
∗) +

x∗ − (x∗ + u∗i )
σ2

� 0, i = 1, . . . , N,

where ∂fi is the sub-gradient of fi. So by summing over i and
applying (6) we have that

∂f(x∗) � 0

which shows that x∗ is a global minimum to the convex MAP
cost function f . Conversely, we can also prove that if x∗ is a
minimum of f , then it is a solution to the MACE equations
specified by (5) and (6).

We can represent the MACE equilibrium conditions of (5)
and (6) in a more compact notational form. In order to do this,
first define the stacked vector

v =

⎡
⎢⎣
v1
...
vN

⎤
⎥⎦ (7)

2In this section, we suppress the dependence on β for notational simplicity.
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where each component vi ∈ Rn of the stack is an image. Then
we can define a corresponding operator F that stacks the set of
agents as

F(v) =

⎛
⎜⎝

F1(v1)
...

FN (vN )

⎞
⎟⎠ (8)

where each agent Fi operates on the i-th component of the
stacked vector. Finally, we define a new operator G(v) that
computes the average of each component of the stack, and then
redistributes the result. More specifically,

G(v) =

⎛
⎜⎝

v̄
...
v̄

⎞
⎟⎠ , (9)

where v̄ = 1
N

∑N
i=1 vi.

Using this notation, the MACE equations of (5) and (6) have
the much more compact form of

F(v∗) = G(v∗) (10)

with the solution to the MAP reconstruction is given by x∗ = v̄∗

where v̄∗ is the average of the stacked components in v∗.
The MACE equations of (10) can be solved in many ways, but

one convenient way to solve them is to convert these equations
to a fixed-point problem, and then use well known methods for
efficiently solving the resulting fixed-point problem [12]. It can
be easily shown (see appendix A) that the solution to the MACE
equations are exactly the fixed points of the operatorT = (2F−
I)(2G− I) given by

Tw∗ = w∗ (11)

where then v∗ = (2G− I)w∗.
We can evaluate the fixed-point w∗ using the Mann itera-

tion [28]. In this approach, we start with any initial guess and
apply the following iteration,

w(k+1) = ρTw(k) + (1− ρ)w(k), k ≥ 0 (12)

which can be shown to converge to w∗ for ρ ∈ (0, 1). The Mann
iteration of (12) has guaranteed convergence to a fixed-pointv∗ if
T is non-expansive. Both Fi, as well as its reflection, 2Fi − I ,
are non-expansive, since each proximal map Fi belongs to a
special class of operators called resolvents [28]. Also, we can
easily show that 2G− I is non-expansive. Consequently, T is
also non-expansive and (12) is guaranteed to converge.

In practice, F is a parallel operator that evaluates N agents
that can be distributed over N nodes in a cluster. Alternatively,
the G operator has the interpretation of a reduction operation
across the cluster followed by a broadcast of the average across
the cluster nodes.

C. Partial Update MACE Framework

A direct implementation of the MACE approach specified
by (12) is not practical, since it requires a repeated application
of proximal operators Fi, i = 1, . . . , N , that are themselves
iterative. Consequently, this direct use of (12) involves many

Algorithm 1: Partial-Update MACE With Conventional
Priors.

1: Initialize:
2: w(0) ← any value ∈ RnN

3: X(0) = G(w(0))
4: k ← 0
5: while not converged do
6: v(k) = (2G− I)w(k)

7: X(k+1) = F̃(v(k);σ,X(k)) �Approximate F(v(k))
8: w(k+1) = 2X(k+1) − v(k) �≈ (2F− I)(2G− I)w(k)

9: w(k+1) ← ρw(k+1) + (1− ρ)w(k) �Mann update
10: k ← k + 1
11: end while
12: Solution:
13: x∗ = w̄(k) �Consensus solution

nested loops of intense iterative optimization, resulting in an
impractically slow algorithm.

In order to overcome the above limitation, we propose a
partial-update MACE algorithm that permits a faster implemen-
tation without affecting convergence. In partial-update MACE,
we replace each proximal operator with a fast non-iterative
update in which we partially evaluate the proximal map, Fi,
using only a single pass of iterative optimization.

Importantly, a partial computation of Fi(· σ) resulting from
a single pass of iterative optimization will be dependent on the
initial state. So, we use the notation F̃i(· σ,Xi) to represent
the partial-update for Fi(· σ), where Xi ∈ Rn specifies the
initial state. Analogous to (8), F̃(v;σ,X) then denotes the
partial update for stacked operator F(v;σ) from an initial state
X ∈ RnN .

Algorithm 1 provides the pseudo-code for the Partial-update
MACE approach. Note that this algorithm strongly resembles
equation (12) that evaluates the fixed-point of map (2F−
I)(2G− I), except that F is replaced with its partial update
as shown in line 7 of the pseudo-code. Note that this framework
allows a single pass of any optimization technique to compute
the partial update. In this paper, we will use a single pass of the
the Iterative Coordinate Descent (ICD) optimization method [6],
[9], that greedily updates each voxel, but single iterations of other
optimization methods can also be used.

Intuitively, step 1 of the above algorithm computes the average
w̄ across N subsets and re-distributes it. Step 7 parallelizes the
reconstruction across view-subsets using non-iterative proximal
operator F̃. A combination of steps 8 and 9 gives the Mann
update for map T.

