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Abstract—Many material and biological samples in scientific
imaging are characterized by nonlocal repeating structures. These
are studied using scanning electron microscopy and electron
tomography. Sparse sampling of individual pixels in a two-
dimensional image acquisition geometry, or sparse sampling of
projection images with large tilt increments in a tomography ex-
periment, can enable high speed data acquisition and minimize
sample damage caused by the electron beam. In this paper, we
present an algorithm for electron tomographic reconstruction and
sparse image interpolation that exploits the nonlocal redundancy
in images. We adapt a framework, termed plug-and-play priors,
to solve these imaging problems in a regularized inversion setting.
The power of the plug-and-play approach is that it allows a wide ar-
ray of modern denoising algorithms to be used as a ‘“prior model”
for tomography and image interpolation. We also present sufficient
mathematical conditions that ensure convergence of the plug-and-
play approach, and we use these insights to design a new nonlocal
means denoising algorithm. Finally, we demonstrate that the algo-
rithm produces higher quality reconstructions on both simulated
and real electron microscope data, along with improved conver-
gence properties compared to other methods.

Index Terms—Plug-and-play, prior modeling, bright field
electron tomography, sparse interpolation, non-local means,
doubly stochastic gradient non-local means, BM3D.

I. INTRODUCTION

RANSMISSION electron microscopes are widely used
for characterization of material and biological samples at
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the nano-meter scale [1]-[3]. In many cases, these electron mi-
croscopy samples contain many repeating structures that are
similar or identical to each other. High quality reconstruction
of these samples from tomographic projections is possible by
exploiting the redundancy caused by repeating structures. As an
important example, cryo-electron microscope (EM) tomogra-
phy involves single particle reconstructions using several views
of the same particle [1]. However, in the more general area of 3D
transmission electron microscopy (TEM) tomography, no solu-
tion currently exists to fully exploit the redundancy in images
constituted by many similar or identical particles.

Another important imaging problem is that raster scanning an
electron beam across a large field of view is time consuming and
can damage the sample. For this reason, there is growing interest
in reconstructing full resolution images from sparsely sampled
pixels [4], [S]. The redundancy in material and biological sam-
ples suggests that it is possible to reconstruct such images with
sufficient fidelity by acquiring only a few random samples in the
image and using an advanced image reconstruction algorithm
that exploits non-local redundancies.

Conventionally, model-based iterative reconstruction (MBIR)
solves a single optimization problem that tightly couples the log
likelihood term (based on the data) and the log of the prior prob-
ability [6]-[14]. MBIR can, in principle, exploit redundancy in
microscope images for tomographic reconstruction, but this re-
quires selection of the appropriate log prior probability, which
is very challenging in practice.

Patch-based denoising algorithms such as non-local means
(NLM) [15]-[17] and BM3D [18] have been very successful
in exploiting non-local redundancy in images. Inspired by the
success of NLM, several researchers have proposed methods
for non-locally regularized inversion. Chen et al. [19] proposed
an MRF-style prior, but with non-local spatial dependencies,
to perform Bayesian tomographic reconstruction. They adopted
a two-step optimization involving a non-local weight update,
followed by the image update. However, since the cost function
changes with every iteration, there is no single fixed cost func-
tion that is minimized. Chun et al. [20] proposed non-local regu-
larizers for emission tomography based on alternating direction
method of multipliers (ADMM) [21]-[24], using the Fair po-
tential [25] as the non-local regularizer. This model is restricted
to convex potential functions, which in practice is a very strong
constraint, and severely limits how expressive the model can
be. Yang and Jacob proposed a unifying energy minimization
framework for non-local regularization [26], resulting in a model
that captures the intrinsically non-convex behavior required for
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modeling distant particles with similar structure. However, it is
not clear under what conditions their method converges. Non-
local regularizers using PDE-like evolutions and total variation
on the image patch graph have been proposed to solve inverse
problems [27], [28]. However, since patch-based denoisers are
typically not formulated as cost functions, it is unclear how to
use them as prior models in Bayesian iterative reconstruction
frameworks like MBIR.

Image interpolation or inpainting is also a widely researched
problem [29]. Existing approaches can be broadly classified into
two categories-those based on local regularization and those on
non-local regularization. In local approaches, the missing pixels
are reconstructed from an immediate neighborhood surrounding
the unknown values to encourage similarity between spatially
neighboring pixels [30].

An important subclass of these problems is interpolation from
a sparsely sampled set of points. We refer to this type of problem
as “sparse interpolation” to distinguish it from the interpolation
or inpainting of relatively large contiguous regions from densely
sampled points on the boundaries of those regions. Spurred by
the success of non-local means, there have been several efforts to
solve the sparse interpolation problem using global patch based
dictionary models [5], [31]-[34]. Li and Zeng [35] adapted a
two stage approach similar to [36] and used the BM3D denois-
ing algorithm for the problem of sparse image reconstruction.
However, this approach is not immediately applicable to the in-
corporation of a wider variety of non-local denoising algorithms
such as are described by Milanfar in [37]-[39]. The simplicity
and success of NLM and BM3D has also led to the question
of how these algorithms can be used to solve other inverse
problems. In fact, Danielyan et al. [36] have adapted BM3D for
image deblurring through the optimization of two cost functions
balanced by the generalized Nash equilibrium.

Venkatakrishnan er al. [40] developed a semi-empirical
framework termed plug-and-play priors, but limited results were
presented and the convergence of the algorithm was not dis-
cussed. Rond et al. [41] have used the plug-and-play framework
to propose a Gaussian denoising algorithm for Poisson noisy
inverse problems. Chan et al. have adapted plug-and-play for a
variety of image restoration problems [42], while Teodoro et al.
have used a class-adapted Gaussian mixture model as a prior
within the plug-and-play framework for image deblurring and
sparse reconstruction [43]. Several techniques have proposed to
recover degraded and incomplete images by repeatedly applying
denoising filters [44]-[46]. Heide et al. [47] used ADMM and
the primal-dual algorithm to apply any Gaussian denoiser as an
image prior in various blocks of the camera imaging pipeline, in-
cluding demosaicing and interlaced high dynamic range (HDR)
imaging.

