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Abstract—Tunable diode laser absorption tomography (TDLAT)
has emerged as a popular nonintrusive technique for simultaneous
sensing of gas concentration and temperature. However, TDLAT
imaging of concentration and temperature is an ill-posed, nonlin-
ear inverse problem. Major challenges of TDLAT imaging include
a highly nonlinear forward model, few projection measurements,
and limited training data. We propose a novel model-based iterative
reconstruction (MBIR) framework for TDLAT imaging. To do this,
we formulate a nonlinear forward model for TDLAT that incorpo-
rates the physics of light absorbance through gaseous media, and
we couple it with a non-Gaussian prior model based on a Gaussian
mixture distribution that can be trained using a sparse training set.
We show that the resulting MAP estimation problem can be solved
using majorization minimization together with a novel multigrid
optimization algorithm that solves the resulting optimization prob-
lem using an orthogonal basis set. Reconstructions using simulated
TDLAT datasets show that our TDLAT-MBIR method can reduce
reconstruction error while also resulting in a very computationally
efficient algorithm.

Index Terms—Gaussian mixture models, GMM, non-convex op-
timization, non-homogeneous image model, tunable diode laser ab-
sorption spectroscopy, tunable diode laser absorption tomography,
TDLAS, TDLAT, tomography.

1. INTRODUCTION

IMULTANEOUS reconstruction of gas flow properties like
S concentration and temperature is a challenging nonlinear
inverse problem [1] and appears in many applications includ-
ing the monitoring of industrial exhaust [2] and diagnostics
of engines [3]-[5]. Among different in situ gas flow diag-
nostic techniques, tunable diode laser absorption tomography
(TDLAT) [6]-[10] has become popular because of its ability
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Fig. 1. Tllustration of a TDLAT measurement for a single projection path.
I(v,0) and I(v, L) are the baseline and transmitted light intensity respectively
at frequency v. L is the length of the projection path.

to track rapidly varying signals [11], [12], the high signal-to-
noise ratio signals it can produce, and the wide availability of
operationally simple tunable diode lasers [13].

Fig. 1 shows an illustration of a TDLAT measurement sys-
tem for a single projection path. In TDLAT imaging of gases,
tunable diode laser sources are employed to emit laser light at
particular discrete frequencies [3], [14]. These frequencies cor-
respond to quantum absorption transitions of a particular target
molecule [15], [16]. The absorbance of light passed through the
gaseous media is measured by using laser light detectors and is
then used to reconstruct flow properties. The details of TDLAT
measurement systems can be found in [13], [17].

Reconstruction of TDLAT data poses many challenges that
make it quite different from traditional tomographic reconstruc-
tion of X-ray CT data [18], [19]. First, the TDLAT measurement
model is highly nonlinear due to nonlinear dependence of light
absorption on temperature. Second, TDLAT imaging systems
typically only allow for a small number of projection measure-
ments due to the physical limitations imposed by optical access
and short lived combustion phenomenon [17]. For example, in
a typical TDLAT system there may be only 10 to 100 measure-
ments available to estimate 1000 to 10 000 pixel unknowns.
Therefore, the reconstruction problem is highly ill-posed and
nonlinear, so conventional tomographic techniques such as fil-
tered back projection (FBP) [20], [21] are not appropriate.

In order to help constrain the solution, many restrictive as-
sumptions have been used in the past. These include assuming
uniform flow properties along the projection path [15], [22],
assuming axisymmetric flow [23]-[25] and assuming different
flow profiles [26]. However, these assumptions are often inap-
propriate for many applications that involve non-uniform and
high speed turbulent gas flows [14], [17], [27]-[29]. Moreover,
these simplistic assumptions do not allow for spatially resolved
reconstruction of gas flow properties.

Some of the early studies to obtain spatially resolved gas
flow properties without imposing restrictive assumptions were
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based upon FBP together with a nonlinear inversion step [8],
[11], [30]. However, these approaches require a large number
of projection measurements at many different viewing angles
(more than 500 projections). M. Ravichandran et al. worked on
improving the quality of concentration and temperature recon-
structions using a finite domain direct inversion (FDDI) method
[31] and modified convolution back projection [32], both using
more than 100 projections. In [9], a fan beam geometry was
used to reconstruct concentration and temperature using a rota-
tory mechanism to acquire 55 projections at different angles.

Perhaps more closely related methods to our work are the
iterative reconstruction methods. For example, in [33] concen-
tration and temperature are reconstructed by solving an opti-
mization problem using 200 projection measurements and L2
regularization, or equivalently, a Gaussian Markov random field
prior model. In [34], a principal component analysis (PCA)
basis set for the concentration and temperature were used to
perform reconstructions using 200 projection measurements.
These bases were obtained by using 5000 simulated phantoms
for each of the concentration and temperature fields. However,
this approach did not take into account the correlation between
the concentration and temperature fields. Both [33] and [34] use
simulated annealing to solve their corresponding optimization
problems which is computationally very expensive as is noted
in their results.

An alternate approach to improve the accuracy of tomo-
graphic reconstructions is the use of model-based iterative re-
construction (MBIR) methods [35]-[39]. In MBIR, a model is
specified for both the measurement process (forward model)
and for the unknown image to be reconstructed (prior model).
Typically, a maximum a posteriori (MAP) estimate of the un-
known image is computed that optimally fits both the forward
model and the prior model.

An important benefit of model based methods is that they
allow for the incorporation of nonlinear forward models along
with prior models that can be trained using representative im-
ages. For example, in TDLAT imaging, recently there has been a
use of computational fluid dynamics (CFD) simulated images of
molecular density and temperature fields which accurately cap-
ture the properties of gas flow [13], [40]. These CFD simulated
images can potentially be used to improve the reconstruction
quality by providing training examples for the prior model [6].
However, CFD simulation images are computationally expen-
sive to compute and therefore usually very few of them are
available for training. Moreover, typical CFD images are spa-
tially non-homogeneous and tend to cluster in groups or modes
with similar behavior. This makes it difficult to accurately rep-
resent them with typical prior models such as Markov random
fields (MRF) [41]-[47].

In this paper, we propose a fast MBIR framework that we call
TDLAT-MBIR for simultaneous reconstruction of 2-D molec-
ular density and temperature fields of gaseous flow. There are
four major contributions of our approach for TDLAT imaging.