In order to understand the convergence of the partial-update
algorithm, we can formulate the following update with an aug-
mented state as

[
w(k+1)

X(k+1)

]
=

[
ρ 0

0 1

][
2F̃

(
v(k);X(k)

)− v(k)

F̃
(
v(k);X(k)

)
]

+

[
1− ρ 0

0 0

][
w(k)

X(k)

]
, (13)
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Algorithm 2: ICD-based Partial-update for proximal oper-
ation Fi(v) using an initial state x

1: Define εs = [0, . . . , 1, . . . , 0]t ∈ Rn �entry 1 at s-th
position

2: z = x �Copy initial state
3: for s = 1 to n do
4: αs=argminα{fi(z + αεs)+

1
2σ2 ‖z + αεs − v‖2}

5: z ← z + αsεs
6: end for
7: F̃i(v;x) = z �Partial update

where v(k) = (2G− I)w(k). We specify F̃ more precisely in
Algorithm 2. In Theorem II.1, we show that any fixed-point
(w∗,X∗) of this partial-update algorithm is a solution to the ex-
act MACE method of (11). Further, in Theorem II.2 we show that
for the specific case where fi defined in (3) is strictly quadratic,
the partial-update algorithm has guaranteed convergence to a
fixed-point.

Theorem II.1: Let fi : Rn → R, i = 1, . . . , N be a strictly
convex and differentiable function. Let Fi denote the proximal
map of fi. Let F̃i(v;x) denote the partial update for Fi(v) as
specified by Algorithm 2. Then any fixed-point (w∗,X∗) of the
Partial-update MACE approach represented by (13) is a solution
to the exact MACE approach specified by (11).

Proof: Proof is in Appendix B. �
Theorem II.2: Let B be a positive definite n× n matrix, and

let fi : Rn → Rn, i = 1, . . ., N each be given by

fi(x) =
∑
k∈Ji

1

2
‖yk −Akx‖2Λk

+
β

N
xTBx.

Let Fi denote the proximal map of fi. Let F̃i(v;x, σ), v, x ∈
Rn, denote the partial update for proximal operation Fi(v;σ) as
shown in Algorithm 2. Then equation (13) can be represented
by a linear transform[

w(k+1)

X(k+1)

]
= Mσ2

[
w(k)

X(k)

]
+ c(y,A, ρ),

where Mσ2 ∈ R2Nn×2Nn and c ∈ R2Nn. Also, for sufficiently
small σ > 0, any eigenvalue of the matrix Mσ2 is in the range
(0,1) and hence the iterates defined by (13) converge in the limit
k →∞ to (w∗,X∗), the solution to the exact MACE approach
specified by (11).

Proof: Proof is in Appendix B. �
Consequently, in the specific case of strictly convex and

quadratic problems, the result of Theorem II.2 shows that de-
spite the partial-update approximation to the MACE approach,
we converge to the exact consensus solution. In practice, we
use non-Gaussian MRF prior models for their edge-preserving
capabilities, and so the global reconstruction problem is convex
but not quadratic. However, when the priors are differentiable,
they are generically locally well-approximated by quadratics,
and our experiments show that we still converge to the exact
solution even in such cases.

III. MACE WITH PLUG-AND-PLAY PRIORS

In this section, we generalize our approach to incorporate
Plug-n-Play (PnP) priors implemented with advanced denois-
ers [7]. Since we will be incorporating the prior as a denoiser,
for this section we drop the prior terms of in equation (2) by
setting β = 0. So let f(x) = f(x;β = 0) denote the CT log
likelihood function of (2) with β = 0 and no prior term, and
let F (x) denote its corresponding proximal map. Then Buzzard
et al. in [12] show that the PnP framework of [7] can be specified
by the following equilibrium conditions

F (x∗ − α∗; σ) = x∗ (14)

H(x∗ + α∗) = x∗, (15)

where H : Rn → Rn is the plug-n-play denoiser used in place
of a prior model. This framework supports a wide variety of
denoisers including BM3D and residual CNNs that can be used
to improve reconstruction quality as compared to conventional
prior models [7], [8].

Let fi(x) = fi(x;β = 0) to be the log likelihood terms
from (3) corresponding to the sparse view subsets, and let Fi(x)
be their corresponding proximal maps. Then in Appendix C we
show that the PnP result specified by (14) and (15) is equivalent
to the following set of equilibrium conditions.

Fi(x
∗ + u∗i ; σ) = x∗, i = 1, . . . , N, (16)

H(x∗ + α∗) = x∗, (17)

N∑
i=1

u∗i + α∗ = 0. (18)

Again, we can solve this set of balance equations by trans-
forming into a fixed point problem. One approach to solving
equations (16)–(18) is to add an additional agent, FN+1 = H ,
and use the approach of Section II-B [29]. However, here we
take a slightly different approach in which the denoising agent
is applied in series, rather than in parallel.

In order to do this, we first specify a rescaled parallel operator
F and a novel consensus operator GH , given by

F =

⎛
⎜⎝

F1(v1;
√
Nσ)

...
FN (vN ;

√
Nσ)

⎞
⎟⎠ and GH(v) =

⎛
⎜⎝

H(v̄)
...

H(v̄)

⎞
⎟⎠ , (19)

where v̄ =
∑N

i=1 vi/N .
In Theorem III.1 below we show that we can solve the equi-

librium conditions of (16)–(18) by finding the fixed-point of the
mapTH = (2F− I)(2GH − I). In practice, we can implement
the GH first computing an average across a distributed cluster,
then applying our denoising algorithm, followed by broadcast-
ing back a denoised, artifact-free version of the average.