In this paper, we extend our plug-and-play framework of [40],
[48] to present a robust algorithm for tomographic reconstruc-
tion and sparse image interpolation that exploits the non-local
redundancies in microscope images. The plug-and-play frame-
work is based on ADMM [22], [23] which decouples the forward
model and the prior model terms in the optimization procedure.
This results in an algorithm that involves repeated application
of two steps: an inversion step only dependent on the forward

model, and a denoising step only dependent on the image prior
model. The plug-and-play takes ADMM one step further by
replacing the prior model optimization by a denoising operator.

However, while it is convenient to be able to use any denoising
operator as a prior model, this new plug-and-play framework
also raises the question as to whether plug-and-play necessarily
inherits the convergence properties of ADMM. We answer this
important question by presenting a theorem that outlines the
sufficiency conditions to be satisfied by the denoising operator in
order to guarantee convergence of the plug-and-play algorithm.
We also present a proof for this convergence theorem partly
based on the ideas presented by Moreau [49] and Williamson
et al. [50]. Using this result, we then modify NLM to satisfy
these sufficiency conditions, naming the resultant variant doubly
stochastic gradient NLM (DSG-NLM).

We then apply DSG-NLM as a prior model to the tomo-
graphic reconstruction and sparse interpolation problems. This
new DSG-NLM algorithm is based on symmetrizing the filter
corresponding to the traditional NLM algorithm. Interestingly,
Milanfar [51] has also discussed the benefit of symmetrizing
the denoising operator, albeit in the context of improving the
performance of denoising algorithms.

The plug-and-play electron tomography solution presented
in this paper builds on the existing MBIR framework for bright
field electron tomography [14], which models Bragg scatter and
anomaly detection. We demonstrate that our proposed algorithm
produces high quality tomographic reconstructions and interpo-
lation on both simulated and real electron microscope images.
Additionally our method has improved convergence properties
compared to using the standard NLM or the BM3D algorithm
as a regularizer for the reconstruction. Due to the generality
of the plug-and-play technique, this work results in an MBIR
framework that is compatible with any denoising algorithm as
a prior model', and thus opens up a huge opportunity to adopt
a wide variety of spatial constraints to solve a wide variety of
inverse problems.

II. PLUG-AND-PLAY FRAMEWORK

In this section, we outline the plug-and-play framework for
model-based iterative reconstructions [40]. Let z € RN be an
unknown image with a prior distribution given by pg(x) where
3 parameterizes a family of distributions, and let y € RM be
the associated measurements of the image with conditional dis-
tribution given by p(y|x). We will refer to p(y|x) as the forward
model for the measurement system. Then the maximum a pos-
teriori (MAP) estimate of the image x is given by

Inap = arg}gﬂn{l(m) + Bs(2)}, ()]
z€RN

where () = —logp(y|z) and Bs(x) = —logps(x). Notice
that in this case [ is a positive scalar used to control the level
of regularization in the MAP reconstruction. In order to allow
for the possibility of convex constraints, we will allow both I ()

"However convergence of plug-and-play is not guaranteed unless the
denoising operator meets the sufficiency conditions that we outline in
Theorem III.1.
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and s(x) to take values on the extended real line, R U {+ co}.
Using this convention, we can, for example, enforce positivity
by setting [(z) = + oo for z < 0.

The solution to equation (1) may be computed using a va-
riety of optimization methods, such as the alternating direc-
tion method of multipliers (ADMM), the fast iterative shrink-
age thresholding algorithm (FISTA) [52], the two-step itera-
tive shrinkage thresholding (TwIST) [53], or sparse reconstruc-
tion by separable approximation (SpaRSA) [54]. We choose the
ADMM algorithm because it provides an effective framework
for incorporating denoising operators as prior models by decou-
pling the forward and prior models. There are other methods,
including those listed above, that also allow such a decoupling,
but we focus on ADMM due to its competitive convergence
properties [55] and do not consider the corresponding alterna-
tive forms of the plug-and-play framework.

The first step in applying ADMM for solving equation (1) is
to split the variable x, resulting in an equivalent expression for
the MAP estimate given by

(z,0) = argzﬂiﬁw {l(z) + Bs(v)} . (2)

As in [24, Section 3.1.1], this constrained optimization prob-
lem has an associated scaled-form augmented Lagrangian given
by

[l |3
20% ’

3

Ly(z,v;u) = 1(z) + Bs(v) + == llz — v+ ulf; —

=
202
where o, > 0 is the augmented Lagrangian parameter.’

For our problem, the ADMM algorithm consists of iteration
over the following steps:

& — arg min L; (x, 0;u) 4)
RN

0« arg min L; (Z,v;u) 5)
veRN

u— u+(Z—1), (6)

where 0 is initialized to some value and w is typically initialized
as zero.

In fact, if I(z) and s(z) are both proper, closed, and convex
functions, and a saddle point solution exists, then the ADMM
converges to the global minimum [22]-[24].

We can express the ADMM iterations more compactly by
defining two operators. The first is an inversion operator F’
defined by

_ 7|2
F(Z;0;) = argmin {l(x) 4 W} 7 7
zeRN 20')L
and the second is a denoising operator H given by
= . [o =3
Hwon) = ooz , 8
(Fio) = arein { 27+ o) ®)

where o, = /B0, can be interpreted as the assumed noise
standard deviation in the denoising operator. We say that [{ is a

>The augmented Lagrangian parameter, oy, is related to the ADMM penalty

parameter, A, through the simple expression o, = %

Moreau proximity operator, i.e., H is the proximal mapping for
the proper, closed, and convex function s : RY — R U {+ oc}.
Further, if I(z) is convex, then the inversion operator, F, is also
a Moreau proximity operator.

Using these two operators, we can easily derive the plug-
and-play algorithm shown in Algorithm 1 as a special case
of the ADMM iterations. This formulation has a number of
practical and theoretical advantages. First, in this form we can
now “plug in” denoising operators that are not in the explicit
form of the optimization of equation (8). So for example, we
will later see that popular and effective denoising operators such
as non-local means (NLM) [56] or BM3D [18], which are not
easily represented in an optimization framework can be used in
the plug-and-play iterations. Second, this framework allows for
decomposition of the problem into separate software systems
for the implementation of the inversion operator, F', and the
denoising operator, H. As software systems for large inversion
problems become more complex, the ability to decompose them
into separate modules, while retaining the global optimality of
the solution, can be extremely valuable.