1) A nonlinear physics-based forward model;

2) A Gaussian mixture model (GMM) as the prior model;

3) A majorization technique for computing the MAP

estimate;

4) A multigrid algorithm for solving the required optimiza-
tion.

Our MBIR approach incorporates a nonlinear forward model of
the light absorption through the gaseous media. However, since
the number of measurements is so small, we must also incorpo-
rate an advanced non-Gaussian prior model that can capture the
multivariate distribution of the molecular density/temperature
fields. We do this by training a Gaussian mixture model (GMM)
to model general non-Gaussian distributions of the combined
molecular density and temperature fields. The GMM is partic-
ularly useful since it can model the empirical distribution of
modes that typically occur in real flow fields.

In order to compute the MAP estimate, we introduce a ma-
jorization minimization technique for computing the surrogate
cost function for the required optimization. To do this, we
present a general theory for the creation of surrogate functions
of multivariate mixture distributions that generalizes previous
results for scalar Gaussian mixtures [48], [49]. Our final inno-
vation is a multigrid algorithm that uses an orthogonal basis set
to find a good solution to the resulting non-convex optimization
problem.

Experimental results using simulated TDLAT data generated
using CFD phantoms show that our method can produce fast re-
constructions of relatively high resolution images (i.e., 45 x 45)
and very few projection measurements (i.e., 40 projection mea-
surements obtained from 10 projection paths and 4 transition fre-
quencies). Results show that the proposed prior model improves
the reconstruction quality both visually and quantitatively by ac-
curate modeling of non-homogeneous and non-Gaussian behav-
iors of the CFD images. Results also indicate that the proposed
multigrid algorithm reduces the computation time by speeding
convergence.

II. FORMULATION OF MAP COST FUNCTION

A typical approach to model-based inversion is to compute
the MAP estimate of the unknown which is given as
& = argmin{log p (y|z) + logp (x)} , ey
where y is the measurement vector, x is the joint vector of un-
known molecular density and temperature, p (y|x) is the prob-
ability of observing the data vector y given the unknown x
(also called the forward model), and p () is the probability of
unknown x (also called the prior model).

A. Forward Model

The TDLAT imaging technique yields projection measure-
ments by measuring light absorbance through gaseous media,
which in our case is water vapor in the air. Light intensity
measurements are made along projection paths and at multiple
discrete transition frequencies. Fig. 2 shows the optical pro-
jection path layout used in the simulations. Ten optical line of
sight (LOS) paths indexed by j € {1,2,3,---,J}, for J = 10,
are arranged in a rectilinear grid with non-uniform spacing.
Laser light is swept over the optical frequency around four dis-
crete transition frequencies indexed by k € {1,2,--- , K}, for
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Fig. 2. Schematic of the region of interest and projection measurement paths.
The magenta lines show the laser beam paths of the projection measurements.
The blue circle represents the boundary of the flowing medium. The red asterisks
are the source-detector pairs. The region of interest is inside the blue circle.
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Fig.3. Illustration of raw light intensity signals. I(v,0) and I (v, L) are the
baseline and transmitted measured light intensity respectively at frequency v. L
is the length of the projection path. The laser light is swept in an interval around
a particular discrete frequency called the transition frequency.

K = 4. For each (j, k), a projection measurement Y j, (cm™!)

is made
vk [(v,0
Y :/ L0 4,
V1Lk I(VvLj)

where I(v,0) and I (v, L;) are the measured baseline and trans-
mitted laser light intensities along the j*" path (watts-cm~2),
v is the optical frequency (cm™!), [k, v k] is the frequency
interval of k' absorption transition, and L; is the length of
the j'" path (cm). The integral in (2) is typically approximated
using a Riemann sum. Fig. 3 shows an example of TDLAT light
intensity signals. Appendix A describes the choice of transition
frequencies used in this paper.

The forward model for light absorbance measurements is
derived using Einstein’s theory of radiation [26]. The fractional
absorbance of collimated light at frequency v, when passed
through a differential length dr of gas sample is given by

dI(v,r) = —=N(r)Sk (T (1)) ¢x (v) I(v,r)dr 3)

where 7 is the position along the laser light path in 2-D space
(cm), I(v,r) is light intensity, N (r) is the unknown molecular
density of the target gas (molecules-cm~?), 7'(r) is the unknown
temperature of the target gas (Kelvin), ¢ is the line shape
function (cm) and Si(T) is the line strength function of the
target gas (cm~! /(molecules-cm™?)). The lineshape function

is normalized so that
Vo k
/ or(v)dv = 1.

Y1k

2

“

The linestrength function Sy (7) [50] is given as

ool 5251
. [1 — exp (—hevy [kpT) ] |
1— exp (—hewy [kpTh)

where Q(T') is the partition function of the absorbing molecule
[50], kg is the Boltzmann constant, A is Planck’s constant, ¢ is
the speed of light, !, is the lower state energy level of the k™
absorption transition, v, is the discrete transition frequency, and
Ty is the reference temperature. The partition function Q(T)
is a continuous function of temperature and is specific to the
target molecule. Typically the partition function is calculated
using a cubic spline polynomial. The estimation of cubic spline
polynomial coefficients for the partition function is described in
detail in Appendix B.

The absorbance of light follows from (3) by integrating over
the projection path,

Sp(T) = Sk (To)

&)

I(v,0)
lnI(l/L / N (r)Sp (T'(r))dr, (6)
V2,k I V,O B
/ ") /r NE)S (T E)dr, @

where I'; is the jth projection path and (7) uses the fact that
¢ (V) is a unit area function. However, in practice the light in-
tensity measurements are noisy due to a variety of noise sources
including electronic noise, shot noise, digitization noise, beam
steering, light scattering by particles and uncertainty in the
spectroscopic database [50]. To incorporate different sources
of noise, we model the noise as additive white Gaussian noise
with mean 0 and variance o2 [33], [34]. Consequently, the pro-
jection measurements are related to the light absorbance model
by the following equation,

\/F N(T)Sk (T(?”)) dr + Wj{yk s

J

Yir = ®)

/rv fr (N(r),T(r))derWM , ©))

where W; ;~ N(0,0?) is additive white Gaussian noise and
fi(N(r),T(r)) = N(r)S) (T(r)) is a function defined for no-
tational convenience.