Theorem III.1: Let Fi, i = 1, . . . , N , denote the proximal
map of function fi. Let maps F and GH be defined by (19). Let
x̂∗ denote N vertical copies of x∗. Then, (x∗,u∗) ∈ Rn ×RnN

is a solution to the equilibrium conditions of (16)–(18) if and
only if the point w∗ = x̂∗ −Nu∗ is a fixed-point of map TH =
(2F− I)(2GH − I) and GH(w∗) = x̂∗.

Proof: Proof is in Appendix C. �

Authorized licensed use limited to: Purdue University. Downloaded on May 09,2022 at 17:38:41 UTC from IEEE Xplore.  Restrictions apply. 



1158 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Algorithm 3: Partial-Update MACE With PnP Priors.
1: Initialize:
2: w(0) ← any value ∈ RnN

3: X(0) = GH(w(0))
4: k ← 0
5: while not converged do
6: v(k) = (2GH − I)w(k)

7: X(k+1) = F̃(v(k);σ,X(k)) �Approximate F(v(k))
8: w(k+1) =2X(k+1)−v(k) �≈(2F− I)(2GH − I)w(k)

9: w(k+1) ← ρw(k+1) + (1− ρ)w(k) �Mann update
10: k ← k + 1
11: end while
12: Solution:
13: x∗ = Hw̄(k) �Consensus solution

When TH is non-expansive, we can again compute the fixed-
point w∗ ∈ RnN using the Mann iteration

w(k+1) = ρ(2F− I)(2GH − I)w(k) + (1− ρ)w(k). (20)

Then, we can compute the x∗ that solves the MACE condi-
tions (16)–(18), or equivalently, the PnP conditions (14)–(15),
as x∗ = Hw̄∗. Importantly, (20) provides a parallel approach
to solving the PnP framework since the parallel operator F
typically constitutes the bulk of the computation, as compared
to consensus operator GH .

In the specific case when the denoiser H is firmly non-
expansive, such as a proximal map, we show in Lemma III.2 that
TH is non-expansive. While there is no such guarantee for any
general H , in practice, we have found that this Mann iteration
converges. This is consistent with previous experimental results
that have empirically observed convergence of PnP [8], [12]
for a wide variety of denoisers including BM3D [24], non-local
means [30], or Deep residual CNNs [25], [29].

Lemma III.2: If F and GH are defined by (19), and H is
firmly non-expansive, then TH = (2F− I)(2GH − I) is non-
expansive and the Mann iteration of (20) converges to the fixed
point of TH .

Proof: The proof is in Appendix C. �
The Algorithm 3 below shows the partial update version of the

Mann iteration from equation (20). This version of the algorithm
is practical since it only requires a single update of each proximal
map per iteration of the algorithm.

In the above algorithm, step 6 applies denoiser H to the
average w̄ across the N subsets and re-distributes the denoised
result. Step 7 computes the sparse-view reconstruction for each
subset independently by using non-iterative proximal updates.
Step 8 and 9 complete the evaluation of THw and perform the
Mann update for TH .

IV. EXPERIMENTAL RESULTS

Our experiments are divided into two parts corresponding to
2D and 3D reconstruction experiments. In each set of experi-
ments, we analyze convergence and determine how the number
of view-subsets affects the speedup and parallel-efficiency of the
MACE algorithm.

TABLE I
CT DATASET DESCRIPTION

Table I(a) lists parameters of the 2D data sets. The first 2D data
set was collected at the Lawrence Berkeley National Laboratory
Advanced Light Source synchrotron and is one slice of a scan
of a ceramic matrix composite material. The second 2D data set
was collected on a GE Imatron multi-slice CT scanner and was
reformated into parallel beam geometry. For the 2D experiments,
reconstructions are done with a image size of 512× 512, and
the algorithm is implemented on a distributed compute cluster
of 16 CPU nodes using the standard Message Parsing Interface
(MPI) protocol. Source code for our distributed implementation
can be found in [31].

Table I(b) lists parameters of the 3-D parallel-beam CT dataset
used for our supercomputing experiment. Notice that for the 3D
data set, the reconstructions are computed with an array size of
1280× 1280, effectively doubling the resolution of the recon-
structed images. This not only increases computation, but makes
the system matrix larger, making reconstruction much more
challenging. For the 3D experiments, MACE is implemented
on the massive NERSC supercomputer using 1200 multi-core
CPU nodes belonging to the Intel Xeon Phi Knights Landing
architecture, with 68 cores on each node.

A. Methods

For the 2D experiments, we compare our distributed MACE
approach against a single-node method. Both the single-node
and MACE methods use the same ICD algorithm for reconstruc-
tion. In the case of the single-node method, ICD is run on a single
compute node that stores the complete set of views and the entire
system matrix. Alternatively, for the MACE approach computa-
tion and memory is distributed among N compute nodes, with
each node performing reconstructions using a subset of views.
The MACE approach uses partial updates each consisting of 1
pass of ICD optimization.

We specify the computation in units called Equits [32]. In
concept, 1 equit is the equivalent computation of 1 full iteration
of centralized ICD on a single node. Formally, we define an equit
as

# Equits =
(# of voxel updates)

(# of voxels in ROI)*(# of view subsets)
.

For the case of a single node, 1 equit is equivalent to 1 full
iteration of the centralized ICD algorithm. However, equits can
take fractional values since non-homogeneous ICD algorithms
can skip pixel updates or update pixels multiple times in a single
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iteration. Also notice this definition accounts for the fact that
the computation of an iteration is roughly proportional to the
number of views being processed by the node. Consequently,
on a distributed implementation, 1 equit is equivalent to having
each node perform 1 full ICD iteration using its subset of views.

