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A Framework for Dynamic Image Sampling Based
on Supervised Learning

G. M. Dilshan P. Godaliyadda
Michael A. Groeber, Gregery T. Buzzard

Abstract—Sparse sampling schemes can broadly be classified
into two main categories: static sampling where the sampling pat-
tern is predetermined, and dynamic sampling where each new
measurement location is selected based on information obtained
from previous measurements. Dynamic sampling methods are par-
ticularly appropriate for pointwise imaging methods, in which
pixels are measured sequentially in arbitrary order. Examples
of pointwise imaging schemes include certain implementations of
atomic force microscopy, electron back scatter diffraction, and syn-
chrotron X-ray imaging. In these pointwise imaging applications,
dynamic sparse sampling methods have the potential to dramat-
ically reduce the number of measurements required to achieve a
desired level of fidelity. However, the existing dynamic sampling
methods tend to be computationally expensive and are, therefore,
too slow for many practical applications. In this paper, we present
a framework for dynamic sampling based on machine learning
techniques, which we call a supervised learning approach for dy-
namic sampling (SLADS). In each step of SLADS, the objective is
to find the pixel that maximizes the expected reduction in distor-
tion (ERD) given previous measurements. SLADS is fast because
we use a simple regression function to compute the ERD, and it is
accurate because the regression function is trained using datasets
that are representative of the specific application. In addition, we
introduce an approximate method to terminate dynamic sampling
at a desired level of distortion. We then extend our algorithm to
incorporate multiple measurements at each step, which we call
groupwise SLADS. Finally, we present results on computation-
ally generated synthetic data and experimentally collected data to
demonstrate a dramatic improvement over state-of-the-art static
sampling methods.

Index Terms—Dynamic sampling, sparse sampling, electron mi-
croscopy, spectroscopy, smart sampling, adaptive sampling.
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1. INTRODUCTION

ANY important imaging methods are based on the se-
M quential point-wise measurement of pixels in an image.
Examples of such point-wise imaging methods include certain
forms of atomic force microscopy (AFM) [1], electron back
scatter diffraction (EBSD) microscopy [2], X-ray diffraction
spectroscopy [3], and scanning Raman spectroscopy [4]. These
scientific imaging methods are of great importance in material
science, physics, and chemistry.

Sparse sampling offers the potential to dramatically reduce
the time required to acquire an image. In sparse sampling, a sub-
set of all available measurements are acquired, and the full res-
olution image is reconstructed from this set of sparse measure-
ments. By reducing image acquisition time, sparse sampling also
reduces the exposure of the object/person being imaged to poten-
tially harmful radiation. This is critically important when imag-
ing biological samples using X-rays, electrons, or even optical
photons [5], [6]. Another advantage of sparse sampling is that
it reduces the amount of measurement data that must be stored.

However, for a sparse sampling method to be useful, it is
critical that the reconstruction made from the sparse set of sam-
ples allows for accurate reconstruction of the underlying object.
Therefore, the selection of sampling locations is critically im-
portant. The methods that researchers have proposed for sparse
sampling can broadly be sorted into two primary categories:
static and dynamic.

Static sampling refers to any method that collects measure-
ments in a predetermined order. Random sampling strategies
such as in [7]-[9], low-discrepancy sampling [10], uniformly
spaced sparse sampling methods [8], [11] and other predeter-
mined sampling strategies such as Lissajous trajectories [12]
are examples of static sparse sampling schemes. Static sam-
pling methods can also be based on a model of the object being
sampled such as in [13], [14]. In these methods knowledge of
the object geometry and sparsity are used to predetermine the
measurement locations.

Alternatively, dynamic sampling refers to any method that
adaptively determines the next measurement location based on
information obtained from previous measurements. Dynamic
sampling has the potential to produce a high fidelity image with
fewer measurements because of the information available from
previous measurements. Intuitively, the previous measurements
provide a great deal of information about the best location for
future measurements.
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Over the years, a wide variety of dynamic sampling meth-
ods have been proposed for many different applications. We
categorize these dynamic sampling methods into three primary
categories—dynamic compressive sensing methods where mea-
surements are unconstrained projections, dynamic sampling
methods developed for applications that are not point-wise
imaging methods, and dynamic sampling methods developed
for point-wise imaging methods.

In dynamic compressive sensing methods the objective at
each step is to find the measurement that reduces the entropy
the most. In these methods the entropy is computed using the
previous measurements and a model for the underlying data.
Examples of such methods include [15]-[18]. However, in
these methods the measurements are projections along uncon-
strained measurement vectors, and therefore they cannot readily
be generalized for point-wise imaging methods. Here, an uncon-
strained measurement vector is defined as a unit norm vector,
where more than one element in the vector can be non-zero.

The next category of dynamic sampling methods in the lit-
erature are those developed for specific applications that are
not point-wise imaging methods. For example in [19] the au-
thors modify the optimal experimental design [20] framework
to incorporate dynamic measurement selection in a biochemi-
cal network; and in [21], Seeger et al. select optimal K-space
spiral and line measurements for magnetic resonance imaging
(MRI). Also, in [22], Batenburg et al. present a method for bi-
nary computed tomography where each step of the measurement
is designed to maximize the information gain.

There are also a few dynamic sampling methods developed
specifically for point-wise imaging applications. One example
is presented in [23] by Kovacevi¢ et al. for the application of
fluorescence microscopy imaging. In this algorithm, an object is
initially measured using a sparse uniformly spaced grid. Then,
if the intensity of a pixel is above a certain threshold, the vicinity
of that pixel is also measured. However, the threshold here is
empirically determined and therefore many not be robust for
general applications. In [24], Kovacevi¢ et al. propose a method
for dynamically sampling a time-varying image by tracking
features using a particle filter; and in [25], the authors introduce
a method where initially different sets of pixels are measured to
estimate the image, and further measurements are made where
the estimated signal is non-zero. Another point-wise dynamic
sampling method was proposed in [26]. In each step of this
algorithm, the pixel that reduces the posterior variance the most
is selected for measurement. The posterior variance is computed
using samples generated from the posterior distribution using
the Metropolis-Hastings algorithm [27], [28]. However, Monte-
Carlo methods such as the Metropolis-Hastings algorithm can
be very slow for cases where the dimensions of the random
vector are large [19], [26]. Another shortcoming of this method
is that it does not account for the change of conditional variance
in the full image due to a new measurement.