For 2-D reconstruction of N(r) and T'(r), the region of
interest is discretized into a grid of P/o square pixels. Let
N=[Ni,No,....,N,,]" and T = [I, o, ..., To,]" repre-
sent the unknown molecular density and temperature vectors
and let z = [N* Tt}t € R? be the joint vector of unknowns.
Equation (9) can then be approximated as

I’/Q
Y= ZH;'A,@' fe(Ni, T) + Wi

i=1

(10)

where H;; is the weighting coefficient for the jth projection
path and ith pixel. Writing equation (10) compactly in terms of
matrix-vector notation yields

Y = H[F(z)| + W , (11)
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where Y € RY*X are measurements, H € R”*7 is the forward
projection matrix, F'(z) = [fi(z) fo(z) ... fx ()] € REXK,
where f;. (z) = fi (N,T) € R% are column vectors such that
each column fj,(z) represents the function f; over the entire
domain of interest for a particular absorption transition and W &
R7*K is the white noise matrix such that [W]; , ~ N(0,0?).
Putting this together, the log likelihood of the measurements Y
given the unknown z is given by
1 2

logp (V) = 5 |Y — HIF@)]| +¢, (12
where € is a constant that does not depend on x and the norm in
equation (12) is the Frobenius norm.

B. Prior Model

We model the joint distribution of the molecular density N
and the temperature 7" using a Gaussian mixture model (GMM)
with M mixture components. A major advantage of GMM prior
over existing prior models like Markov random fields (MRF)
and dictionary learning (DL) methods is that it models the non-
homogeneous and the non-Gaussian characteristics of the NV
and T fields. In contrast, MRFs and DL methods require the
images to be modeled as stationary random processes. In this
problem, modeling the non-homogeneous behaviors and the
long-range correlations between the pixels of N and 7" are of
crucial importance. The GMM prior model implemented in the
eigenimage domain allows for these non-Gaussian and non-
homogeneous dependencies to be captured effectively and can
be trained with a sparse training dataset.

The likelihood function of z = [N* T"]! is given by

1
) 2
p(x) — Z 7Tm‘Brr;| ex

1 9 }
P - HMm ) (13)
L5 o e

where 7,,, (., represent the prior probability and mean of the
mixture component m and B,, represents the precision ma-
trix of mixture component m or equivalently the inverse of the
component covariance matrix R, .

1) Transformed Representation of x: While the dimension
p of the unknown z can be several thousand, x typically resides
on a thin manifold in this higher dimensional space. In order
to reduce the dimension of our problem, we will represent the
image as

M

m=1

r=Fz, (14)
where z € R” is alower dimensional representation of the image
and F is a p x p matrix with orthonormal columns. If = has a
Gaussian mixture distribution, then it is easily shown that z
must also have a Gaussian mixture distribution with parameters
given by

Tm = T s (15)
ﬁm = Etﬂmv (16)
R, = E'R,FE, (17)

. '...."'
10 .25 v
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Fig. 4. Tllustration of parameter estimation of Gaussian mixture model. The
figure shows the 2-D scatter plot of a synthesized training data along with the
mixture components using an orthogonal basis set. Blue dots are the training
data samples. Red dots are the means of the mixture components. Red line
segments show the eigenvectors of component covariance matrices where the
lengths of the red line segments correspond to the standard deviation of variables
belonging to the particular mixture component.
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Fig.5. Example of CFD simulated phantoms. Each phantom consists of a pair
of molecular density and temperature image. The first row consists of molecular
density images and the second row consists of the corresponding tempera-
ture images. (a) Molecular density images (molecules/cm? ). (b) Temperature
images (K).

where 7, , [, Rn are the prior class probability, class mean,
and class covariance of the random vector z that shall be esti-
mated from the data.

In order to avoid over fitting of the training data, we will
constrain the covariance matrices R,, to be diagonal. So the
transformation, F, must be chosen to diagonalize R,, for each
mixture component m. We do this by first clustering the data x
into the desired number of mixture components. Next, we hard
classify each sample to a mixture component and subtract off the
respective component mean from it giving us an approximate
sample covariance matrix, Rm, for each mixture component.
Once this is done, the columns of E can be computed to be
the eigenimage vectors of the averaged component covariance
matrix formed by

M

R= Z am Ry (18)
m=1

where «,, is the number of hard classified samples in mixture
component m. Fig. 4 illustrates the effect of this diagonalization
procedure for a 2-dimensional vector x with a Gaussian mixture
distribution. Notice that using this technique, the coordinate
bases are aligned with the axes of the mixture components.

Appendix C explains this procedure in greater detail.
2) Training Procedure: Next, we used CFD simulated phan-
toms, shown in Fig. 5, to estimate the parameters 7, , fim , R

Authorized licensed use limited to: Purdue University. Downloaded on February 12,2020 at 18:02:17 UTC from IEEE Xplore. Restrictions apply.



880 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 3, NO. 4, DECEMBER 2017

of the Gaussian mixture distribution. These training phantoms
come in pairs of molecular density and temperature images.
The training phantoms of Fig. 5 are representative of the typical
CFD phantoms that we used for training the parameters. The
complete set of the training phantoms is available in the supple-
mentary material section of this paper. The GMM parameters
are estimated using the EM algorithm software of [51] with the
input data given by the p dimensional vectors

) 19)

where z(1), .. | 2(") are the n CFD simulated phantom images
used to train the model.

In order to improve the accuracy of the model, the EM al-
gorithm is run with a number of constraints that reduce the
numbez of parameters to be estimated. First, the covariance ma-
trices R,, are constrained to be diagonal. This helps in avoiding
the over-fitting of the sparse training set. In addition, the diag-
onal covariance matrices R,, provide a simpler cost function
to minimize as compared to the non-diagonal covariance ma-
trices. Second, for all coordinates greater than some value, p;,
the mean and the variance are constrained to be equal for all
mixture components. Typically, p; is a small number such as
p1 = 3.! Lastly, to avoid singularities in estimating the param-
eters of GMM [52], each class is required to have at least two
data samples assigned to it, so that, 7, > 2/ n-

The prior likelihood of the unknown expressed in eigenimage
basis set F is then given as

L) — gt )

M~

m | Bm
p(z)=> ue p{—Hz—umHB } ;0
m=1 (27.[.)

where B,,, is the inverse of R,,,.