Using this normalized measure of computation, the speedup
due to parallelization is given by

Speedup(N) = N × (# of equits for centralized convergence)
(# of equits for MACE convergence)

where again N is the number of nodes used in the MACE
computation. From this we can see that the speedup is linear
in N when the number of equits required for convergence is
constant.

In order to measure convergence of the iterative algorithms,
we define the NRMSE metric as

NRMSE(x, x∗) =
‖x− x∗‖
‖x∗‖ .

where x∗ is the fully converged reconstruction. For the 2-D
experiments alone, we compute x∗ by running the single-node
reconstruction method for 20 equits.

All results using the 3D implemented on the NERSC su-
percomputer used the highly parallel 3-D Super-voxel ICD
(SV-ICD) algorithm described in detail in [9]. The SV-ICD
algorithm employees a hierarchy of parallelization and highly
efficient data-caching to maximize utilization of each cluster
node. More specifically, the 1200 slices in the 3D data set are
processed in groups of 8 slices, with each group of 8 slices
being processed by a single node. The 68 cores in each node
then perform a parallelized version of ICD in which pixels are
processed in blocks called super-voxels. However, even with
this very high level of parallelism, the SV-ICD algorithm has
two major shortcomings. First, it can only utilize 150 nodes
in the super-computing cluster, but more importantly, when the
system matrix is too large to store on a single node, real-time high
resolution 3D reconstruction is impossible without the MACE
algorithm.

For all experiments, we initialized each of the images
w

(0)
i , i = 1, . . ., N in Algorithms 1 and 3 to be a nearly zero-

valued uniform image within the region of interest (ROI).
We discuss the selection of parameters ρ and σ in the next
subsection.

B. MACE Reconstruction of 2-D CT Dataset

In this section, we study the convergence and parallel effi-
ciency of the 2D data sets of Table I(a). Fig. 2 shows recon-
structions of the data sets, and Fig. 3 compares the quality of the
centralized and MACE reconstructions for zoomed-in regions of
the image. The MACE reconstruction is computed usingN = 16
compute nodes or equivalently N = 16 view-subsets. Notice
that the MACE reconstruction is visually indistinguishable from
the centralized reconstruction. However, for the MACE recon-
struction, each node only stores less than7%of the full sinogram,
dramatically reducing storage requirements.

Table II shows the convergence of MACE for varying values
of the parameter ρ, with N=16. Notice that for both data sets,

Fig. 2. Single node reconstruction for (left) Low-Res. Ceramic Composite
dataset (right) Baggage Scan dataset.

Fig. 3. Comparison of reconstruction quality for MACE method using 16
parallel nodes each processing (1/16)th of the views, against centralized
method. (a) and (c) Centralized method. (b) and (d) MACE. Notice that both
methods have equivalent image quality.

TABLE II
MACE CONVERGENCE (EQUITS) FOR DIFFERENT VALUES OF ρ, N=16

ρ = 0.8 resulted in the fastest convergence. In fact, in a wide
range of experiments, we found that ρ = 0.8 was a good choice
and typically resulted in the fastest convergence.

Fig.s 4 shows the convergence of MACE using a conventional
prior for varying numbers of compute nodes, N . Notice that
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Fig. 4. MACE convergence for different number of nodes, N , using ρ = 0.8:
(a) Low-Res. Ceramic composite dataset (b) Baggage Scan dataset. Notice that
number of equits tends to gradually increase with number of parallel processing
nodes, N .

for this case of the conventional QGGMRF prior model, as N
increased, the number of equits required for convergence tended
to increase for both data sets.

Fig. 5 shows results using the MACE with the PnP prior
(MACE-PnP) with the Baggage Scan data set. Notice that the
PnP prior results in improved image quality with less streaking
and fewer artifacts. Also notice that with the PnP prior, the
number of equits required for convergence shown in Fig. 5(c)
does not significantly increase with number of compute nodes,
N .

Fig. 6 summarizes this important result by plotting the parallel
speed up as a function of number of nodes for both data sets
using both priors. Notice that the MACE-PnP algorithm results
in approximately linear speedup for N ≤ 8 for both data sets,
and near linear speedup up to N = 16. We conjecture that
the advance prior tends to speed convergence due the stronger
regularization constraint it provides.

Table III shows the system matrix memory
as a function of the number of nodes, N . Note that MACE

Fig. 5. MACE-PnP reconstruction of Baggage Scan data set: (a) MACE PnP
reconstruction using N = 16 nodes; (b) Zoomed-in regions of PnP versus
conventional prior; (c) MACE-PnP convergence as a function of number of nodes
N . Notice that PnP prior produces better image quality with reduced streaking
and artifacts. In addition, the number of equits required for convergence of the
MACE-PnP does not tend to increase significantly with number of nodes N .

drastically reduces the memory usage per node by a factor of
N .

Table IV shows our choice of proximal parameter σ which
controls convergence rate of MACE, as a function of number of
nodes, N . We manually tune σ to achieve optimal convergence
rate. Intuitively, a suitable choice of σ must achieve a balance
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Fig. 6. MACE speedup as a function of the number of nodes, for different
datasets and prior models. Importantly, note that in the case of PnP priors, we
achieve a near linear speedup for both datasets.