In this paper, we present a dynamic sampling algorithm for
point-wise imaging methods based on supervised learning tech-
niques that we first presented in [29]. We call this algorithm a
supervised learning approach for dynamic sampling (SLADS).
In each step of the SLADS algorithm, we select the pixel that

greedily maximizes the expected reduction in distortion (£ RD)
given previous measurements. Importantly, the ERD is com-
puted using a simple regression function applied to features
from previous measurements. As a result, we can compute the
ERD very rapidly during dynamic sampling.

For the SLADS algorithm to be accurate, the regression func-
tion must be trained off-line using reduction in distortion (R D)
values from many different typical measurements. However,
creating a large training data set with many entries can be com-
putationally challenging because evaluation of each RD entry
requires two reconstructions, one before the measurement and
one after. In order to solve this problem, we introduce an ef-
ficient training scheme and an approximation to the RD, that
allows us to extract multiple entries for the training database
with just one reconstruction. Then, for each RD entry we ex-
tract a corresponding feature vector that captures the uncertainty
associated with the unmeasured location, to ensure SLADS is
accurate. We then empirically validate the approximation to the
RD for small images and describe a method for estimating the
required estimation parameter. We also introduce an approxi-
mate stopping condition for dynamic sampling, which allows
us to stop when a desired distortion level is reached. Finally,
we extend our algorithm to incorporate group-wise sampling so
that multiple measurements can be selected in each step of the
algorithm.

In the results section of this paper, we first empirically vali-
date our approximation to the [ D by performing experiments on
64 x 64 sized computationally generated EBSD images. Then
we compare SLADS with state-of-the-art static sampling meth-
ods by sampling both simulated EBSD and real SEM images.
We observe that with SLADS we can compute a new sample lo-
cation very quickly (in the range of 1-100 ms), and can achieve
the same reconstruction distortion as static sampling methods
with dramatically fewer samples. Finally, we evaluate the per-
formance of group-wise SLADS by comparing it to SLADS and
to static sampling methods.

II. DYNAMIC SAMPLING FRAMEWORK

Denote the unknown image formed by imaging the entire
underlying object as X € R™. Then the value of the pixel at
location 7 € ) is denoted by X, where €2 is the set of all
locations in the image.

In the dynamic sampling framework, we assume that k pix-
els have already been measured at a set of locations & =
{sM) ... s(®)}. We then represent the measurements and the
corresponding locations as a k£ X 2 matrix

From these measurements, Y (¥), we can compute an estimate
of the unknown image X. We denote this best current estimate
of the image as X (),

Now we would like to determine the next pixel location s
to measure. If we select a new pixel location s and measure its

(k+1)
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value X, then we can presumably reconstruct a better estimate
of X. We denote this improved estimate as X (kss)

Of course, our goal is to minimize the distortion between X
and X (%) which we denote by the following function

DX, X*)) =3 " D(X,, X[F)) | (1)

reqQ

where D(X,, X}(k:’s)) is some scalar measure of distortion be-

tween the two pixels X, and Xﬁk7:‘g). Here, the function D(-,-)
may depend on the specific application or type of image. For
example we can let D(a,b) = |a — b|' where l € Z * .

In fact, greedily minimizing this distortion is equivalent to
maximizing the reduction in the distortion that occurs when
we make a measurement. To do this, we define R\***) as the
reduction-in-distortion at pixel location 7 resulting from a mea-
surement at location s.

R*#) = D(X,, XF)) — D(X,, X(F#) )

T
It is important to note that a measurement will reduce the dis-

tortion in the entire image. Therefore, to represent the total
reduction in distortion, we must sum over all pixels r € ().

R(k;s) _ ZRS}CS) 3)
reQ)
= D(X, X)) - D(x, X k), )

Notice that R(*:*) will typically be a positive quantity since we
expect that the distortion should reduce when we collect addi-
tional information with new measurements. However, in certain
situations R(**) can actually be negative since a particular mea-
surement might inadvertently cause the reconstruction to be less
accurate, thereby increasing the distortion.

Importantly, we cannot know the value of R(*i*) during the
sampling process because we do not know X. Therefore, our
real goal will be to minimize the expected value of R**) given
our current measurements. We define the expected reduction-
in-distortion (FRD) as

Rk — | [R(k;5)|y(k)} ) (5)

Since the ERD is the conditional expectation of R(¥:*) given

the measurements Y (*) it does not require knowledge of X.
The specific goal of our greedy dynamic sampling algorithm

is then to select the pixel s that greedily maximizes the ERD.

(k+1) _ p(k:s)
s arg Igle%x {R } (6)

Intuitively, (6) selects the next pixel to maximize the expected
reduction-in-distortion given all the available information Y ().

Once s 1) is determined, we then form a new measurement
matrix given by

(k)
Y } )

(k+1) —
Y |:8<k+1),X5(k+1)

We repeat this process recursively until the stopping condition
discussed in Section 1V is achieved. This stopping condition
can be used to set a specific expected quality level for the re-
construction.

k<0
repeat

sFHD = arg max,eq {R(k?s)}

k
y(k+1) — v
S(k+1), Xs(k+1)

k+—k+1

until Desired fidelity is achieved

Fig. 1. Summary of the greedy dynamic sampling algorithm in pseudocode.

In summary, the greedy dynamic sampling algorithm is given
by the iteration shown in Fig. 1.

III. SUPERVISED LEARNING APPROACH FOR DYNAMIC
SAMPLING (SLADS)

The challenge in implementing this greedy dynamic sampling
method is accurately determining the ERD function, R(¥:*). A
key innovation of our proposed SLADS algorithm is to deter-
mine this £ RD function by using supervised learning tech-
niques with training data.

More specifically, SLADS will use an off-line training ap-
proach to learn the relationship between the EFRD and the
available measurements, Y (%) so that we can efficiently predict
the FRD. More specifically, we would like to fit a regression
function f7(-), so that

RF) = f?(y (), 8)

Here f7(-) denotes a non-linear regression function determined
through supervised learning, and 6 is the parameter vector that
must be estimated in the learning process.

For the remainder of this section, we have dropped the super-
script k in our explanation of the training procedure. We do this
because in training we must use different values of £ (i.e., dif-
ferent sampling percentages) in order to ensure our estimate for
f2(-) is accurate regardless of the number of measurements k.

Now, to estimate the function f7(-), we construct a training
database containing multiple corresponding pairs of (R(*),Y").
Here, R®) = D(X,X) — D(X, X)) is the RD due to s,
where X is the best estimate of X computed using the mea-
surements Y, and X () is the best estimate of X computed
using the measurements Y and an additional measurement at
location s.