C. MAP Cost Function Expression

To derive the MAP cost function in eigenimage basis set E,
we first give the MAP cost function in image domain using
equation (1) as
2

o) = g [V - PG
M

—log (Z Wexp{—n — tim ||, }) @1
m=1 (27T>

where all the terms not depending on x have been dropped. Next
we use the transformation of equation (14) to write the MAP
cost function in terms of the eigenimage basis set E as

c(z) =

2

HY HF(Ez)]H -

202 2

M ~

g L
tog | 32 TPl o

P

1 ~
p{2||zum||§m } ()
(2m)*

m=1

! Choosing large values for p; will result in over-fitting of the sparse training
set as the number of GMM parameters increase as M X (2p; + 1) — 1.

Additionally, we will constrain the reconstruction in the im-
age domain inside the physically feasible region to ensure that
all molecular density values N € R”/> are non-negative and
all temperature values 7' € R"/2 are greater than or equal to
296 Kelvins. Thus, the TDLAT-MBIR reconstruction is given
as follows

Z =argminc(z), (23)
z€eQ
where
QO={zst [NNT']"=Ez&N>0&T >296}. (24)

The MAP cost function of equation (22) is non-convex because
of both the non-convex forward model term and non-convex
prior model term.

It may seem appealing to reconstruct the N and 7T fields in
two stages by first reconstructing f, () and then reconstructing
N and T [3], [8], [53]. However, this indirect approach typi-
cally does not yield good results because it is suboptimal. The
Bayesian method models both the non-linear forward model and
the joint prior distribution of N and 7" resulting in a single cost
function that captures the synergy between the forward and the
prior model. In comparison, the two-stage approach must also
have a separate model for the functions fj (x). Another signifi-
cant advantage of the Bayesian approach is that we can inform
our prior model of N and 7" by using CFD simulations. It is
also noteworthy that the 2-stage approach does not offer any
computational advantages.

III. CONSTRUCTION OF SURROGATE COST FUNCTION

The MAP cost function of equation (22) is difficult to mini-
mize since it is non-convex. In particular, the prior model term in
the cost function is difficult to minimize directly as it has a mix-
ture of exponentials inside the logarithm. Hence, we simplify the
optimization problem by using the majorization minimization
technique [18], [54] in which a quadratic surrogate function is
used to upper bound the prior term. In order to use the majoriza-
tion minimization approach, one must find a surrogate function
¢ (z; 2') such that

I
Q
—~

N\
~—

(25)
(26)

é(2's 2

Vv
Q
—~~
N
~—

é(z;2)

We can construct such a surrogate function using the following
Lemma [55], [56], proved in Appendix D.
Lemma: Surrogate function for log of exponential mixtures
Let s : RP? — R be a function which takes the form,

s(z) = —log (Z Wy, €XP {—um(z)}) , (27)

where w,, € R*,Zm w,, > 0and u,, : RP — R. Further-
more V (z, 2') € RP x RP define the function

) + Z w), (um

m

G(z:2)2 - —un(2), @8)
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where w!, = Wi eXP {—t, (Z/)/}
> wjexp {—u;(z')}

RP, G (z; 2') satisfies the following two conditions,
G(#;7) =

G (57) >

. Then V(z,2') € RP x

(29)
(30)

The conditions mentioned in (29) and (30) are sufficient
to guarantee that G(z;z') is a surrogate function for s(z)
and therefore that minimizing G(z;z") must also reduce the
function s(z).

Comparing the prior log likelihood term in the MAP cost
function of equation (22) with the function of equation (27), we
define a quadratic surrogate function for the prior log likelihood
term,

g(z;2") = —logp(z)
d, . B
+ Z?ﬂ (HZ_,UHLH%m - ||Z/—lumH2§m) , (31)
where

~ ~ L ~ 2
7Tm|Bm|é exp {_%Hzl — Hm ||§,,, }
~ 173 L ~ 112
225 | Bjl? eXp{—%Hz' - NJ‘Hﬁj}

and 2’ is the current state of the unknown. The resulting surrogate
function for the MAP cost function ¢(z) is then given by

;o (32

m =

&z ) = %HY fH[F(Ez)]Hz “logp()

dTTL ~ ~
+ 3 2 (e = nl5, — 1 =l ) 63

Since our goal is to minimize the cost with respect to z, we may
drop the terms involving 2’ to obtain an equivalent surrogate
function given by

2
o(z2) = %HY —H [F(Ez)]H2 + %Hz T e
where
M
B=>dnBy, (35)
m=1
and
M
fi=B"' (> dyBniin (36)
m=1

A typical example of a surrogate function for the prior term
is shown for the case of a single coordinate in Fig. 6. The surro-
gate function has been constructed for a Gaussian mixture prior
that has five mixture components and it is plotted for a single
coordinate. Notice that in Fig. 6, while the original function
corresponding to the GMM prior term is non-convex, the sur-
rogate function is a convex function that forms an upper bound
to the original function. It should be noted that the surrogate
function of equation (34) is still a non-convex function due to
the non-convex forward model term.

[— True cost of prior model term 5
400 - - Surrogate cost of prior model term|

Cost
)
B
]

100 \_//

~400 -300 -200 -100 0 100
Coordinate value

Fig. 6.  Example of a surrogate function w.r.t. a single coordinate for GMM
prior term with M = 5 classes. The blue curve is the cost of the GMM prior
term and red curve is the surrogate cost for GMM prior term. The current value
of the coordinate is 0.

IV. OPTIMIZATION

In this section, we shall present a multigrid optimization al-
gorithm to solve the MAP estimation problem. We shall also
present a fixed-grid algorithm for comparison. Both the multi-
grid and the fixed-grid algorithms are designed to achieve a local
minimum of the non-convex MAP estimation problem of equa-
tion (23). The multigrid algorithm, however, has much faster
convergence as compared to the fixed-grid algorithm.

Multigrid algorithms can reduce the computational complex-
ity of numerical problems by working on the data at different
scales or grids. Multigrid algorithms have been used in many dif-
ferent applications including optical flow estimation [57], [58],
signal/image smoothing [59], [60], image segmentation [61],
interpolation of missing image data [62], and optical diffusion
tomography [63], [64]. The main novelty in our multigrid algo-
rithm is that we introduce a notion of grids using eigenimage
basis functions.

Intuitively, the first few eigenimages are spatially smooth,
whereas the later ones have more spatial variation. We exploit
this by cumulatively increasing the number of eigenimages as
we move from coarse to fine grids. We start working on coarse
grids first, gradually moving to finer grids, reducing the cost
at each grid. This improves the convergence of the multigrid
algorithm when compared with the fixed-grid algorithm.