TABLE III
MACE MEMORY USAGE FOR THE SYSTEM-MATRIX (GIGABYTES) AS A

FUNCTION OF

NUMBER OF NODES, N 1

1System-matrix represented in sparse matrix format and floating-point precision

TABLE IV
MACE PARAMETER σ (UNITS MM−1) AS A FUNCTION OF NUMBER

OF NODES N 1

1 σ affects speed of convergence but not the converged result

between the data-model term fi(·) and the quadratic penalty
term within the proximal map Fi defined by (4).

C. MACE Reconstruction for Large 3D Datasets

In this section, we study the convergence and parallel ef-
ficiency of the 3D data sets of Table I(b) using the MACE
algorithm implemented on the NERSC supercomputer.

All cases use the SV-ICD algorithm for computation of the
reconstructions at individual nodes with a Q-GGMRF as prior
model and ρ = 0.8 as value of Mann parameter. As noted
previously, for this case the system matrix is so large that it is not
possible to compute the reconstruction with N = 1 view subset.
So in order to produce our reference reconstruction, we ran 40
equits of MACE with N = 2 view subsets, which appeared to
achieve full convergence.

Fig. 7. Comparison of quality between (a) fully converged result and (b)
the MACE reconstruction using 8 view-subsets on the NERSC supercomputer.
Notice that both have equivalent image quality.

Fig. 8. MACE convergence for the High-Res. ceramic reconstruction on
the NERSC supercomputer as a function of view-subsets (reconstruction size
1280× 1280× 1200).

TABLE V
COMPUTATIONAL PERFORMANCE FOR 3-D MACE RECONSTRUCTION ON

THE NERSC SUPERCOMPUTER AS A FUNCTION OF #VIEW-SUBSETS

2rough estimate when system-matrix is represented in conventional sparse matrix
format, floating-point precision

Fig. 7 compares zoomed in regions of the fully converged
result with MACE reconstructions using N = 8 view subsets.
Notice both have equivalent image quality.

Fig. 8 shows the convergence of MACE as a function of
number of equits. Notice that, as in the 2D case using the
Q-GGMRF prior, the number of equits tends to increase as the
number of view subsets, N , increases.

Table V summarizes the results of the experiment as a function
of the number of view subsets, N . Notice that the memory
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requirements for reconstruction drop rapidly with the number
of view subsets. This makes parallel reconstruction practical for
large tomographic data sets. In fact, the results are not listed for
the case of N = 1, since the system matrix is too large to store
on the nodes of the NERSC supercomputer. Also, notice that
parallel efficiency is good up until N = 4, but it drops off with
N = 8.

V. CONCLUSION

In this paper, we proposed a novel MACE algorithm that
distributes both the memory and computation of iterative CT
reconstruction across a large number of parallel nodes. MACE
integrates multiple sparse-view reconstructions across the com-
pute cluster into a high-quality reconstruction. Further, we in-
troduced a variant of MACE called MACE-PnP that supports
the use of advanced PnP denoisers that improve reconstruction
quality. We proved that MACE converges to the MAP estimate,
while MACE-PnP converges to the solution of the serial PnP
framework. In order to make MACE feasible for practical ap-
plications, we proposed a partial-update implementation that
utilizes non-iterative proximal updates and proved its conver-
gence. We analyzed the convergence and speedup of our method
on a distributed memory system with real CT data. Further, we
demonstrated real-time reconstruction from large CT datasets
on a massive supercomputer using MACE.

APPENDIX A

We show that the MACE equations of (10) can be formulated
as a fixed-point problem represented by (11). For a more detailed
explanation see Corollary 3 of [12].

Proof: A simple calculation shows that for any v ∈ RnN ,
operator G defined in (9) follows

GGv = Gv, and so (2G− I)(2G− I)v = v.

Thus 2G− I is self-inverse. We define w∗ as

w∗ = (2G− I)v∗,

in which case v∗ = (2G− I)w∗ due to the above self-inverse
property. Additionally, (10) gives

(2F− I)v∗ = (2G− I)v∗.

Note that the RHS of the above is merely w∗. So, plugging v∗

in terms of w∗ on the LHS, we get

(2F− I)(2G− I)w∗ = w∗.

Hence w∗ fixed-point of a specific map T : RnN → RnN ,
where T = (2F− I)(2G− I). Finding w∗ gives us v∗, since
v∗ = (2G− I)w∗. �

APPENDIX B

Lemma B.1: Let Fi : Rn → Rn, denote the proximal map
of a strictly convex and continuously differentiable function
fi : Rn → R. Let εs ∈ Rn be defined as εs = [0, . . . , 1, . . . , 0]t

where entry 1 is at s-th index. Let F̃i(v;x) denote the partial-
update for Fi(v) from an initial state x as shown in Algorithm
2. Then Fi(v) = x if and only if F̃i(v;x) = x.

Proof: We first assume F̃i(v;x) = x. Since fi is strictly
convex and continuously differentiable, line 4 of Algorithm 2
can be re-written as

αs =

{
α | εts

[
∇fi(z + αεs) +

1

σ2
(z + αεs − v)

]
= 0

}
.

(21)

Since F̃i(v;x) = x, from line 5 of Algorithm 2 and the fact that
εs, s = 1, . . . , n are independent, it follows that αs = 0, s =
1, . . . , n. Applying αs = 0 repeatedly to lines 4-5 of Algorithm
2 and using (21), we get

∂fi(x)

∂xs
+

1

σ2
(xs − vs) = 0, s = 1, . . . , n.

Stacking the above result vertically, we get

∇fi(x) + 1

σ2
(x− v) = 0.