Notice that since R®) is the reduction-in-distortion, it re-
quires knowledge of the true image X . Since this is an off-line
training procedure, X is available, and the regression function,
f2(Y), will compute the required expected reduction in distor-
tion denoted by R(*).

In order to accurately estimate the £ RD function, we will
likely need many corresponding pairs of the reduction in distor-
tion R(*) and the measurements Y. However, to compute R(*)
for a single value of s, we must compute two full reconstructions,
both X and X (*). Since reconstruction can be computationally
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expensive, this means that creating a large database may be very
computationally expensive. We will address this problem and
propose a solution to it in Section III-A.

For our implementation of SLADS, the regression function
f7(Y) will be a function of a row vector containing fea-
tures extracted from Y. More specifically, at each location s, a
p-dimensional feature vector V, will be extracted from Y and
used as input to the regression function. Hence, Vs = g5 (YV),
where g, (-) is a non-linear function that maps the measurements
Y to a p-dimensional vector V. The specific choices of features
used in V; are listed in Section III-D; however, other choices
are possible.

From this feature vector, we then compute the £ RD using a
linear predictor with the form

R® = fI(v)
= Ys (Y) 0
= Vi0, )]

where V; = g, (V) is a local feature vector extracted from Y.
We can estimate the parameter € by solving the following least-
squares regression

6= arg min IR —Vo?, (10)
where R is an n-dimensional column vector formed by
R(s1)
R= : , (11)
Rs)
and V is given by
Vs,
V=] (12)
Vs,

So together (R, V) consist of n training pairs, {(Rs,, Vs, )},

that are extracted from training data during an off-line training

procedure. The parameter 6 is then given by

6= (V'V) V'R, (13)

Once @ is estimated, we can use it to find the £ RD for each

unmeasured pixel during dynamic sampling. Hence, we find the
k + 1th location to measure by solving

s+ = argmax (V;(mé) , (14)
se)

where V;(k) denotes the feature vector extracted from the mea-
surements Y (%) at location s. It is important to note that this
computation can be done very fast. The pseudo code for SLADS
is shown in Fig. 2.

A. Training for SLADS

In order to train the SLADS algorithm, we must form a large
training database containing corresponding pairs of R(*) and V.
To do this, we start by selecting M training images denoted by
{X1,X5,..., Xy }. We also select a set of sampling densities

function Y(5) + SLADS(Y®, 4, k)
S+ {sW s sk}

while Stopping condition not met do
for Vs € {Q\ S} do

Extract Vs(k)
R(kis) Vs(k)é

end for

s+ = arg max _ (R*))

se{Q\S}

k
y(k+1) — y®
5(k+1),X5(k+1)
S+ {Susk+b}

k+—k+1

end while

K<+ k

end function

Fig. 2. SLADS algorithm in pseudocode. The inputs to the function are the
initial measurements Y (%) , the coefficients needed to compute the £ R D, found

in training, 6, and k, the number of measurements. When the stopping condition
is met, the function will output the selected set of measurements y (K),

represented by pi,po,. ..
fore < j.

For image X,,, and each sampling density, p;,, we randomly
select a fraction pj, of all pixels in the image to represent the
simulated measurement locations. Then for each of the remain-
ing unmeasured locations, s, in the image X,,, we compute the
pair (R(5> , V) and save this pair to the training database. This
process is then repeated for all the sampling densities and all
the images to form a complete training database.

Fig. 3 illustrates this procedure. Note that by selecting a set
of increasing sampling densities, p1,po,...,pn, the SLADS
algorithm can be trained to accurately predict the ZRD for a
given location regardless of whether the local sampling density
is high or low. Intuitively, by sampling a variety of images with
a variety of sampling densities, the final training database is
constructed to represent all the behaviors that will occur as the
sampling density increases when SLADS is used.

,pr, where 0 < p, <1 and p; < p;

B. Approximating the Reduction-in-Distortion

While the training procedure described in Section III-A
is possible, it is very computationally expensive because of
the need to exactly compute the value of R(*). Since this
computation is done in the training phase, we rewrite (4) without
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*  Select a fraction p, of pixels as

__,|  measurements Extract (V;, R®))

i+ Define: S, as set of measured ¥s € (I\S;}
! locations

Training —_—

Image X, :

P i+ Selecta fraction p, of pixels as

! measurements Extract (V;,, R®))
i+ »  Define: S; as set of measured ¥s € {0\5;} Training
i locations I Database

i* Select a fraction py of pixels as
measurements

i*  Define: Sy as set of measured

i locations

Extract (V,,R1))
¥s € {\Sy)

Fig. 3.

Ilustration of how training data are extracted from one image in the training database. We first select a fraction p; of the pixels in the image and consider

them as measurements Y. Then, for all unmeasured pixel locations (s € {2\ S; }), we extract a feature vector V; and also compute R(5). We then repeat the
process for when fractions of po, p3, ... and py of all pixels are considered measurements. Here, again €2 is the set of all locations in the training image and S; is

the set of measured locations when a fraction p; of pixels are selected as measurements. All these pairs of (VS  R() ) are then stored in the training database.

the dependence on k to be

R = D(X,X) - D(X, X)), (15)
where X is known in training, X is the reconstruction using the
selected sample points, and X () ig the reconstruction using the
selected sample points along with the value X. Notice that X
must be recomputed for each new pixel s. This requires that a
full reconstruction be computed for each entry of the training
database.

In other words, a single entry in the training database com-
prises the features extracted from the measurements, V; =
gs(Y), along with the reduction in distortion due to an extra
measurement at a location s, denoted by R(*). While it is pos-
sible to compute this required pair, (V5, R(*)), this typically
requires a very large amount of computation.

In order to reduce this computational burden, we introduce
a method for approximating the value of R*) so that only a
single reconstruction needs to be performed in order to evaluate
R®) for all pixels s in an image. This dramatically reduces the
computation required to build the training database.