One important advantage of the plug-and-play method is that
it can simplify the selection of the regularization parameter. In
order to understand this, notice that the plug-and-play algorithm
only requires the selection of two parameters, 3 and o;, with
the remaining parameter being set to o, = /B0;. We can see
from equation (1) that only (3 controls the amount of regular-
ization, and therefore the value of o, does not affect the final
reconstructed image. However from equation (3) we see that
o0, controls the weight of the constraint term in the augmented
Lagrangian, and therefore the value of o, must be chosen ap-
propriately in order to achieve rapid convergence.

Importantly, the regularization parameter [ is unitless. The
fact that (3 is unitless makes its selection much easier in practice.
This is in contrast to conventional regularization parameters that
can be tricky to set because they have units related to the quan-
tity being reconstructed [57]. In fact, it turns out that 1 if often
a good starting point for the value of 3. The value of 3 can then
be increased or decreased for more or less regularization, re-
spectively. Intuitively, denoising algorithms such as NLM only
requires the specification of the noise variance, but do not re-
quire knowledge about the scale of the image being restored.
Consequently, the plug-and-play algorithm inherits the scale in-
variance property of denoising algorithms such as NLM, and
the regularization of the resulting plug-and-play reconstruction
algorithm can be therefore set with a unitless parameter /3.

In theory, the value of ; does not affect the reconstruction for
a convex optimization problem, but in practice, a well-chosen
value of o, can substantially speed up ADMM convergence
[24], [58], [599]; so the careful choice of o; is important. Our
approach is to choose the value of ¢; to be approximately equal
to the amount of variation in the reconstruction. Formally stated,
we choose

Formally stated, we choose

| V-l
ol ~ i ; var[z;|y] . )
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Algorithm 1: Plug-and-play algorithm for implementation
of a general inversion operator F'(Z; o3 ), and a prior model
specified by the denoising operator in H (7; 0y, ).

initialize ©

w0

while not converged do
T—0—u
T — F(Z;0)
V—THu
0« H(v;0,)
u<—u+(&—10)

end while

to be the average variance of the pixels in x.

This choice for the value of o2 is motivated by its role as the
inverse regularizer in equation (7). In practice, this can be done
by first computing an approximate reconstruction using some
baseline algorithm, and then computing the mean squared pixel
variation in the approximate reconstruction.

Of course, for an arbitrary denoising algorithm, the question
remains of whether the plug-and-play algorithm converges. The
following section provides practical conditions for the denoising
operator to meet that ensure convergence of the iterations.

III. CONVERGENCE OF THE PLUG-AND-PLAY ALGORITHM

It is well known that the ADMM algorithm is guaranteed to
converge under appropriate technical conditions. For example,
if the optimization problem is convex and a saddle point solu-
tion exists then the iterations of ADMM converge [22]-[24].
However, in our plug-and-play approach, we will be using gen-
eral denoising algorithms to implement the operator H (7; 0, ),
and therefore, the function s(x) is not available for analysis.
This raises the question of what conditions H (7; 0,,) and I(z)
must satisfy in order to ensure that the plug-and-play algorithm
converges.

In the following theorem, we give conditions on both the
log likelihood function, (), and the denoising operator, H (),
that are sufficient to guarantee convergence of the plug-and-play
algorithm to the global minimum of some implicitly defined
MAP cost function. This is interesting because it does not ever
require that one know or explicitly specify the function s(x).
Instead, s(x) is implicitly defined through the choice of H(x).

Theorem II1.1: Let the negative log likelihood function [ :
RY — R U {+ oo} and the denoising operator H : RY — RY
meet the following conditions:

1) H is a continuously differentiable function on R ;

2) Vo € RN, VH(x)isasymmetric matrix with eigenvalues

in the interval [0, 1];

3) There exists a y in the range of H such that I(y) < oo;

4) There exists at least one fixed point of H : H(x) = x¢;

5) | is a proper closed convex function which is lower

bounded by a function f(||«||) such that f(r) is mono-
tone increasing with
lim f(r) = .

r—00

Then the following results hold:

1) H is a proximal mapping for some proper closed convex
function s on RV ;

2) There exists an element which attains the infimum, which
is the MAP estimate, Zy;ap, such that

pt = wélﬁf\ {l(z) + Bs(x)} = l(Zmap) + Bs(Tmar) ;

3) The plug-and-play algorithm converges in the following
sense,

where 2(*) and ©(*) denote the result of the k'" iteration.

The proof of this theorem, which is presented in Appendix A,
depends on a powerful theorem proved by Moreau in 1965 [49].
This theorem states that [ is a proximal mapping if and only if
it is non-expansive and the sub-gradient of a convex function on
RY . Intuitively, once we can show that the denoising operator,
H, is a proximal mapping, then we know that it is effectively im-
plementing an update step of the form of the ADMM algorithm
of equation (8).

The first and second conditions of the theorem ensure that
the conditions of Moreau’s theorem are met. This is because the
structure of H (x) with eigenvalues in the interval [0, 1] ensures
that H is the gradient of some function ¢, that ¢ is convex, and
that H is non-expansive.

The additional three conditions of Theorem III.1 ensure that
the infimum can be attained and the MAP estimate actually
exists for the problem. Importantly, this is done without ex-
plicit reference to the prior function s(z). More specifically,
the third condition ensures that the set of feasible solutions
is not empty, the fourth condition will be seen to imply that
the function s(z) in the conclusion takes on its global min-
imum value, i.e., that the minimum is not achieved toward
infinity, and the fifth condition ensures that the MAP cost
function grows towards infinity, forcing the sum I(x) + Bs(z)
to take on its global minimum value. Since H is a denois-
ing operator, the assumption of a fixed point is quite nat-
ural: a constant image is a fixed point of most denoising
operators.