Since fi is strictly convex and continuously differentiable the
above gives

x = argminz

{
fi(z) +

‖z − v‖2
2σ2

}

and so, x = Fi(v). Therefore, F̃i(v;x) = x gives Fi(v) = x.
The converse can be proved by reversing the above steps. �
Proof: Proof of Theorem II.1
Assume Partial-update MACE algorithm has a fixed-point

(w∗,X∗). Then from (13) we get,

X∗ = F̃(v∗; X∗, σ) and (22)

w∗ = 2X∗ − v∗, (23)

where v∗ = (2G− I)w∗. So, (23) can be re-written as

w∗ = 2X∗ − (2G− I)w∗, which gives

X∗ = Gw∗.

So, X∗i = w̄∗ for i = 1, . . . , N , and consequently, (22) can be
expressed as

w̄∗ = F̃i(v
∗
i w̄∗, σ), i = 1, . . .N.

Applying Lemma VI.1 to the above we get

w̄∗ = Fi(v
∗
i ; σ), i = 1, . . ., N.

By stacking the above result vertically, we get

Gw∗ = F(v∗).

Based on definition of v∗, the above gives

Gw∗ = F(2G− I)w∗.

Multiplying both LHS and RHS by 2 and further subtracting w∗

from both sides, we get

(2F− I)(2G− I)w∗ = w∗.

Therefore, any fixed-point of the Partial-update MACE algo-
rithm, (w∗,X∗), is a solution to the exact MACE approach
specified by (11). �
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Proof: Proof of Theorem II.2 (convergence of the Partial-
update MACE algorithm)

We can express the function fi defined in Theorem II.2 more
compactly. For this purpose, let subset Ji be represented as Ji =
{k1, k2, · · · kM}. Then, fi can be compactly written as

fi(x) =
1

2
‖ỹi − Ãix‖2Λ̃i

+
β

N
xTBx. (24)

where ỹi, Ãi and Λ̃i are defined as

ỹi =

⎡
⎢⎢⎣
yk1

...

ykM

⎤
⎥⎥⎦ , Ãi =

⎡
⎢⎢⎣
Ak1

...

AkM

⎤
⎥⎥⎦ and Λ̃i =

⎡
⎢⎢⎣
Λk1

. . .

ΛkM

⎤
⎥⎥⎦ .

From (24), we can express Fi, the proximal map of fi, as

Fi(v) = argminz∈Rn

{
fi(z) +

‖z − v‖2
2σ2

}

= argminz∈Rn

{
1

2
zt

(
Hi +

I

σ2

)
z − zt

(
bi +

v

σ2

)}
,

(25)

where Hi ∈ Rn×n and bi ∈ Rn are defined as

Hi = Ãt
iΛ̃iÃi + (β/N)B and bi = Ãt

iỹi.

We can obtain F̃i(v;x), the partial-update for Fi(v) defined in
(25), by using the convergence analysis of [26], [33] for ICD
optimization. This gives

F̃i(v;x) = −(Li +Di + σ−2I)−1(Lt
ix− bi − σ−2v), (26)

where matrices Li, Di ∈ Rn×n, are defined as

Li = Lower triangular sub-matrix of Hi (excluding diag.)

Di = Diagonal sub-matrix of Hi.

Further we define L̃i ∈ Rn×n by L̃i = Li +Di.We can re-write
equation (26) as

F̃i(v;x) = −(L̃i + σ−2I)−1(Lt
ix− bi − σ−2v)

= −σ2(I + σ2L̃i)
−1(Lt

ix− bi − σ−2v) (27)

Let ε = σ2. For sufficiently small ε2, we can approximate (I +
εL̃i)

−1 in (27) as

(I + εL̃i)
−1 = I − εL̃i +O(ε2).

Plugging the above approximation into equation (27), simplify-
ing, and dropping the O(ε2) term, we get

F̃i(v;x) = (I − εL̃i)v − εLt
ix+ εbi (28)

and hence

2F̃i(v;x)− v = (I − 2εL̃i)v − 2εLt
ix+ 2εbi. (29)

Define block matrices L ∈ RNn×Nn and L̃ ∈ RNn×Nn with
Li and L̃i along the diagonal, respectively.

Using (28), (29), L, and L̃ in (13), we can express the Partial-
update MACE update up to terms involving O(ε2) as

1

[
w(k+1)

X(k+1)

]
=

[
ρ 0

0 1

][
I− 2εL̃ −2εLt

I− εL̃ −εLt

][
v(k)

X(k)

]

×
[
1− ρ 0

0 0

][
w(k)

X(k)

]
+ c

=

⎡
⎢⎣ρ 0

0 1

⎤
⎥⎦
[
I− 2εL̃ −2εLt

I− εL̃ −εLt

][
2G− I 0

0 I

]

×
[
w(k)

X(k)

]
+

[
1− ρ 0

0 0

][
w(k)

X(k)

]
+ c

=

[
ρ(I− 2εL̃)(2G− I) + (1− ρ)I −2ρεLt

(I− εL̃)(2G− I) −εLt

]

×
[
w(k)

X(k)

]
+ c, (30)

where c ∈ R2nN is a constant term based on variables ρ and bi.
Define Mε ∈ R2nN×2nN and z ∈ R2nN as follows

Mε =

[
ρ(I− 2εL̃)(2G− I) + (1− ρ)I −2ρεLt

(I− εL̃)(2G− I) −εLt

]
(31)

z =

[
w

X

]
(32)

Then we can re-write (30) as follows

z(k+1) = Mεz
(k) + c (33)