In order to express our approximation, we first rewrite the
reduction-in-distortion in the form

R — ZR&S)’

reQ

where

R = D(X,,X,) — D(X,, X")).
So here RS«S) is the reduction-in-distortion at pixel r due to
making a measurement at pixel s. Using this notation, our ap-
proximation is given by

RSS) ~ R&S) = hs,rD (XT7X’F> ) (16)

where

1
hs :cxp{—ﬁﬂr—sﬂz} (17)

S

and o, is the distance between the pixel s and the nearest previ-
ously measured pixel divided by a user selectable parameter c.
More formally, o is given by

_ minges ||s — ]
s — -
c

(18)

where S is the set of measured locations. So this results in the
final form for the approximate reduction-in-distortion given by

R =3"h,,D (X,A,Xr) ,

reQ)

19)

where c is a parameter that will be estimated for the specific
problem.

In order to understand the key approximation of (16), notice
that the reduction-in-distortion is proportional to the product of
hs ., and D (XT, X}) Intuitively, h , represents the weighted
distance of r from the location of the new measurement, s; and
D (X s X r) is the initial distortion at r before the measurement
was made. So for example, when r = s (i.e., when we measure
the pixel s), then the RD at s due to measurement s is given by

R =D (X X) . (20)
Notice that in this case hs ; = 1, and the reduction-in-distortion
is exactly the initial distortion since the measurement is assumed
to be exact with D (X 55 X q) = 0. However, as r becomes
more distant from the pixel being measured, s, the reduction-in-
distortion will be attenuated by the weight i, , < 1. We weight
the impact of a measurement by the inverse Euclidean distance
because widely used reconstruction methods [30], [31] weight
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@ (b) (©

Fig. 4. Images illustrating the shape of the function A , as a function of 7.
(a) Measurement locations, where red squares represent the two new measure-
ment locations s; and sg, and the yellow squares represent the locations of
previous measurements. (b) The function A, , resulting from a measurement
at location s1 . (¢) The function h, , resulting from a measurement at location
s2. Notice that since o5, > o, then the weighting function hg, , is wider
than the function A, ;.

the impact of a measurement at a location s on a location r by
the inverse Euclidean distance.

Fig. 4(b) and (c) illustrate the shape of h; , for two different
cases. In Fig. 4(b), the pixel s; is further from the nearest mea-
sured pixel, and in Fig. 4(c), the pixel s, is nearer. Notice that as
r becomes more distant from the measurement location s, the
reduction-in-distortion becomes smaller; however, that rate of
attenuation depends on the local sampling density.

C. Estimating the c Parameter

In this section, we present a method for estimating the pa-
rameter c used in (18). To do this, we create a training database
that contains the approximate reduction-in-distortion for a set of
parameter values. More specifically, each entry of the training
database has the form

<R(S;Cl)’R(S;Cz)7 . R(s;cm%) ,

where ¢ € {c1, ¢, ...cy} is a set of U possible parameter val-
ues, and R(5/) is the approximate reduction-in-distortion com-
puted using the parameter value ¢;.

Using this tralnmg database we compute the U associated
parameter vectors 6(<), and using these parameter vectors, we
apply the SLADS algorlthm on M images and stop each sim-
ulation when K samples are taken. Then for each of these M
SLADS simulations, we compute the total distortion as

TD/im \Ci )

D (X(777’>,X(k'777”6‘)> , 1)

9l
where X (™) is the mth actual image, and X (m.k.ei) is the associ-
ated image reconstructed using the first k samples and parameter
value c;. Next we compute the average total distortion over the
M training images given by

D\ = 22)

ZTDmc

From this, we then compute the area under the 7'D curve as the
overall distortion metric for each ¢; given by

i S—
D) + TD!
pyle) =5 22 T ; B 23)

k=2

TABLE I
LIST OF DESCRIPTORS USED TO CONSTRUCT THE FEATURE VECTOR V

Measures of gradients

Gradient of the reconstruction
in horizontal (z) direction.

Gradient of the reconstruction
in vertical (y) direction.

ZS,Q =D (Xsy-f—’Xsy—)

where, sy+ and s;_ are pix-
els adjacent to s the horizontal

where, s, and s,_ are pixels
adjacent to s the vertical direc-

direction tion
Measures of standard deviation
N2 _ (s) Y
5 3 = Z (X’V':Xs) ZS’4 B Z w’r D (X’,’XS)
768.5 r€ds
. .. Here,
Here Os is the set containing
the indices of the L nearest o W
S
measurements to s. Wy 27
— 2
s =l

and ||s — 7| is the euclidean
distance between s and r.

Measures of density of measurements

1+A(S 2)

Zso =
6= T A

Zss =min|ls —r
a5 = minfls — |2 faih)
Here A(,) is the area of a
circle A% the size of the image.
Afs,» is the measured area in-
side A(s;A)«

The distance from s to the
closest measurement.

There are three main categories of descriptors: measures of gradients, measures of standard
deviation, and measures of density of measurements surrounding the pixel s.

where K is the total number of samples taken before stopping.
We use the area under the 7D curve as the deciding factor
because it quantifies how fast the error is reduced with each ¢;,
and therefore can be used to compare the performance under
each ¢;. The optimal parameter value, c*, is then selected to
minimize the overall distortion metric given by

24

" = arg min

in  {pme}.
CE{Cl ,€2,...CUT }

D. Local Descriptors in Feature Vector Vi

In our implementation, the feature vector V; is formed
using terms constructed from the 6 scalar descriptors
Zs1,2Zs2,... 2 listed in Table 1. More specifically, we take
all the unique second-degree combinations formed from these
descriptors, and the descriptors themselves to form V. The rea-
son we use these first and second-degree combinations in Vj
is because we do not know the relationship between the FRD
and the descriptors, and therefore our approach is to account for
some possible nonlinear relationships between V; and the ERD
in the trained regression function. More generally, one might use
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other machine learning techniques such as support vector ma-
chines [32] or convolutional neural networks [33], [34] to learn
this possibly nonlinear relationship.

This gives us a total of 28 elements for the vector V.

‘/S = [17ZS,17~"7ZS,()7ZS 1JZS 1Z5,27"~7Z8,IZS,67

Z?,Q? ZS.2Z5,37 ey ZS,QZS,67 ey Z?G]

Intuitively, Z, ; and Z; » in Table I are the gradients in the
horizontal and vertical direction at an unmeasured location s
computed from the image reconstructed using previous mea-
surements. Z, 3 and Z, 4, are measures of the variance for the
same unmeasured location s. The value of Z 3 is computed us-
ing only the intensities of the neighboring measurements, while
Z 4 also incorporates the Euclidean distance to the neighboring
measurements. Hence, Z 1, Z 2, Zs 3 and Z, 4 all contain in-
formation related to the intensity variation at each unmeasured
location. Then the last two descriptors, Z; 5 and Z, ¢, quantify
how densely (or sparsely) the region surrounding an unmea-
sured pixel is measured. In particular, the Z; 5 is the distance
from the nearest measurement to an unmeasured pixel, and Z; ¢
is the area fraction that is measured in a circle surrounding an
unmeasured pixel.