In general, verifying the sufficiency conditions of
Theorem III.1 may be more difficult for some denoising al-
gorithms than it is for others. There could exist some denoising
operators for which these sufficiency conditions may not hold.
But importantly, in the next section, we will show that some
real denoising operators can be modified to meet the conditions
of this theorem. In particular, the symmetrized non-local means
filters investigated by Milanfar [51], [60] are designed to create
a symmetric gradient, and we build on this approach to intro-
duce a NLM filter that is symmetric and doubly stochastic with
eigenvalues in the interval [0, 1].
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IV. NON-LOCAL MEANS DENOISING WITH SYMMETRIC,
DOUBLY STOCHASTIC GRADIENT

In order to satisfy the conditions for convergence, the gradient
of the denoising operator must be a symmetric matrix with
eigenvalues in the interval [0, 1]. However, the standard NLM
denoising algorithm does not satisfy this condition. In addition,
to ensure that the NLM filter has unit gain, the NLM weight
matrix must be stochastic. Due to the symmetry requirement,
the unit-gain NLM filter must therefore have a doubly stochastic
weight matrix.

In this section, we introduce a simple modification of the
NLM approach, which we refer to as the doubly stochastic gra-
dient NLM (DSG-NLM)), that satisfies the required convergence
conditions. Interestingly, the symmetrized non-local means fil-
ters investigated by Milanfar [51] also achieve a symmetric and
stochastic gradient, but require the use of a more complex iter-
ative algorithm to symmetrize the operator.

The NLM algorithm is known to produce much higher quality
results than traditional local smoothing-based denoising meth-
ods [56]. It works by estimating each pixel/voxel® as a weighted
mean of all pixels in the image®. In this section, ¥ will denote a
noisy image with pixel values ¥ at locations s € S. Generally,
S is a discrete lattice, so for 2D images S = Z? and for 3D
volumes S = Z3.

Using this notation, the NLM denoising method can be

represented as
- § wsxr"ara

reQ

(10)

where 7, is the denoised result, the coefficients w; , are the
NLM weights, and 2, is the NLM search window defined by

Qs ={reS:||r—slew<Ns}.

Note that the integer N, controls the size of the NLM search
window; we assume /Ny > 1 to avoid the trivial case of a window
with a single point. In general, larger values of N, can yield
better results but with higher computational cost.

Using this notation, the plug-and-play denoising operator is
given by

H(v;0,) =W0,
where the matrix
Ws,r = Ws.r ifr e (.28 .
0 otherwise

Now if we fix the weights, then it is clear that
VH(v;o,)=W.

Condition 2 of Theorem III.1 requires that W be a symmetric
matrix with eigenvalues in the interval [0, 1]. In order to enforce
this, we propose the following five step procedure for computing

3From this point forward, we will use the term “pixel” for both the 2 and 3-D
cases.

“4In practice, we only compute the weighted mean of pixels/voxels in a search
window, instead of the whole image.

the DSG-NLM filter weights,

—|1P = Pll3 s—r
5, L SR A [ —— 11
Wy, — exp{ aNZo? N1 (1)
Wy, — Do (12)
V(Sreo, wer) (Tica, wrs)
1

13

@ max, ZTEQS Wy (13
Wy, ¢ QW (14)
ws,s — ws,s + (1 - Z ws,r) ) (15)

ref

where P, € RV 7 denotes a patch of size IV, x N, centered at
position s, and the function

lm9
H (T—=1siD)+

is the separable extension of the triangle function.

Notice that equation (12) renormalizes that weights so that
the rows and columns sum approximately to 1. Therefore, in
our experiments we observed that a from equation (13) typi-
cally takes on a value of approximately 0.95. Equations (14) and
(15) then rescale the weights and add a positive quantity to the
diagonal that ensure that rows and columns of the matrix must
sum to 1. Further, we stop adapting the DSG-NLM weights as
the plug-and-play algorithm progresses. This is a critical step to
ensure that we indeed have a symmetric gradient with eigenval-
ues in the interval [0, 1]. Such a gradient fulfills condition 2 of
Theorem III.1 and therefore meets the conditions that guarantee
convergence of the plug-and-play algorithm.

The following theorem ensures that the DSG-NLM weight
matrix W generated by equations (11) through (15) meets con-
dition 2 of Theorem III.1 that is required for convergence of the
plug-and-play algorithm.

Theorem 1V.1: The DSG-NLM weight matrix W generated
by equations (11) through (15) is a symmetric, doubly stochastic
matrix with eigenvalues in the interval [0, 1].

Proof: See Appendix B.

V. 3D BRIGHT FIELD EM FORWARD MODEL

In this section, we formulate the explicit form of the inversion
operator, F'(Z, 0, ), for the application of 3D bright field EM to-
mography. For this problem, we adopted both the forward model
and optimization algorithms described in [14]. More specifi-
cally, the negative log likelihood function is given by

y A ii
ZZﬁTﬁ ( (Yr,i — Apiwx _dk)\/UT-,>

k 1i=1
+ MKlog(o)+C,

l(z,d,o)
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where K is the number of tilts, A ; is the electron counts
corresponding to the ¢th measurement at the kth dlt, vy,
= —logAi i, Ap is the blank scan value at the kth tilt,
dp = —logAp i, Ay is the M x N tomographic forward pro-
jection matrix associated with the kth tilt, Ay, ; . is the ith row
of Ay, o is a proportionality constant, A; is a diagonal ma-
trix whose entries are set such that A";“ is the variance of y;, ;,
d=|dy,...,dg]]is the offset parameter vector, C is a constant,
and Br 5 (+) is the generalized Huber function defined as,

x? if || <T

. (16)
20T |z| +T?(1 —26) if|x| >T.

Br.s(x) =
The generalized Huber function is used to reject measure-
ments with large errors. This is useful because measurement
may vary from the assumed model for many practical reasons.
For example, in bright field EM, Bragg scatter can cause highly
attenuated measurements that otherwise would cause visible
streaks on the reconstruction [61].
To compute the inversion operator F' of equation (7), we
minimize the cost function below with respect to x, d, and o.

C(J), da g; i‘70-)»)

K M
1 VA i
=3 D> Bro | e — Apier — di) -
k=1i=1
A2
+ MKlog(U)+M A7)
207
So the inversion operator is computed as
F(%;0,) =arg min c(x,d,o;Z,0y). (18)

x>0,d,0

As in the case of sparse interpolation, we set ¢(x, d, 0; &, 03;,)
= 4 oo for z < 0 in order to enforce positivity.

The details of the optimization algorithm required for equa-
tion (18) are described in [14]. The optimization algorithm is
based on alternating minimization with respect to the three quan-
tities and uses a majorization based on a surrogate function to
handle the minimization of the generalized Huber function [62].