A. Coordinate Update Method

The multigrid and fixed-grid algorithms both work by it-
eratively minimizing the cost function of equation (22) over
individual coordinates z; but with important differences. Both
algorithms use the surrogate function formulation of equation
(34) to reduce the 1-D cost. The cost function of equation (34)
written as a function of the i coordinate only is given as,

2

1
c(z;2') = ﬁHy — HF[EZ' + E. (2 — 2)] H2

+ L (zi — i)’ B,
2
where z’ is the current value of the unknown and E, ; € Rrx1
is the i eigenimage.
To reduce this 1-D cost function, we propose a fast
and robust coordinate update method. We fit a quadratic

(37)
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Fig. 7. Tllustration of quadratic fit to the 1-D cost function. Current value of
coordinate is 0. The green asterisk represents the minima of the true cost as well
as the minima of the quadratic fit to the true cost.
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Fig. 8. Example of coordinate update using Brent’s method. Current value of
coordinate is 0. Green asterisk is the minima of the quadratic fit and magenta
asterisk is the minima returned by Brent’s method.

function through the 1-D cost function by selecting three points,
(z; — €, 2i, z; + €;) and minimize this quadratic. We choose the
step size ¢; for each coordinate in an adaptive manner corre-
sponding to the variation in the coordinate;

ei — 0/ R(i, i), (38)
where R is the inverse of the equivalent precision matrix in
equation (35) and § is usually picked between 107° to 1073,
This procedure is known as inverse parabolic interpolation [65].
A typical example of the quadratic fit is shown in Fig. 7.

The quadratic fit to the true cost function is not necessarily a
strict upper bound to the true cost function as shown in Fig. 7,
therefore we must check if the true cost is reduced as a result of
minimizing the quadratic fit. In rare cases, the true cost could
increase, so then we revert to Brent’s method that alternates
between golden section iterations and quadratic fits [65]. Fig. 8
shows an example where Brent’s method is used to reduce the
1-D cost function. The pseudocode of 1-D optimization is given
in Fig. 9. The pseudocode of Brent’s method can be found in
[65].

Finally, at each coordinate update, we ensure that the recon-
struction z remains inside the physically feasible region Q. If
after a coordinate update, the reconstruction in the image do-
main goes out of the feasible region, we project it onto the
boundary of the feasible region by changing the value of eigen-
image coordinate using a bisection method. More precisely, we
iteratively bisect the interval between the optimum value and
the old value of the eigenimage coordinate until we satisfy the

1: function [i] +— COORDINATEUPDATE(u/, c, €)

2: /* Inputs: Initial value of coordinate u/, Step size €, Pointer
to cost function of eq. (37) ¢ */

3: /* Output: Updated value of coordinate 4 */

»

Fit a quadratic g(u) to the cost function in eq. (37) using
three points (u/ — €, u/,u/ + €)
v < argmin g(u)
u

if ¢(v) < ¢(u’) then

U+ v
else 4 « Brent (v, c)
end if
: end function

VRIS WU

Fig. 9. Pseudocode of 1-D coordinate update algorithm.

1: function [Z] +— FIXEDGRID(y, z’, D)
2: /* Inputs: Measurements y, Initial condition 2’ , Total no. of eigen-
image basis vectors p */

3: /* Output: MAP estimate 2 */
4 2+ 2
5 while Stopping criterion is not met do
6: fori=1top do
7: Compute B and & using eq. (32), (35), (36)
8 2; + argmin c(z;;2") > Reduce cost of eq. (37)
zi st z€Q
9: 2zl % > Update the current state
10: end for
11: end while
12: end function
Fig. 10.  Pseudocode of fixed-grid algorithm.

physical feasibility constraints, while at the same time achieving
the minimum 1-D cost under these constraints.

B. Fixed-Grid Optimization

In the fixed-grid algorithm, we reduce the cost function on
a single grid that consists of all the eigenimage basis vectors.
To minimize the cost function, we use the ICD update strategy
[66]. ICD, which is related to Gauss-Seidel method and has
been found to be suitable for CT applications [67], works by
optimizing over each coordinate one by one until some stopping
criterion is met. Fig. 10 shows the pseudocode of fixed-grid
algorithm.

C. Multigrid Optimization

In the multigrid algorithm, we work at different grids having
a different number of eigenimages to be optimized over. At the
coarsest grid, we start from the first column vector, F, 1, of the
eigenimage basis set &/ and optimize over it. Next, as we move
to the fine grids, we increase the number of eigenimages by a
factor of p at each grid until we include the final eigenimage,
E, 5, at the finest grid. At each grid, we optimize over a fixed
number of eigenimages. This process is repeated in a loop until
the stopping condition is met. The pseudocode of multigrid
optimization algorithm is presented in Fig. 11 and the coordinate
update pattern of the multigrid algorithm is shown in Fig. 12.

V. EXPERIMENTAL RESULTS

We now present our TDLAT-MBIR image reconstruction
results by performing reconstructions of a simulated TDLAT
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1: function [2] < MULTIGRID(y, z’, G, p)

2: /* Inputs: Measurements vy, Initial condition 2’
G, Factor for calculating grid coefficients p */

3: /* Output: MAP estimate Z */

, Total number of grids

4: 242

5: while Stopping criterion is not met do

6: for j =0to G—1do > For each grid level

7: for i =1 to pJ do

8: Compute B and & using eq. (32), (35), (36)

9: 2; < argmin c¢(z;; 2") > Reduce cost of eq. (37)
zi st z€Q

10: 2zl % > Update the current state

11: end for

12: end for

13: end while
14: end function

Fig. 11. Pseudocode of multigrid algorithm.

40

Eigenimage index
n (]
o o

—_
o

0 20 40 60 80 100
Order of update

Fig.12.  Coordinate update pattern in one full iteration of Multigrid algorithm
using p = 1.8 and p = 40.

dataset. To test our proposed Gaussian mixture prior model and
multigrid optimization algorithm, we perform reconstructions
on CFD simulated phantoms. These CFD phantoms are obtained
by running simulations for a single axial plane of an engine hav-
ing a diameter of 12 inches. The CFD simulated phantoms are
used to produce simulated projection measurement data using
the measurement layout of Fig. 2. This simulated measurement
dataset is then used in all the experiments.