These specific 6 descriptors were chosen in an ad-hoc manner
because we found that they were simple and effective for our
application. However, we expect that other more sophisticated
descriptors and more sophisticated machine learning techniques
could be used in this application or others that could potentially
result in a better estimate of the £ RD or simply better results
in a dynamic sampling application. Moreover, we believe that
investigation of better machine learning techniques for SLADS
could prove to be a fertile area of future research [34], [35].

IV. STOPPING CONDITION FOR SLADS

In applications, it is often important to have a stopping cri-
teria for terminating the SLADS sampling process. In order to
define such a criteria, we first define the expected total distortion
(ETD) at step k by

1
ETD, = LQD<XX )|Y ]
Notice that the expectation is necessary since the true value of
X is unavailable during the sampling process. Then our goal is
to stop sampling when the E'T'D falls below a predetermined
threshold, 7.

ETD, <T (25)

Itis important to note that this threshold is dependent on the type
of image we sample and the specific distortion metric chosen.

Since we cannot compute 7' D;,, we instead will compute
the function

k) — (1-— ﬁ)e(k—l) + 8D (XS““”Xiﬁjl)) )

that we will use in place of the ET' Dy, for k > 1. Here, [ is a
user selected parameter that determines the amount of temporal
smoothing, X+ is the measured value of the pixel at step ,

(26)

X f (kj Y is the reconstructed value of the same pixelatstep k — 1
and (9 = 0.

Intuitively, the value of ¢(¥) measures the average level of
distortion in the measurements. So a large value of ¢(*) indicates
that more samples need to be taken, and a smaller value indicates
that the reconstruction is accurate and the sampling process can
be terminated. However, in typical situations, it will be the case
that

¥ > ETD,

because the SLADS algorithm tends to select measurements that

are highly uncertain and as a result D (Xsu) , Xiﬁ 1) ) in (26)

tends to be large.

Therefore, we cannot directly threshold ¢*) with T in (25).
Hence, we instead compute a function T(T) using a look-up-
table (LUT) and stop sampling when

M) < T(T).

It is important to note here that T(T) is a function of the original
threshold 7" at which we intend to stop SLADS.

The function T'(T') is determined using a set of training im-
ages, {X1,---, Xy }. For each image, we first determine the
number of steps, K, (T'), required to achieve the desired dis-
tortion.

K (T) = mln{ | Q|D (X,,,l,f(ff)> < T} 27)

where, m € {1,2,...
(K (T))

M?}. Then we average the value of

€m for each of the M images to determine the adjusted
threshold:
M
T _ (K (T))
T(T) = 5; ; e ). (28)

In practice, we have used the following formula to set 3:

og, (5122 )—log,
0.001 (l gz( 12 )2 log, (192]) _|_1> |Q‘ S 5122

N -1
0.001 (1032(9);Og2 (‘)12 ) + 1) |Q| > 5122

8=

where |Q2] is the number of pixels in the image. We chose the
value of (3 for a given resolution so that the resulting ¢(*) curve
was smooth. When the €!*) curve is smooth the variance of
e,(wK ) in (28) is low, and as a result we get an accurate
stopping threshold.

Fig. 5 shows the SLADS algorithm as a flow diagram after

the stopping condition in the previous section is incorporated.

V. GROUPWISE SLADS

In this section, we introduce a group-wise SLADS approach
in which B measurements are made at each step of the algorithm.
Group-wise SLADS is more appropriate in applications where
it is faster to measure a set of predetermined pixels in a single
burst when compared to acquiring the same set one at a time.
For example, in certain imaging applications moving the probe
can be expensive. In such cases by finding b samples all at once,
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Input: Initial -
Measurements !

Compute: Expected
reduction in distortion
(ERD) for unmeasured

pixels

él?“‘“’ —V¥0; Vs e {Q\S}

Check if stopping
condition is met

--------------------------

________________________

Find location with largest
expected reduction in
distortion (ERD)

* = arg max {E(k:x)}

N
se{Qis}

Measure selected location

Y(k)
Y(/H-l) «— .
AXS(““ ’s

S<—{Sus“'*”}
ke—k+1; K<k

Fig. 5.

Flow diagram of SLADS algorithm. The inputs to the algorithm are the initial measurements Y () | the coefficients needed to compute the ER D, found in

training, 0, and the set S containing the indices of the measurements. When the stopping condition is met the function will output the selected set of measurements

y (),

we can find a shortest path between said locations to reduce the
movement of the probe.

So at the kth step, our goal will be to select a group of
measurement positions,

Slk+1) {S§A:+1)’Sék+l)’ o ngﬂ)} 7
that will yield the greatest expected reduction-in-distortion.

{R(,ﬁﬂ,sz,“ﬁm}’ (29)

where R(Fi51:52:-58) is the expected reduction-in-distortion due

E+1)  (k+1 E+1
to measurements s§ >,s§ >7...s§9 )

S+ — arg max
{s1,82,...s3 }E{Q\S}

. However, solving

this problem requires that we consider (N ;S‘> different com-

binations of measurements.

In order to address this problem, we introduce a method in
which we choose the measurements sequentially, just as we do
in standard SLADS. Since group-wise SLADS requires that we
make measurements in groups, we cannot make the associated
measurement after each location is selected. Consequently, we
cannot recompute the R D function after each location is se-
lected, and therefore, we cannot select the best position for the
next measurement. Our solution to this problem is to estimate
the value at each selected location, and then we use the estimated
value as if it were the true measured value.

More specifically, we first determine measurement location
sgkﬂ) using (6), and then let S «+ {S U sgkﬂ) } Now without

measuring the pixel at sgk“) , we would like to find the location
(k+1) (k+1)

of the next pixel to measure, s . However, since s; has

now been chosen, it is important to incorporate this information
when choosing the next location sng). In our implementation,

we temporarily assume that the true value of the pixel, X +1),
1

is given by its estimated value, X ((kkl 1,» computed using all the
S

1
measurements acquired up until the kth step, which is why we
use the superscript k£ on X (fL)+ 1) - We will refer to X ((kk)ﬂ) as a
81 Sl

pseudo-measurement since it takes the place of a true measure-
ment of the pixel. Now using this pseudo-measurement along
with all previous real measurements, we estimate a pseudo-

ERD R*1"""5) forall s € {2\ S} and from that select the
next location to measure. We repeat this procedure to find all B
measurements.