For this complex problem, we note some practical deviations
from the theory. First, the negative log likelihood function, I(x),
is not convex in this case, so the assumptions of the plug-and-
play convergence do not hold. With such a non-convex opti-
mization, it is not possible to guarantee convergence to a global
minimum, but in practice most optimization algorithms generate
very good results. Also, the global optimization of equation (18)
is approximated by three iterations of alternating minimization
with respect to x, d, and o. Nonetheless, in our experimental
results section, we will illustrate our empirical observation that
the plug-and-play algorithm consistently converges even with
these approximations to the ideal case.

VI. SPARSE INTERPOLATION FORWARD MODEL

In this section, we formulate the explicit form of the inversion
operator, F'(z,0;), for the application of sparse interpolation
(the noise-free limit of approximation by sparse measurements).
More specifically, our objective will be to recover an image

TABLE I
RMSE OF THE RECONSTRUCTED AL SPHERES IMAGE COMPARED TO THE
GROUND TRUTH (AFTER 200 PLUG-AND-PLAY ITERATIONS)

FBP qGGMRF NLM DSG-NLM

14.608 4.581 2.531 2.488

x 107* nm~! x 107* nm~! x 107* nm~! x 107* nm™!
TABLE II

PLUG-AND-PLAY PARAMETERS FOR TOMOGRAPHIC RECONSTRUCTIONS

Plug-and-play Al spheres Al spheres Silicon dioxide
parameters (simulated) (real) (real)

o5 (nm~t) 8.66 x 1074 8.66 x 1074 8.66 x 1074
e 3.68 4.77 4.30

x € RY from a noisy and sparsely subsampled version denoted
by y € RM where M < N. More formally, the forward model
for this problem is given by

y=Ax+e, (19)

where A € RM x R¥ . The sampling matrix A contains a subset
of the rows of an identity matrix. We also define I(j) = >, A; ;
so that I(j) = 1 when the j'" pixel is sampled, and I(j) = 0,
if it is not. Furthermore, ¢ is an M -dimensional vector of 1i.i.d.
Gaussian random variables with mean zero and variance o2,.

For such a sparse sampling system, we can write the negative
log likelihood function as

1

l(x) = Wlly—AmH% +C,

w

(20)

where C' is a constant. In order to enforce positivity, we also
modify the negative likelihood function by setting [(x) = + co
if any component of x is negative. We include positivity in I(z)
rather than in the denoising operator so that H remains continu-
ously differentiable. Also, A has a nontrivial null space, so I(z)
does not satisfy the growth condition in Theorem III.1 (5). How-
ever, setting /() to be +oo outside some large ball (depending
on maximum possible pixel value) produces a function that does
satisfy the growth condition and that does not affect the final
result. In practice, this modification to {(z) is not needed since
the denoising step is nonexpansive.

Using equation (7), the interpolation inversion operator is
given by

- . 1 1 N
F@io) = anguin { 5y = el + gllo — 313}
>0 o 207

Due to the simple structure of the matrix A, we can also

calculate an explicit pixel-wise expression for F'. In the limit as
2

oy, tends to 0, F' reduces to the following form
j itI(i) =1
Fi@ay = Wl 10 @1
[xih if I(’L) =0.

where [-]; represents zeroing of any negative argument. In this
noise-free limit, the minimizer is forced to take on the measured
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TABLE III
NORMALIZED PRIMAL RESIDUAL CONVERGENCE ERROR FOR TOMOGRAPHY
EXPERIMENTS (AFTER 200 PLUG-AND-PLAY ITERATIONS)

Primal residual qGGMRF NLM DSG-NLM
convergence error
Al spheres 3.46 x 10712 2,12 x107%  1.02x 10710
(simulated)
Al spheres 7.06 x 107 3.66 x 107* 2.77 x 107
(real)
Silicon dioxide 4.99 x 10712 8.12x 1073 8.34 x 10710
(real)

TABLE IV

NORMALIZED DUAL RESIDUAL CONVERGENCE ERROR FOR TOMOGRAPHY
EXPERIMENTS (AFTER 200 PLUG-AND-PLAY ITERATIONS)

Dual residual qGGMRF NLM DSG-NLM
convergence error

Al spheres 1.55 x 10710 7.22 x10%  1.04 x 107
(simulated)

Al spheres 2.61 x10710 112 x107%  5.73x107?
(real)

Silicon dioxide 9.06 x 10711 5.49 x 1072 3.55 x 1077
(real)

Fig. 1.

0° tilt of the aluminum spheres (simulated) dataset.

values at the sample points, hence motivating the name sparse
interpolation.

VII. RESULTS AND DISCUSSION

In this section, we present experimental results on both real
and simulated data for the applications of bright-field EM to-
mography and sparse interpolation. For all experiments, we
present convergence plots that compare both primal and dual
residuals using different priors. The normalized primal and dual

©

Fig. 2. Tomographic reconstruction of the simulated aluminum spheres
dataset. NLM and DSG-NLM reconstructions are clearer and relatively
artifact-free (a) The aluminum spheres phantom (ground truth); (b) Filtered
Backprojection; (¢) qGGMRF (T = 3; = 0:5); (d) 3D NLM using plug-and-
play; (e) 3D DSG-NLM using plug-and-play.

residues [24, p. 18], r(*®) and s(¥) respectively, at the kth itera-
tion of the plug-and-play algorithm are given by

o _ 19—
[l (P

(22)

H,{)(k) _ @(krfl) ||2

(k) —
’ I

(23)
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Fig. 3. Plug-and-play primal and dual residual convergence for tomographic
reconstruction of (simulated) aluminum spheres. DSG-NLM achieves complete
convergence.

where &%), 5(*) and u(¥) are the values of Z, 0, and u respec-
tively after the kth iteration of the plug-and-play algorithm,
respectively, and #() is the final value of the reconstruction, .
The primal and dual residues are normalized to ensure that they
represent relative feasibility measures rather than absolute fea-
sibility measures. This property makes plug-and-play residues
scale invariant [63].

We stopped adapting the DSG-NLM weights after 20 itera-
tions in the tomography experiments and after 12 iterations in
the sparse interpolation experiments. This step was critical in
achieving a doubly stochastic gradient for DSG-NLM, thereby
satisfying the sufficiency conditions of our convergence theo-
rem. Finally, using an interpolation experiment, we discuss the
case where we do not stop adapting the weights of DSG-NLM,
and show that plug-and-play may not converge in this case.