For z(k) to converge in the limit k →∞, the absolute value
of any eigenvalue of Mε must be in the range (0,1). We first
determine the eigenvalues of M0, where M0 = limitε→0Mε,
and then apply a 1st order approximation in ε to obtain the
eigenvalues of Mε. We can express M0 as

M0 =

[
2ρG+ (1− 2ρ)I 0

2G− I 0

]

Let λ0 ∈ R and z0 = [wt
0 X

t
0]

t ∈ R2nN represent eigenvalue
and eigenvector of M0. Then M0z0 = λ0z0, and so

Gw0 =
1

2ρ
(λ0 + 2ρ− 1)w0 (34)

(2G− I)w0 = λ0X0 (35)

Since G is an orthogonal projection onto a subspace, all of
its eigenvalues are 0 or 1. This with (34) implies that λ0 + 2ρ−
1 is 0 or 2ρ. In the first case, λ0 = 1− 2ρ, which lies in the
open interval (−1, 1) for ρ in (0,1). In the second case, λ0 = 1.
Applying this in (34) and (35), we getX0 = w0 = Gw0, so that
each eigenvector for λ0 = 1 has X0 = w0 with all subvectors
identical.

Let λε ∈ R and zε = [wt
ε X

t
ε]

t ∈ RnN represent eigenvalue
and eigenvector of Mε respectively. Let a be the derivative of λε
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with respect to ε, and letu1 = ∇εwε andu2 = ∇εXε. Applying
a 1st order approximation in ε, λε and zε are given by

λε = λ0 + a(ε− 0) = 1 + aε

zε =
[
w0 + (ε− 0)u1X0 + (ε− 0)u2

]
=

[
w0 + εu1

w0 + εu2

]
.

If we can prove that a is negative when ε is infinitely small
positive, then consequently |λε| < 1, and so, the system of
equations specified by equation (30) converges (note that the
case of λ0 = 1− 2ρ gives |λε| < 1 by continuity for small ε).
Since Mεzε = λεzε, the first component of equation (31) gives[

ρ(I− 2εL̃)(2G− I) + (1− ρ)I
]
(w0 + εu1)

− 2ρεLt(w0 + εu2) = (1 + aε)(w0 + εu1).

Neglecting terms O(ε2), expanding, and using (2G− I)w0 =
w0, the above simplifies for ε > 0 to

2ρ(G− I)u1 =
[
2ρ(L̃+ Lt) + aI

]
w0.

ApplyingG to both sides, usingG(G− I) = G2 −G = 0 and
Gw0 = w0, we get

0 = 2ρG(L̃+ Lt)w0 + aw0

and so,

G(L̃+ Lt)w0 = − a

2ρ
w0. (36)

Since L̃i + Lt
i, i = 1, . . ., N is positive definite for each i, so

is H = L̃+ Lt. Further, G ∈ RnN×nN is an orthogonal pro-
jection matrix with n-dimensional range. Hence G can be
expressed as G = PP t, where P ∈ RnN×n is orthogonal basis
of the range of G (i.e P tP = I). Since w0 = Gw0, equation
(36) can be written as

PP tHPP tw0 = − a

2ρ
PP tw0

Multiply both LHS and RHS by P t, and define w̃0 = P tw0.
Since P tP = I , we get

P tHP w̃0 = − a

2ρ
w̃0

This implies that −a/(2ρ) is an eigenvalue of P tHP . Since
ρ > 0 and P tHP is positive definite, we have a < 0, and
consequently, |λε| < 1.

Since all eigenvalues of Mε have absolute value less than 1,
the system of equations specified by (13) converges to a point
z∗ = (w∗,X∗) in the limit k →∞. From Theorem II.1, w∗ is
a solution to the exact MACE approach specified by (11). �

APPENDIX C

Theorem C.1: Let Fi, i = 1, . . . , N , be the proximal map of
a closed, convex, differentiable function, fi, let

∑N
i=1 fi = f ,

let F be the proximal map for f , and let H be any denoiser.
Then, the MACE framework specified by equilibirum conditions
(16)–(18) is exactly equivalent to the standard PnP framework
specified by (14) and (15).

Proof: Assume (16)–(18) hold. Then, as per (16),

x∗ = Fi(x
∗ + u∗i ;σ), i = 1, . . ., N.

Since fi is convex, differentiable, and Fi is defined as

Fi(x;σ) = argminv∈Rn

{
fi(v) +

‖v − x‖2
2σ2

}
,

it follows from the above stated equilibrium condition that

∇fi(x∗) + x∗ − (x∗ + u∗i )
σ2

= 0, or,

∇fi(x∗)− u∗i
σ2

= 0. (37)

Summing the above equation over i = 1, . . ., N we get

N∑
i=1

∇fi(x∗)− N ū∗

σ2
= 0,

where ū =
∑N

i=1 ui/N . Since f =
∑N

i=1 fi, the above can be
re-written as

∇f(x∗) + x∗ − (x∗ +N ū∗)
σ2

= 0.

Since f is convex, the above equation implies that

x∗ = argminv∈Rn

{
f(v) +

‖v − (x∗ +N ū∗)‖2
2σ2

}
, and so,

x∗ = F (x∗ +N ū∗;σ).

From (17) and (18), we additionally get x∗ = H(x∗ −N ū∗).
Therefore, we get (14) and (15), where α∗ = −N ū∗.

For the converse, assume (14) and (15) hold. Then, as per
(14), F (x∗ − α∗;σ) = x∗. So, we get

∇f(x∗) + x∗ − (x∗ − α∗)
σ2

= 0.