So the procedure to find the bth measurement is as follows.
We first construct a pseudo-measurement vector,

Y(k+1) . 7 (30)

k+1) (k)
1 7XS(K'A1)
b—1

where Yl(kﬂ) = Y®)_ 1t is important to note that we include
the original k& measurements Y (*) along with the b — 1 pseudo-

measurements in the vector Yb(kﬂ). We do this because the



GODALIYADDA et al.: FRAMEWORK FOR DYNAMIC IMAGE SAMPLING BASED ON SUPERVISED LEARNING 9

function Y %) + GrRouUP-WISE SLADS(Y®), 4, k, B)
S+ {sW,sW .

s

while Stopping condition not met do

for b=1,...B do

Compute pseudo-ERD R**:

k-+1
sl<)+):arg max

se{Q\S}
s+ {su s,ﬁ““)}

end for
vy (k) 1
k+1) - (k
0 2,
k+1) o (k
y(k+1) — Sé - >7X£élg+l)
k+1) o(k
S;; )>X5(<k)+1>
L b ]
k+k+1
end while
K+ k

end function

Form pseudo-measurement vector Yb(kﬂ) as shown in Eq. (30)

(D) (kb)) | (),
ST s

_ kt1) (k41 k41
(R(k‘,s§ + ),s; + )...s(b_t );s))

“17%) from Y})(k’ﬂ) Vs € S using Eq. (31)

Fig. 6.
new measurement locations in each step.

pseudo-measurements, while not equal to the desired true val-
ues, still result in much better predictions of the £ R D for future
measurements.

Then using this pseudo-measurement vector, we compute the
pseudo-ERD forall s € {Q\ S}

S (s D sl ) (Rt "D sl D s )
k,s .S, JeeeSy ;S 1 92 ) b1
( 1 2 b—1 — ‘/; 0
3D
( ) (k+1) Sl(k—l)w' (k+1)>
where V, 7 72 7Tt L 7 g the feature vector that corre-

sponds to location s. It is important to note that when b = 1 the
pseudo-E RD is the actual ERD, because when b = 1 we know
the values of all the sampling locations, and therefore, have no
need for pseudo-measurements. Now we find the location that
maximizes the pseudo-ERD by

(k+1) _ { ’(k,s(kJr”,s(kJrl)....sufnzs)}
—a a R 1 2 b-1 . 32
sy rgsgg\g} (32)
Then finally we update the set of measured locations by
&-{Swé’“*”}. (33)

Fig. 6 shows a detailed illustration of the proposed group-wise
SLADS method.

Pseudocode for groupwise SLADS. Here, instead of just selecting one measurement in each step of SLADS, the groupwise SLADS algorithm selects B

VI. RESULTS

In the following sections, we first validate the approximation
to the RD, and we then compare SLADS to alternative sam-
pling approaches based on both real and simulated data. We
next evaluate the stopping condition presented in Section IV
and finally compare the group-wise SLADS method presented
in Section V with SLADS. The distortion metrics and the recon-
struction methods we used in these experiments are detailed in
Appendices VIII-A and VIII-B. We note that all experiments are
started by first acquiring 1% of the image using low-discrepancy
sampling [10]. Furthermore, for all the experiments, we set
A =0.25 for the descriptor Z; ¢ in Table I, |ds| = 10 for all
descriptors, and for the training described in Fig. 3, we chose
p1 = 0.05, po = 0.10, p3 = 0.20, py = 0.40, p5 = 0.80 as the
fractional sampling densities.

A. Validating the RD Approximation

In this section, we compare the results using the true and
approximate RD described in Section III-B in order to validate
the efficacy of the approximation. The SLADS algorithm was
trained and then tested using the synthetic EBSD images shown
in Fig. 7(a) and (b). Both sets of images were generated using
the Dream.3D software [36].

The training images were constructed to have a small size
of 64 x 64 so that it would be tractable to compute the true
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Images used for (a) training and (b) testing in Section VI-A for the validation of the R D approximation. Each image is a 64 x 64 synthetic EBSD image

generated using the Dream.3D software with the different colors corresponding to different crystal orientation.

%
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Fig. 8. Plot of overall distortion of (23) versus the parameter ¢ for the experi-
ment of Section VI-A. The optimal value of ¢* is chosen to minimize the overall
distortion, which in this case is ¢* = 20.

reduction-in-distortion from (15) along with the associated true
regression parameter vector 6'ru¢ . This allowed us to compute
the true £ RD for this relatively small problem.

We selected the optimal parameter value, c¢*, using the
method described in Section III-C from the possible values
c €42,4,6,...24}. Fig. 8 shows a plot of the distortion met-
ric, DM (¢i) deﬁned in (23) versus ¢;. In this case, the optimal
parameter Value that minimizes the overall distortion metric is
given by ¢* = 20. However, we also note that the metric is low
for a wide range of values.

Fig. 9 shows a plot of the total distortion, TD;, versus the
percentage of samples for both the true regression parameter
vector, 67"¢, and the approximate regression parameter vec-
tor, 9(¢") . Both curves include error bars to indicate the stan-
dard deviation. While the two curves are close, the approximate
reduction-in-distortion results in a lower curve than the true
reduction-in-distortion.

While it is perhaps surprising that the approximate R D train-
ing results in a lower average distortion, we note that this is
not inconsistent with the theory. Since the SLADS algorithm
is greedy, the most accurate algorithm for predicting the ERD
does not necessarily result in the fastest overall reduction of the
total distortion. Moreover, since the value of the parameter c*
is determined by operationally minimizing the total distortion
during sampling, the approximate RD training has an advantage
over the true RD training.

0.6 T

-------- SLADS trained with approximate RD
------- SLADS trained with true RD

Total Distortion (Averaged over 24 experiments)

Percentage of Measurements

Fig. 9. Plots of the total distortion, 7D}, versus the percentage of samples
taken. The red plot is the result of training with the true RD value, and the blue
plot is the result of training with the approximate RD value. Both curves are
averaged over 24 experiments with error bars indicating the standard deviation.