The plug-and-play parameters have been chosen to produce
the best possible reconstruction for each prior, based on mean
squared error or visual inspection when the ground truth was
unavailable.

A. Bright Field EM Tomography

In this section, we present the results of bright field
tomographic reconstruction of (1) a simulated dataset of alu-
minum spheres of varying radii, (2) a real dataset of alu-
minum spheres, and (3) a real dataset of silicon dioxide. We
compare four reconstruction methods—filtered backprojection,
MBIR with qGGMREF prior [64], plug-and-play reconstructions
with 3D NLM and 3D DSG-NLM as prior models. We used
gGGMRE, 3D NLM and 3D DSG-NLM as prior models within
the plug-and-play framework. Filtered backprojection was used
as the initialization for all MBIR-based reconstructions. All the
reconstruction results shown below are xz-z slices (i.e., slices
parallel to the electron beam). The qGGMRF parameters used

Fig. 4.

0° tilt of the very noisy aluminum spheres (real) dataset.

for all reconstructions are as follows: ¢ =1, p = 1.2, and
¢ =0.001. The NLM and DSG-NLM patch size used for all
reconstructions is 5 x 5 x 5. We stopped adapting the DSG-
NLM weights at 20 iterations of the plug-and-play algorithm.
The plug-and-play parameters used are given in Table II.

In all the experiments, we observe from Tables III and IV
Figs. 3, 6, and 9 that the DSG-NLM ensures that the plug-
and-play algorithm converges fully, while NLM achieves con-
vergence to within a fraction of a percent. We note that the
qGGMREF operator has the form of equation (8) with s(v) a
convex function that attains its minimum. In this case, Prop 7.d
of [49] implies that this operator is continuously differentiable,
Theorem A.1 (originally of the same paper) implies that con-
dition 2 of Theorem III.1 is also satisfied, and Lemma IX.4
implies that condition 4 is satisfied. The remaining conditions
are satisfied by [/, so plug-and-play is guaranteed to converge
fully, which we observe in the plots.

1) Aluminum Spheres (Simulated) Dataset: The aluminum
spheres simulated dataset contains 47 equally-spaced tilts about
the y-axis, spanning [—70°, +70°]. The attenuation co-efficient
of the spheres are assumed to be 7.45 x 10~ nm. The noise
model is Gaussian, with variance set equal to the mean. The
phantom also contains effects that resemble Bragg scatter. The
dimensions of the phantom are 256 nm, 512 nm, and 512 nm
along z, x, and y axes, respectively.

Fig. 1 shows a 0° tilt projection of the simulated TEM data.
Since this is a bright-field image, the aluminum spheres appear
dark against a bright background. Fig. 2 shows the ground truth
along with three reconstructions of slice 280 along the x-z plane.
The NLM and DSG-NLM reconstructions have no shadow arti-
facts, and also have low RMSE values (see Table I). The edges
are also sharper in the NLM and DSG-NLM reconstructions.

2) Aluminum Spheres (Real) Dataset: The aluminum
spheres dataset (see Fig. 4) has 67 equally-spaced tilts about
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@

(b)

©

(d

Fig. 5. Tomographic reconstruction of the real aluminum spheres dataset.
NLM and DSG-NLM reconstructions are clearer and have fewer smear and
missing-wedge artifacts (a) Filtered Backprojection; (b) qGGMRF (T = 3; =
0:5); (c) 3D NLM using plug-and-play; (d) 3D DSG-NLM using plug-and-play.

TABLE V
PLUG-AND-PLAY PARAMETER, 0, FOR THE 10% SAMPLING CASE

Plug-and-play parameter, o NLM  DSG-NLM  BM3D
Super ellipses 7.41 7.41 7.41
Zinc oxide nano-rods 9.16 9.16 9.16

the y-axis, spanning [—65°, +65°]. Fig. 4 shows a 0° tilt pro-
jection of the real aluminum spheres TEM data. Fig. 5 shows
three reconstructions along the -z plane. The NLM-based re-
construction has fewer smear artifacts than the qGGMREF re-
construction, and more clarity than the filtered backprojection
reconstruction. Also, the NLM and DSG-NLM reconstructions
have visibly suppressed missing-wedge artifact.

3) Silicon Dioxide (Real) Dataset: The silicon dioxide
dataset (see Fig. 7) has 31 tilts about the y-axis, spanning
[—65°, +65°].

Fig. 7 shows a 0° tilt projection of the real silicon diox-
ide TEM data. Fig. 8 shows three reconstructions along the
x-z plane. The NLM and DSG-NLM reconstructions have less

Fig. 6.
reconstruction of (real) aluminum spheres. DSG-NLM achieves complete
convergence.

qOGMAF |1
NLM
DSG-NLM | |

Q e

4

D,

‘@

8.

@,

E

E_"_'

o,

[

N | \

5

=

P

o ~ ;
z o = ‘.)C “0 B o b

P&P iteration number

@ h qaaMAT
g |
B =l

7]

g
—

©

S

0w

o

o]

Nt

©

E

E

[+}

=z

] W

" P&P iteration number

Plug-and-play primal and dual residual convergence for tomographic

>

Fig. 7.
dataset.

Contrast-adjusted version of the 0° tilt of the silicon dioxide (real)

smear artifacts than the qGGMREF reconstruction, and far more
clarity than the filtered backprojection reconstruction.

B. Sparse Interpolation

In this section, we present sparse interpolation results on
both simulated and real microscope images (see Fig. 10 and
11). We show that a variety of denoising algorithms like NLM,
DSG-NLM, and BM3D can be plugged in as prior models to
reconstruct images from sparse samples. In all the sparse inter-
polation experiments, we stopped adapting the weights of the
DSG-NLM after 12 iterations of the plug-and-play algorithm.
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(b)

©

(d)

Fig. 8. Tomographic reconstruction of the silicon dioxide dataset. NLM re-
construction is clearer and has less smear artifacts. DSG-NLM reconstruction
improves upon the NLM result through clear reconstruction of the structure on
the left (a) Filtered Backprojection; (b) qGGMREF (T = 3; = 0:5); (c) 3D NLM
using plug-and-play; (d) 3D DSG-NLM using plug-and-play.