First, we compare the reconstruction results of the proposed
prior model with the results of two different prior models;
Gaussian model (GM) [6] and Gaussian Markov random field
(GMRF) model [41] and also with the reconstruction results
of the proper orthogonal decomposition (POD) approach of
[34].2 We compare the reconstructions both visually and using
an objective criterion of normalized root mean squared error
(NRMSE). The NRMSE between two images X and Z is de-

fined as
\/ 27—1 L)2
maX(Z) mln(Z) '

NRMSE (X, Z) (39)

We provide some reconstruction results for visual comparison
and also provide a table that shows the average results of all the
reconstructions.

2Qur implementation of POD approach is similar to [34], however, unlike
[34], we do not use the simulated annealing algorithm. We use our proposed
multigrid algorithm of Fig. 11 without imposing any bounds on the eigenimage
coordinate values.

40 l' . o‘ 8 u
20 * . * (]
.[ ’.s E P
N0 ) o -
B % 4
20 . : S 2 200
- = 1
40 .Lv 203 100 —— _/' 0 "
o - o - ot “100
~150 100 -50 0 50 . Aw 200 200 z
ZI
(2) (b
Fig. 13.  Illustration showing the multi-modal nature of the distribution of

the CFD training data. (a) Shows the scatter plot of the CFD training data
expressed in eigenimages. The blue dots are the data samples and the red
dots are the means of the estimated Gaussian mixture components. The green
dot represents mean of estimated Gaussian distribution. The length of the red
and green segments corresponds to the standard deviation of the corresponding
eigenimage coordinates. (b) Shows the mesh plot of probability density function
of Gaussian mixture model.

Finally, we perform convergence experiments to compare our
multigrid optimization algorithm with conventional fixed-grid
optimization algorithm. We compare the speed of convergence
using two different metrics. One of them is the MAP cost,
whereas the other is the normalized root mean squared error
(NRMSE) between the current state and the converged state of
the unknown fields N and 7. We present the plots of MAP
cost and NRMSE between current and converged state of the
unknown fields N and 7.

A. Comparison of Reconstruction Results

To test our proposed GMM prior model, we perform recon-
struction experiments using CFD simulated phantoms. A total
of 42 CFD phantoms are available, so we perform 42 recon-
struction experiments, where in each experiment, we keep one
phantom for testing and train the prior model on the rest of
the 41 phantoms. The image array size in the reconstructions is
kept at 45 x 45; however, since the region of interest is a circle,
the total number of unknowns p = 3194. The TDLAT measure-
ments are simulated using (12) with an average SNR of 30 dB.
This corresponds to a value of noise standard deviation o, which
is roughly 3% of the mean value of forward projections repre-
senting practical scenarios. Also, for these simulations J = 10
and K =4,s0Y € R10%4,

We set M =5 and p; = 3, since we found that using these
values in the experiments yielded the lowest average NRMSE
results. We estimate the parameters of the mixture model in
the eigenimage basis space F using expectation-maximization
algorithm. We constrain the mixture component covariance ma-
trices R, to be diagonal.

Fig. 13(a) shows the scatter plot of the training data using
eigenimage basis domain. In this figure, the blue dots repre-
sent the training data, the red dots represent the means of the
different mixture components when the data is modeled using
GMM, while the green dot represents the mean of the data when
modeled using Gaussian distribution. It is clear from this fig-
ure that the CFD data exhibits a multi modal distribution which
is captured by using a Gaussian mixture model as the prior
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TABLE I
AVERAGE NRMSE FOR ALL 42 RECONSTRUCTION EXPERIMENTS.

% NRMSE (N) % NRMSE (T) % Avg. NRMSE

POD 9.89 12.13 11.01
GMRF 10.00 13.50 11.75
GM 6.15 5.51 5.83
GMM 6.14 5.14 5.64

NRMSE(N) is Average NRMSE in Molecular Density. NRMSE(T)
is Average NRMSE in Temperature. Avg. NRMSE is Average of the
NRMSE in Molecular Density and Temperature

distribution. Modeling this data using a Gaussian distribution
does not capture different empirical modes evident in the scatter
plot. Fig. 13(b) shows the probability density function of the
Gaussian mixture model whose parameters are trained from the
CFD training data.

For all the experiments, the initial condition for GMRF re-
constructions is a constant image for both the N and 7T fields,
the initial condition for GM and POD reconstructions is the
mean of the training data, and the initial condition for GMM re-
construction is the end result of GM reconstruction. The initial
conditions were chosen in an effort to achieve lowest possible
final value of MAP cost function after convergence of the op-
timization procedure. The regularization level was chosen for
GMRF, GM, and GMM to achieve the lowest NRMSE, whereas
in POD there is no regularization parameter to be set.

For POD, GM, and GMM reconstructions, we run 3 itera-
tions of multigrid optimization algorithm using the eigenimage
basis as described in Section IV. The coarsest grid has only 1
eigenimage coefficient, the finest grid has 40 and p = 1.8. For
the GMREF reconstructions, we use a multi-resolution approach
by performing reconstructions on three different scales, where,
at each finer scale, we use the end result of the next coarser scale
as an initial condition.

Table I shows NRMSE results averaged over all 42 recon-
structions. It is evident that overall the GMM prior gives the
lowest NRMSE results. The GMREF prior model gives the high-
est NRMSE results. This could be because the GMRF is not
a very expressive prior model particularly for CFD phantoms;
and with a sparse measurement set, the prior serves an impor-
tant role in avoiding the estimation of a reconstruction that is
unlikely to occur.

It appears from the reconstructed example results in Figs. 15
and 16 that the GMM prior model and the GM prior model pro-
duce the best reconstruction results, however, only the recon-
structions with the GMM prior model capture the dense patches
in the molecular density fields. The POD technique gives false
dense patches in the molecular density reconstructions. This
might be because the POD technique does not model the correla-
tion between concentration and temperature. Although smooth,
the GMRF reconstructions fail to capture the essential structure
in NV and T fields. It seems that with the very sparse measure-
ment set, GMRF tends to overly smooth the reconstructions.

We also studied the effect of changing the number of Gaus-
sian mixture components M in GMM prior model. With 41
CFD phantoms available for training, we found out that M = 5

% NRMSE

2 3 4 5 6
Number of mixture components

Fig. 14.  Plot of % average NRMSE vs. no. of mixture components in Gaussian
mixture prior model. Average NRMSE is the average of NRMSE in molecular
density and temperature reconstructions.

mixture components gave us the best results. Fig. 14 shows
the average NRMSE of 42 reconstructions as a function of the
number of mixture components.