Fig. 10 provides additional insight into the difference between
the results using approximate and true RD training. The figure
shows both the measured location and reconstructed images for
the approximate and true methods with 10%, 20%, 30% and
40% of the image pixels sampled. From this figure we see that
when the approximate RD is used in training, the boundaries
are more densely sampled at the beginning. This has the effect
of causing the total distortion to decrease more quickly.

B. Results Using Simulated EBSD Images

In this section, we first compare SLADS with two static
sampling methods — Random Sampling (RS) [7] and Low-
discrepancy Sampling (LS) [10]. Then we evaluate the group-
wise SLADS method introduced in Section V and finally
we evaluate the stopping method introduced in Section IV.
Fig. 11(a) and (b) show the simulated 512 x 512 EBSD im-
ages we used for training and testing, respectively, for all
the experiments in this section. All results used the parameter
value ¢* = 10 that was estimated using the method described in
Section III-C. The average total distortion, TD,., for the exper-
iments was computed over the full test set of images.

Fig. 12 shows a plot of the average total distortion, 7Dy, for
each of the three algorithms that were compared, LS, RS and
SLADS. Notice that SLADS dramatically reduces error relative
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(m) (n)

Fig. 10.

Images illustrating the sampling locations and reconstructions after 10%, 20%, 30%, and 40% of sampling. The first two columns correspond to the

sample points and reconstruction using training with the approximate R D value. The last two columns correspond to the sample points and reconstruction using
training with the true RD value. Notice that the approximate training results in greater concentration of the samples near the region boundaries. (a) Measured
locations 10%—trained with approximate RD. (b) Reconstructed image 10%—trained with approximate RD. (c) Measured locations 10%—trained with true
RD. (d) Reconstructed image 10%—trained with true RD. (e) Measured locations 20%—trained with approximate R D. (f) Reconstructed image 20%—trained
with approximate RD. (g) Measured locations 20%—trained with true RD. (h) Reconstructed image 20%—trained with true RD. (i) Measured locations
30%—trained with approximate RD. (j) Reconstructed image 30%—trained with approximate RD. (k) Measured locations 30%—trained with true RD.
(1) Reconstructed image 30%—trained with true RD. (m) Measured locations 40%—trained with approximate R D. (n) Reconstructed image 40%—trained with
approximate RD. (0) Measured locations 40%—trained with true RD. (p) Reconstructed image 40%—trained with true RD.

to LS or RS at the same percentage of samples, and that it
achieves nearly perfect reconstruction after approximately 6%
of the samples are measured.

Fig. 13 gives some insight into the methods by showing the
sampled pixel locations after 6% of samples have been taken for
each of the three methods. Notice that SLADS primarily samples
in locations along edges, but also selects some points in uniform
regions. This both localizes the edges more precisely while also

reducing the possibility of missing a small region or “island”
in the center of a uniform region. Alternatively, the LS and
RS algorithms select sample locations independent of the mea-
surements; so samples are used less efficiently, and the resulting
reconstructions have substantially more errors along boundaries.

To evaluate the group-wise SLADS method we compare it
with SLADS and LS. Fig. 14 shows a plot of the average total
distortion, 7' Dy, for SLADS, LS, group-wise SLADS with the
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Images used for (a) training and (b) testing in Section VI-B for the comparison of SLADS with LS and RS. Each image is a 512 x 512 synthetic EBSD
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image generated using the Dream.3D software with the different colors corresponding to different crystal orientation.
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Fig. 12.  Plot of the total distortion, 7'Dy,, for LS, RS, and SLADS, aver-

aged over 20 experiments, versus the percentage of samples for the experiment
detailed in Section VI-B.

group sampling rates of B = 2,4, 8 and 16 performed on the im-
agesinFig. 11(b). We see that group-wise SLADS has somewhat
higher distortion for the same number of samples as SLADS and
that the distortion increases with increasing values of B. This
is reasonable since SLADS without group sampling has the ad-
vantage of having the most information available when choos-
ing each new sample. However, even when collecting B = 16
samples in a group, the distortion is still dramatically reduced
relative to LS.

We then evaluate the stopping method by attempting to stop
SLADS at different distortion levels. In particular, we will at-
tempt to stop SLADS when T'Dy. < T Dyesived for T'Dyesired =
{5 x 107°,10 x 1075,15 x 107° ... 50 x 10*5}. For each
T Dgesirea value we found the threshold to place on the stopping
function, in (26), by using the method described in Section IV on
a subset of the images in Fig. 11(a). Again we used the images
shown in Fig. 11(a) and (b) for training and testing, respectively.
After each SLADS experiment stopped we computed the true
TD value, T'Dy,y., and then computed the average true 7D
value for a given 7' Dycsired> T Dirue (T Dgesired )> by averaging
the T' Dy, values over the 20 testing images.

Fig. 15 shows a plot of T'Dy,ue (T Dyesired) and T Dyesived -
From this plot we can see that the experiments that in gen-

eral T Dgesired = T Divue (T Dgesivea)- This is the desirable re-
sult since we intended to stop when T'Dj, < T Dgegireq- How-
ever, from the standard deviation bars we see that in certain
experiments the deviation from 7T Dgegireq 1S Somewhat high
and therefore note the need for improvement through future
research.

It is also important to mention that the SLADS algorithm (for
discrete images) was implemented for protein crystal position-
ing by Simpson et al. in the synchrotron facility at the Argonne
National Laboratory [3].

C. Results Using Scanning Electron Microscope Images

In this section we again compare SLADS with LS and RS
but now on continuously valued scanning electron microscope
(SEM) images. Fig. 17(a) and (b) show the 128 x 128 SEM
images used for training and testing, respectively. Using the
methods described in Section III-C, the parameter value ¢* = 2
was estimated and again the average total distortion, T'D;, was
computed over the full test set of images.

Fig. 18 shows a plot of T D), for each of the three tested
algorithms, SLADS, RS, and LS. We again see that SLADS
outperforms the static sampling methods, but not as dramatically
as in the discrete case.

Fig. 16 shows the results of the three sampling methods after
15% of the samples have been taken along with the resulting
sampling locations that were measured. Once more we notice
that SLADS primarily samples along edges, and therefore we get
better edge resolution. We also notice that some of the smaller
dark regions (“islands”) are missed by LS and RS while SLADS
is able to resolve almost all of them.