Normalized primal residue

2

S&P i“iera:(oion zum'Eer K

QGGMAF |+
NLM
DSG-NLM

8

]

Normalized dual residue

'P&P iteration number

Fig. 9. Plug-and-play primal and dual residual convergence for tomo-
graphic reconstruction of (real) silicon dioxide. DSG-NLM achieves complete
convergence.

TABLE VI
PLUG-AND-PLAY PARAMETER, (3, FOR THE 10% SAMPLING CASE

Plug-and-play parameter, 3 NLM  DSG-NLM  BM3D
Super ellipses 0.9 0.85 0.55
Zinc oxide nano-rods 0.81 0.79 0.49

TABLE VII
NORMALIZED PRIMAL RESIDUAL CONVERGENCE ERROR FOR THE 10%
SAMPLING CASE (AFTER 150 PLUG-AND-PLAY ITERATIONS)

Primal residual NLM DSG-NLM BM3D
convergence error
Super 1.31 x107% 2,89 x107%  1.20 x 1073
ellipses
Zinc 2.02x107%  1.33 x107? 1.14 x 1073
oxide
nano-rods

TABLE VIII

NORMALIZED DUAL RESIDUAL CONVERGENCE ERROR FOR THE 10%
SAMPLING CASE (AFTER 150 PLUG-AND-PLAY ITERATIONS)

Dual residual NLM DSG-NLM BM3D
convergence error
Super 9.10 x107% 993 x107% 871 x1073
ellipses
Zinc 1.14 x 1072 7.68 x 1070  3.23 x 1072
oxide
nano-rods

TABLE IX

INTERPOLATION ERROR (AFTER 150 PLUG-AND-PLAY ITERATIONS):
NORMALIZED RMSE OF THE INTERPOLATED IMAGE COMPARED TO THE
GROUND TRUTH

5% 10%
Interpolation error Method random random
sampling sampling

Super ellipses Shepard 10.61% 8.99%
NLM 8.51% 7.12%

DSG-NLM 8.10% 6.79%

BM3D 9.75% 7.46%

Zinc oxide nano-rods Shepard 6.01% 5.49%
NLM 4.35% 3.67%

DSG-NLM 4.32% 3.37%

BM3D 4.72% 3.80%

The plug-and-play parameters used are given in Tables V and
Table VI

Our first dataset is a set of simulated super ellipses that mimic
the shapes of several material grains like Ni-Cr-Al alloy [65].
The next dataset is a real microscope image of zinc oxide nano-
rods [66]. All the images are scaled to the range [0, 255]. Further-
more, no noise was added to either of the images, thus reducing
the sparse interpolation inversion operator to the simple form of
equation (21).

In all experiments, the plug-and-play sparse interpolation re-
sults are clearer than Shepard interpolation results. We observe
fromTable IX that DSG-NLM typically results in the least RMS
interpolation error, though for some images we have observed
BM3D can produce lower RMSE. The RMSE values are nor-

malized as w, where 7 is the interpolated image and
x2

x is the ground truth image. Furthermore, we can see from
Tables VII and VIII that DSG-NLM makes plug-and-play con-
verge fully.
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Fig. 11. Interpolation of a 414 x 414 grayscale image of zinc oxide nano-rods (a) 5% sampling; (b) Shepard 5%; (c) NLM 5%; (d) DSG-NLM 5%; (e) BM3D
5%; (f) 10% sampling; (g) Shepard 10%; (h) NLM 10%; (i) DSG-NLM 10%; (j) BM3D 10%; (k) Ground truthfull view; (1) Ground truthzoomed into the red box;
(m) Primal residual convergence for 10% sampling; (n) Dual residual convergence for 10% sampling.
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convergence; (e) Zoomed-in dual residual convergence.

TABLE X
CONVERGENCE AND INTERPOLATIONS ERRORS FOR 10% SPARSE
INTERPOLATION OF SIMULATED SUPER ELLIPSES (AFTER 150 PLUG-AND-PLAY

ITERATIONS)
NLM DSG-NLM DSG-NLM

(adaptive (fixed

weights) weights)
Primary residual 1.31 x10™%  1.75x10™°  2.89 x 107
convergence error
Dual residual 9.10 x 1073  3.59x10*  9.93 x10°%
convergence error
Interpolation error 7.12% 6.72% 6.79%

(normalized RMSE)

C. Importance of Having a Fixed Doubly Stochastic Gradient
for Plug-and-Play Convergence

In this section, in order to illustrate the importance of our
denoising operator having a fixed doubly stochastic gradient for
plug-and-play convergence, we present a sparse interpolation
experiment with the same super ellipses simulated dataset as
above. In addition to the NLM, and DSG-NLM, we use another
version of DSG-NLM where we do not stop adapting the filter
weights. We see from Fig. 12 and Table X that when the DSG-
NLM weights are adapted every iteration, the primal and dual
residuals enter a limit cycle and do not seem to fully converge.

Also, there is a very small improvement in RMSE when the
DSG-NLM weights are adapted with every iteration. However,
this slight reduction in RMSE comes at the price of increased
computation.

Finally, we have empirically observed that even if the (stan-
dard) NLM weights are fixed after a few plug-and-play itera-
tions, plug-and-play does not converge fully.

VIII. CONCLUSION

Microscope images of material and biological samples con-
tain several repeating structures at distant locations. High qual-
ity reconstruction of these samples is possible by exploiting
non-local repetitive structures. Though model-based iterative
reconstruction (MBIR) could in principle exploit these repeti-
tions, practically choosing the appropriate log probability term
is very challenging. To solve this problem, we presented the
“plug-and-play” framework which is based on ADMM. ADMM
is a popular method to decouple the log likelihood and the log
prior probability terms in the MBIR cost function. Plug-and-
play takes ADMM one step further by replacing the optimiza-
tion step related to the prior model by a denoising operation.
This approach has two major advantages: First, it allows the
use of a variety of modern denoising operators as implicit prior
models; and second, it allows for more modular implementa-
tion of software systems for the solution of complex inverse
problems.

We next presented and proved theoretical conditions for con-
vergence of the plug-and-play algorithm which depend on the
gradient of the denoising operator being a doubly stochastic ma-
trix. We also re-designed the non-local means (NLM) denoising
algorithm to have a doubly stochastic gradient, thereby ensuring
plug-and-play convergence.