B. Convergence Results

We compared the convergence speed of our multigrid opti-
mization algorithm with our fixed-grid optimization algorithm
by running 42 reconstruction experiments using a Gaussian
mixture prior model. The initial condition for these reconstruc-
tions is the end result of reconstructions with the Gaussian prior
model. For each reconstruction, we first run the algorithm for a
sufficiently large number of iterations to achieve a “fully con-
verged” result. We then run the same reconstructions again and
at each coordinate update we compute the MAP cost and the
NRMSE between the current and the converged state of the un-
known fields NV and T". Both multigrid and fixed-grid algorithms
use eigenimage bases. In the case of the multigrid algorithm, the
coarsest grid has 1 eigenimage coordinate, the finest grid has 40
eigenimage coordinates and p = 1.8.

Fig. 17(a) shows a comparison of cost plots averaged over
42 reconstructions. It is evident that the cost drops much more
quickly with the multigrid algorithm. This makes sense since
the multigrid algorithm spends more computation on eigenim-
age coefficients which are expected to have more variation in
the eigenimage domain.

In Fig. 17(b) and 17(c) we present % NRMSE plots between
current and converged state of the unknown molecular density
and temperature fields averaged over 42 reconstructions. It is
clear from the figures that the multigrid algorithm converges
much faster than the fixed-grid algorithm. Typically for these
reconstructions, a 1% NRMSE criterion is enough to guarantee
sufficient convergence. In Fig. 18, we observe the speed-up as
a function of % NRMSE between the current and converged
result. We define the speed-up as

speed-up (r)

_ Average fixed-grid iterations to achieve r % NRMSE

 Average multigrid iterations to achieve % NRMSE
(40)

Hence speed-up at » % NRMSE would be the relative de-
crease in the computation that one gets by using the multigrid
algorithm as opposed to the fixed-grid algorithm to achieve an
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from a lot of artifacts, whereas, GMRF seems to overly blur the details.
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Comparison of convergence speed of fixed-grid and multigrid algorithm. All three plots represent an average from 42 reconstructions. These plots are

representative of the typical behavior. It can be seen from all three plots that multigrid algorithm converges faster than fixed-grid algorithm. (a) MAP cost plot. (b)
%NRMSE between current and converged value of V. (¢). %NRMSE between current and converged value of 7'.
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Fig. 18.  Average relative decrease in computational time when using the multi-
grid algorithm as opposed to fixed-grid algorithm. To achieve a 1 % NRMSE
between the current and the coverged result, multigrid algorithm requires about
0.27 seconds, whereas fixed-grid algorithm requires about 0.73 seconds on a
computer with an Intel core i7 processor and 32 GB memory using MATLAB.

NRMSE of r % in both N and T fields. It is clear from Fig. 18
that the multigrid algorithm is almost uniformly better than the
fixed-grid algorithm. The speed-up seems to converge at about a
factor of 1.8 for very conservative criterion of NRMSE, whereas
for a more practical convergence criterion i.e., 1 % NRMSE,
there is a speed-up factor of 2.7.

VI. CONCLUSION

We have proposed a novel framework that we have named
TDLAT-MBIR for reconstruction of TDLAT dataset. We first
derived a forward model based upon physics of light ab-
sorbance through gaseous media. Next, we proposed a Gaus-
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TABLE II
ABSORPTION SPECTROSCOPIC LINE PARAMETERS

Transition Frequency v, (em™)  Lower Energy State £, (cm™!)

7181.156 136.762
7161.410 224.838
7185.597 1045.058
7179.752 1216.195

sian mixture model as a prior model for images that can capture
non-homogeneous and multimodal behaviors of the image
distributions. We presented a methodology for training the
parameters of this model. Finally, we proposed a multigrid opti-
mization algorithm using eigenimage basis functions along with
arobust 1-D optimization strategy. Reconstruction results using
CFD simulated phantoms indicate that the proposed GMM prior
model improves the quality of reconstructions and the multigrid
optimization algorithm improves convergence.

APPENDIX A
SELECTION OF ABSORPTION LINE SPECTRUM

In hyperspectral TDLAT, more than a single absorption line
spectrum, typically more than two, are analyzed to collect data
[33]. This increases the information content by adding more
measurements at different discrete optical frequencies. This is
important to offset the very low number of LOS projection
measurement paths. There are many factors that determine the
absorption lines to be chosen. For example, strength of absorp-
tion, spectral separation between absorption lines, temperature
sensitivity of absorption lines, effects of boundary layers and
lack of interference from nearby absorption lines [16]. Other
factors that affect the selection of lines include expected sensor
operating conditions and hardware capabilities [22].

In this paper, we are using water as our target molecule be-
cause of its natural availability as a major combustion product,
strong rovibrational transitions [13] and wide range of transi-
tion frequencies. Therefore, the transition frequencies are cho-
sen according to the properties of the water molecule. The four
different absorption transition lines that are used in this work
are given in Table II. These absorption transitions lines are same
as the ones used in [40].

APPENDIX B
ESTIMATION OF SPLINE COEFFICIENTS FOR () FUNCTION

The partition function Q(7") acts as a normalizing constant
for the probability of occupation of a particular quantum state at
temperature 7" [68]. In practice, even for simple molecules like
H, O, the partition function is difficult to calculate. Typically, the
partition function is approximated using cubic spline polynomi-
als which are fit to laboratory derived values that are usually
very accurate [16].3 In this study, we used the calculations of
the partition function for water done by Gamache ez al. [68]. We
fit cubic splines to the data to get a smooth, twice differentiable
curve as seen in Figs. 19, 20(a) and (b).

3We estimated the cubic spline polynomial coefficients to get a partition
function Q(7') that is twice differentiable upto 64-bit double precision.
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Fig. 19. Plot
approximation.
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Fig. 20.  Derivatives of partition function calculated using cubic spline poly-

nomial approximation. (a) First derivative of Q function. (b) Second derivative
of Q function.

The original cubic spline polynomial coefficients, that were
made available to us to approximate the partition function were
such that the resulting fit was not twice differentiable. Table III
shows the cubic spline polynomial coefficients that were pro-
vided to us in the beginning. To understand the role of each of
the coefficients in the provided tables, we provide the represen-
tation of the partition function in a temperature range from 7§
to T1 .