Since f =
∑N

i=1 fi, we can re-write the above as

α∗ = −
N∑
i=1

σ2∇fi(x∗).

We define u∗i as u∗i = σ2∇fi(x∗). So, from the above equation,
we get α∗ +

∑N
i=1 u

∗
i = 0, which gives (18). Further from the

defintion of u∗i we get

∇fi(x∗) + x∗ − (x∗ + u∗i )
σ2

= 0, and so,

Fi(x
∗ + u∗i ;σ) = x∗,

which gives (16). Also, as per (15), H(x∗ + α∗) = x∗, which
gives (17). Therefore, we obtain (16)–(18), where u∗i =
σ2∇fi(x∗), i = 1, . . . , N. �

Remark: As in [12], the theorem statement and proof can
be modified to allow for nondifferentiable, but still convex
functions, fi.

Proof: Proof of Theorem III.1
Assume (16)–(18) hold. We define t∗ as t∗ = Nu∗. So, (18)

gives α∗ + (
∑N

i=1 t
∗
i )/N = 0, or, α∗ = −t̄∗. Consequently, we

can express (17) as

H(x∗ − t̄∗) = x∗. (38)
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Further, (16) specifies Fi(x
∗ + u∗i ;σ) = x∗. We showed earlier

in (37) that this gives ∇fi(x)− ui/σ
2 = 0. So, we get

∇fi(x∗)− Nu∗i
Nσ2

= 0, or,

∇fi(x∗) + x∗ − (x∗ + t∗i )
(
√
Nσ)2

= 0, or,

Fi(x
∗ + t∗i ;

√
Nσ) = x∗, i = 1, . . ., N. (39)

Define w∗ as w∗ = x̂∗ − t∗, where x̂∗ is N vertical copies
of x∗. We write (38) as GHw∗ = x̂∗. So, based on definition
ofw∗, we have t∗ = x̂∗ −w∗ = GHw∗ −w∗ = (GH − I)w∗.
We can write (39) as F(x̂∗ + t∗) = x̂∗ according to (19) , and
so, by plugging in x̂∗ and t∗ in terms of w∗ we get

F(GHw∗ + (GH − I)w∗) = GHw∗, or,

F(2GH − I)w∗ = GHw∗.

Multiplying by 2 and adding w∗ on both sides we get

(2F− I)(2GH − I)w∗ = w∗.

Therefore, w∗ is a fixed-point of TH = (2F− I)(2GH − I),
and, GH(w∗) = x̂∗, where w∗ is given by w∗ = x̂∗ −Nu∗.

For the converse, assume (2F− I)(2GH − I)w∗ = w∗

and GHw∗ = x̂∗ hold. The former gives F(2GH − I)w∗ =
GHw∗. Applying the latter, we get F(2x̂∗ −w∗) = x̂∗. Define
t∗ as t∗ = x̂∗ −w∗. So, we have F(x̂∗ + t∗) = x̂∗, or,

Fi(x
∗ + t∗i ;

√
Nσ) = x∗, i = 1, . . . , N.

A calculation with the definition ofFi shows that the above gives

Fi(x
∗ + t∗i/N ;σ) = x∗, i = 1, . . . , N.

Define u∗ = t∗/N . So, from the above, Fi(x
∗ + u∗i ;σ) = x∗,

which gives (16). Since GHw∗ = x̂∗, we have x∗ = Hw̄∗.
Combining this with w∗ = x̂∗ − t∗, we get x∗ = H(x∗ − t̄∗).
Define α∗ = −t̄∗. So we have, x∗ = H(x∗ + α∗), which gives
(17). Also from definition ofα∗ andu∗, we getα∗ +

∑N
i=1 u

∗
i =

0, which gives (18). Therefore, we obtain (16) to (18), where u∗

is given by Nu∗ = x̂∗ −w∗. �
Proof: Proof of Lemma III.2
First we show that 2GH − I is non-expansive when H is

firmly non-expansive. This proof also applies to the case where
H is a proximal map, since proximal maps are firmly non-
expansive [28]. Consider any x,y ∈ RnN . Then

‖(2GH − I)x− (2GH − I)y‖2
= 4‖GHx−GHy‖2 + ‖x− y‖2 − 4〈GHx−GHy,x− y〉

By writing GH in terms of H , we simplify the last term as

〈GHx−GHy,x− y〉

=

N∑
i=1

〈Hx̄−Hȳ, xi − yi〉

=

N∑
i=1

〈Hx̄−Hȳ, x̄− ȳ + (xi − x̄)− (yi − ȳ)〉

= N〈Hx̄−Hȳ, x̄− ȳ〉.

Since H is firmly non-expansive, [34, Prop. 4.2] implies that
〈Hx̄−Hȳ, x̄− ȳ〉 ≥ ‖Hx̄−Hȳ‖2. This gives

〈GHx−GHy,x− y〉 ≥ N‖Hx̄−Hȳ‖2 = ‖GHx−GHy‖2.
Plugging the above into the first equation of this proof, we get

‖(2GH − I)x− (2GH − I)y‖2 ≤ ‖x− y‖2.
Therefore, (2GH − I) is a non-expansive map. Also, since
Fi, i = 1, . . ., N is the proximal map of a convex function, Fi is
a resolvent operator, so 2Fi − I is a reflected resolvent operator,
hence non-expansive. This means 2F− I is non-expansive, so
(2F− I)(2GH − I) is non-expansive, since it is the composi-
tion of two non-expansive maps. �
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