D. Impact of Resolution and Noise on Estimation of ¢

In this section, we investigate the effect of image resolution
on the estimate of the parameter ¢ from (18). For this purpose,
we used 10, 512 x 512 computationally generated EBSD im-
ages, and down-sampled them by factors of 1.25, 1.5, 1.75, 2, 4,
6 and 8, to create 7 additional lower resolution training image
sets with resolution, 410 x 410, 342 x 342,293 x 292, 256 x
256,128 x 128,86 x 86, and 64 x 64. Then, for each reso-
lution, we estimated the optimal value of ¢ and plotted the
down-sapling factor versus the estimated value of ¢ in Fig. 19.
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Fig. 13.
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(i)

Images illustrating the sampling locations, reconstructions and distortion images after 6% of the image is sampled. (a) Original image. (b) Random

sample (RS) locations. (c) Low discrepancy sample (LS) locations. (d) SLADS sample locations. (e) Reconstruction using RS samples. (f) Reconstruction using
LS samples. (g) Reconstruction using SLADS samples. (h) Distortion using RS samples. (i) Distortion using LS samples. (j) Distortion using SLADS samples.
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Fig. 14.  Plot of the total distortion, 7'Dy,, versus the percentage of samples

for groupwise SLADS with B = 1,2,4,8,16 and low-discrepancy sampling
as detailed in Section VI-B. Results are averaged over 20 experiments.

The value of ¢ does increase somewhat as the image resolution
decreases (i.e., the downsampling factor increases); however,
there does not appear to be a strong correlation between ¢ and
the image resolution. The images were downsampled using the
nearest-neighbor method in Matlab.

x10™

— T
—T Dirue (T Daesired)
an * TDyesired

6
x107

TDdEsired

Fig. 15.  Plot of the computed total distortion 7'D, averaged over ten exper-
iments, versus the desired 7°D for experiment to evaluate stopping condition
detailed in Section I'V.

In order to investigate the effect of noisy training images in
SLADS, we created 10 clean, 64 x 64 sized training images
using the Dream.3D software. Then, we created training sets
with different levels of noise by adding noise to these images.
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Fig. 16.

@ (O]

Images illustrating the sampling locations, reconstructions, and distortion images after 15% of the image in (a) was sampled using RS, LS and SLADS

for experiment detailed in Section VI-C. (b)—(d) Sampling locations. (e)—(g) Images reconstructed from measurements. (h)—(j) Distortion images between (a) and
(e), (a) and (f), and (a) and (g). (a) Original Image. (b) RS: Sample locations (-~~15%). (c) LS: Sample locations («~15%). (d) SLADS: Sample locations («~15%).
(e) RS: Reconstructed Image. (f) LS: Reconstructed image. (g) SLADS: Reconstructed image. (h) RS: Distortion image (7'D = 3.88). (i) LS: Distortion image

(T'D = 3.44). (j) SLADS: Distortion image (1'D = 2.63).
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Fig. 17. Images used for (a) training and (b) testing in the experiment detailed
in Section VI-C, in which we compared SLADS with LS and RS. These images
have 128 x 128 pixels each, and experimental collected SEM images. These
images were collected by Ali Khosravani & Prof. Surya Kalidindi from the
Georgia Institute of Technology.

Since these are discretely labeled images, we define the level
of noise as the probability of a pixel being mislabeled. In this
experiment, the noise levels we chose were, 0.001, 0.005, 0.01,
0.02, 0.04, and 0.08. The resulting values of ¢ are shown in
Fig. 20 from which we see that there is no clear relationship
between the noise level and the estimate of c.
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Fig. 18.  Plot of the total distortion, 7' Dy, , for LS, RS, and SLADS, averaged
over four experiments, versus the percentage of samples for the experiment
detailed in Section VI-C.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we presented a framework for dynamic image
sampling which we call a supervised learning approach for
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Fig. 19. Estimated value of the parameter c as a function of image resolution.
Increased downsampling factor corresponds to lower image resolution.
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Fig. 20.  Estimated value of the parameter ¢ as a function of the level of noise
in the training image set.

dynamic sampling (SLADS). The method works by selecting
the next measurement location in a manner that maximizes
the expected reduction in distortion (ERD) for each new
measurement. The SLADS algorithm dramatically reduces
the computation required for dynamic sampling by using a
supervised learning approach in which a regression algorithm
is used to efficiently estimate the /R D for each new measure-
ment. This makes the SLADS algorithm practical for real-time
implementation.

Our experiments show that SLADS can dramatically outper-
form static sampling methods for the measurement of discrete
data. For example, SEM analytical methods such as EBSD [2],
or synchrotron crystal imaging [3] are just two cases in which
sampling of discrete images is important. We also introduced a
group-wise SLADS method which allows for sampling of mul-
tiple pixels in a group, with only limited loss in performance.
Finally, we concluded with simulations on sampling from con-
tinuous SEM images in which we demonstrated that SLADS
provides modest improvements compared to static sampling.

Finally we note that our proposed dynamic sampling frame-
work uses very simple machine learning techniques, and we

believe that more sophisticated machine learning techniques
should be able to achieve better performance [34]. Future work
may also incorporate the impact of measurement noise in the
SLADS model [37]. Finally, we believe that it is possible to ex-
tend the SLADS framework to applications such as tomography
in which the effects of measurements are not necessarily local.

APPENDIX

A. Distortion Metrics for Experiments

Applications such as EBSD generate images formed by dis-
crete classes. For these images, we use a distortion metric de-
fined between two vectors A € RY and B € RY as

N
D(A,B) =Y I(4;B), (34)
i=1
where I is an indicator function defined as
_ 0 14i:: li

where A; is the ith element of the vector A.
However, for the experiments in Section VI-C we used con-
tinuously valued images. Therefore, we defined the distortion
D (A, B) between two vectors A and B as
N
D(A,B) =) |Ai - Bil.

i=1

(36)

B. Reconstruction Methods for Experiments

In the experiments with discrete images all the reconstructions
were performed using the weighted mode interpolation method.
The weighted mode interpolation of a pixel s is X; for

- _ (s)
= argmax{ [(1 D(X,, X)) w! } NG
teds
where
\ 1\2
(s) _ [s—r]|
wy®) = Z i (38)
_ 2
S lls =l
and |Js| = 10.

In the training phase of the experiments on continuously val-
ued data, we performed reconstructions using the Plug & Play
algorithm [38], [39] to compute the reduction-in-distortion.
However, to compute the reconstructions for descriptors (both
in testing and training) we used weighted mean interpolation in-
stead of Plug & Play to minimize the run-time speed of SLADS.
We define the weighted mean for a location s by

X, = Z w'® X, (39)
reds
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