QIT)=a+bT+cT?>+dT?, T,<T<T,. (41)

Using the coefficients in Table III, the resulting first and sec-
ond derivatives are discontinuous at temperature values where a
change of polynomial occurs. In order to ensure that the approx-
imated partition function is twice differentiable, we corrected
the value of the polynomial coefficients given in Table III and
also minimized the overall error using the tabulated values of
partition function made available by R. R. Gamache [68]. Fol-
lowing were the steps that were taken to ensure that the resulting
cubic spline polynomial coefficients give a twice differentiable
curve.

1) We ensure the continuity of the second derivative by ad-
justing the value of coefficient c such that on points where
the change of polynomial occurs, the difference in the
values of Q"(T) is 0.

2) We adjust the values of coefficient b such that on points
where the change of polynomial occurs, the difference in
the values of @'(T) is 0. This ensures the continuity of
the first derivative of () function.

3) We adjust the values of coefficient a such that on the
points where change of polynomial occurs, the difference
in the values of Q(T) is 0. This gives us a continuous )
function.

The above procedure gives us a continuous, twice differen-

tiable ) function. Finally, to reduce the overall error between
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TABLE III
CUBIC SPLINE COEFFICIENTS FOR () FUNCTION PROVIDED IN THE BEGINNING

Temp. Range a b c d

T < 500 —18.221850000000000 0.423075200000000 7.703331000000000e—4 6.185911000000000e-9
500 < T < 1000 —65.944149999999993 0.694548700000000 2.468324000000000e—4 3.484234000000000e-7
1000 <T < 1350 —61.853600000000000 0.697335600000000 2.183351000000000e—4 3.699410000000000e-7

1350 <T < 1425
1425 <T < 2500
2500 < T < 5000

1.166381815424874e5
—1.311914000000000e3
—4.529464000000000e3

—2.511038212392546¢2
3.214013000000000
7.314166000000000

—6.640078900000056e—4
—0.001522213000000
—0.003265189000000

5.878034666666681e-7
7.885532000000000e-7
1.035648000000000e-6
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Fig. 21.  Plot of percent error in () function.

experimentally determined values of () function and the com-
puted values of () function using the cubic splines, we fit a cubic
function to the error and adjust the coefficients a, b, ¢ and d to
reduce the error. The error for our final cubic spline fit was be-
low 2% for a range of temperature values given by 300 Kelvin
to 3010 Kelvin as shown in Fig. 21. The final cubic spline coef-
ficients that give a continuous, twice differentiable () function
are provided in Table I'V.

APPENDIX C
ORTHONORMAL BASIS ESTIMATION PROCEDURE

Let (1), ..., (") be the CFD training vectors, where each
2() is a p dimensional vector. Without any loss of generality,
assume that the mean of all the training vectors is 0. Let X
be the p x n training matrix containing all the training images
given by

X =[2W,. .. 2™, (42)
We can write the SVD of the matrix X as
X =EnV, (43)

where F, X, V) are the left-singular vectors, singular values
and right-singular vectors of X. We assume that the singular
values are ordered in descending magnitude along the diagonal
of the matrix >;.

We need to obtain an orthonormal basis set £ that diagonal-
izes the class covariance matrices for all the mixture compo-
nents. We obtain this basis set by applying a rotation transform
on F. The need of rotation arises from the fact that £; com-
puted through SVD ignores the possibility of different mixture
components in the distribution of unknown z.

First we represent the CFD data in eigenimage basis set F
as vectors (1), ..., 2(") and estimate the mixture parameters

{n!, ul, R AM . Next, we bring each mixture component
onto the origin by subtracting the component mean off from
every data sample. We do this by performing a maximum a
posteriori classification of each of the data samples to a mixture
component. So let ¢; be the MAP classified mixture component
of the 7™ data sample, so,

¢; = argmax p (z“) belongs to m™ component |z<i)> . (44)
1<m<M

Let Z' be the matrix in which each column consists of
a training data sample after subtracting off the component
mean, so,
1
Z’:[z()fuél,...,z(”)fulnn}. (45)
Since we constrain all the mixture components to have a com-
mon mean and covariance for all coordinates greater than p;, we
only need to rotate the first p; coordinates of the data samples.
Therefore, let Z” be the matrix that consists of first p; rows of
Z'. The rotation FEy € RP1*P1 that rotates the first p; coordi-
nates of the data samples is computed by performing an SVD
decomposition on Z”,
7" = By, Vy . (46)
Finally the rotation transform that aligns the GMM components
with eigenimage vectors is given as

Ey 0

Fla —
’ 0 Iﬁ*?l

e RP¥P | (47)

where I;_,, is an (p —p1) X (p — p1) identity matrix. After
obtaining the rotation transform, we recompute the new eigen-
image basis vectors set E as

APPENDIX D
PROOF OF LEMMA

log p(x) = logp(z) + log < 553)
= logp(z') + log p(i/) Zwl exp{—u;(z)}
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TABLE IV
ESTIMATED CUBIC SPLINE COEFFICIENTS THAT PRODUCE TWICE DIFFERENTIABLE () FUNCTION

Temp. Range a b c d

T < 500 —5.108576477504222 0.366653379513569 8.102612279372126e—4 1.056101563185623e-8
500 < T < 1000 —47.888262602504270 0.623331496263569 2.969049944372127e-4 3.527985046318561e-7
1000 < T < 1350 —69.405862602503561 0.687884296263569 2.323521944372125¢e—4 3.743161046318561e-7

1350 <T < 1425
1425 <T < 2500
2500 < T < 5000

—6.054292290275050e2
—1.186326812858752e3
—5.047183062858760e3

1.879047332763572
3.101989614513568
7.735017114513572

—6.499907955627895e—4
—0.001508195905563
—0.003361406905563

5.921785712985233e-7
7.929283046318561e-7
1.040023104631856e-6

2 wi exp{—ui(z)}
> wj exp{—u; ()}

logp(z') + log

w; exp{—u;(z)}
> wj exp{—u;(z')}

log p(a) +log | >

x exp{—u;(x) 4+ u;(z)}

logp(x') 4 log <Z %7 X eXp{*'qu (l’) + u; (x/)})

> logp(2') + Zﬁ' X {—ui(x) 4 u; (')}

We have used Jensen’s inequality to derive the result in the
last inequality. Multiplying by —1 on both sides of the last
inequality results in the expression

—logp(z) <

—logp(z) + Zﬂ x {ui () —wi(2')}

G (z;2').

Finally if we put « = 2/, this results in — logp(z') = G (2'; 2).
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