In order to demonstrate the value of our method, we applied
the plug-and-play algorithm to two important problems: bright
field electron tomography and sparse image interpolation. The
results indicate that the plug-and-play algorithm when used with
the NLM and DSG-NLM priors were able to reduce artifacts,
improve clarity, and reduce RMSE (for the simulated dataset)
as compared to the filtered back-projection and qGGMREF re-
constructions. Then we performed sparse interpolation on sim-
ulated and real microscope images with as little as 5% of the
pixels sampled—using three denoising operators: NLM, doubly
stochastic gradient NLM (DSG-NLM), and BM3D. We then
compared the results against Shepard’s interpolation as the base-
line. In all experiments, DSG-NLM resulted in the least RMSE
and also complete convergence of the plug-and-play algorithm,
as predicted by theory.

APPENDIX A
PROOF OF PLUG AND PLAY CONVERGENCE THEOREM

This appendix provides a proof of Theorem III.1. We start by
defining a proximal mapping as any function H : RV — RY
which can be expressed in the form

2
H(z) = arg min {ch—v + s(v)} , (24)

veRN 2

where s : RY — R U {+ oo} is a proper closed convex function
on RY . With this definition, we can formally state the theorem
proved by Moreau in 1965 [49] which gives necessary and
sufficient conditions for when [ is a proximal mapping.

Theorem A.1 (Moreau 1965 [49]): A function H : RY —
RY is a proximal mapping if and only if

(1) H is non-expansive and,

(2) H is the sub-gradient of a convex function ¢ : RY — R.
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In fact, if there exists a function ¢ : RY — R such that Vz
e RN

H(z) =Vo(z),

then we say that H is a conservative function or vector field.
The concept of conservative functions is widely used on elec-
tromagnetics, for example. The next well known theorem (see
for example [50, Theorem 2.6, p. 527]). gives necessary and
sufficient conditions for a continuously differentiable function
to be conservative on RY .

Theorem A.2: Let H : R — R” be a continuously differ-
entiable function. Then H(x) is conservative if and only if
vz e RN, VH(z) = [VH(x)]".

In general, the sum of two proper closed convex func-
tions, h = f + g, is not necessarily proper. This is because the
intersection of the two sets A = {z € RY : f(z) < oo} and
B={z € R" : g(z) < oo} might be empty. Therefore, the
following lemma will be needed in order to handle the addi-
tion of proper closed convex functions.

Lemma A.3: Let f and g both be proper closed convex func-
tions and let h = f + g be proper. Then h is proper, closed, and
convex.

Proof: A proper convex function is closed if and only if
it is lower semi-continuous. Therefore, both f and g must
be lower semi-continuous. This implies that i is also lower
semi-continuous. Since & is formed by the sum of two convex
functions, it must be convex. Putting this together, h is proper,
convex, and lower semi-continuous, and therfore it must be
closed. Therefore, h is a proper, closed, and convex function
on RV, [ |

Finally, we give a general result relating the existence of a
fixed point of a proximal map and the minimum of the associated
function s.

Lemma A.4: Let H be a proximal mapping for a proper,
closed, convex function s on R . Then H (zy) = =y if and only
if s(x¢) is the global minimum of s.

Proof: First suppose s(z9) < s(v) forall v € RY . Then the
unique minimizer of M (v) = ||zg — v||?/2 + s(v) is xg, so
H(xy) = xp is a fixed point. Next suppose there exists x; with
s(x1) < s(xg), and let uw = x1 — xp and A = s(x1) — s(zg)
< 0. Since s is convex, for all r € [0,1] we have s(zg + ru)
< s(xg) + rA, and hence

2 2
on (17; + TU)H + S(l‘[) + ru) < @7’2 + S(LE()) + rA.

Since A < 0, there exists 79 > 0 so that ro (A + 7 ||ul*/2)
< 0. Take vy = xo + rou to get M(vy) < M(xg), and so
H(l‘o) 7& Zo. [ |

As an immediate corollary, if H has a fixed point, then s
attains its finite minimum, hence is bounded below by some
constant ¢ > —oo.

Using these results, we next provide a proof of Theorem III.1.
Without loss of generality, we will assume 3 =1 and 02 = 1
in order to simplify the notation of the proof.

Proof of Theorem I11.1 . To show that H is a proximal map-
ping for some proper, closed, and convex function s(z), we use
Moreau’s result stated above in Theorem A.1. Note first that
VH (x) is assumed to be symmetric, so Theorem A.2 implies

that H(x) is conservative and hence there exists a function ¢ so
that

H(z) =Vo(x).

Furthermore, by condition 2, VH (x) has real eigenvalues
in the range [0, 1]. Since the eigenvalues are non-negative, ¢
must be convex. Furthermore, since the eigenvalues are <1, H
must also be non-expansive. Since both conditions are satisfied,
Moreau’s Theorem implies that H is a proximal mapping of
some proper, closed, and convex function s(z); i.e., there exists
a proper, closed, and convex function, s(z), on RY such that H

can be expressed as
2 —v|?
veRN 2

H(z) = arg min + s(v)} . (25)

We next show result 2 of the theorem, that a MAP es-
timate exists. This is equivalent to saying that the function
h(z) = l(x) + s(z) takes on its global minimum value for some
T = TMAP-

By condition 3 of Theorem III.1 there exists an x and y
such that y = H(x) and [(y) < oco. Since, y = H(z) we also
know that s(y) < oo. Therefore, h(y) < oo and h is proper. By
Lemma A.3, h must also be proper, closed, and convex.

Now to show that h(x) takes on its global minimum, we
need only show that there exists a threshold a € R such that the
sublevel set of / is a non-empty compact set; that is,

Ay = {z e RY : h(z) < a}

is a non-empty, compact subset of R". Since h is a closed
function, A, must be a closed set. Therefore, it is necessary
only to show that A, is nonempty and bounded.

Define

.

Since h(x) is proper, we know that p* < oo. Select any « >
p*, in which case A, is nonempty.

To show that A, is bounded, note that condition 4 of
Theorem III.1 (that H has a fixed point) with Lemma A.4 im-
plies that s attains its minimum. Hence there is a constant ¢ so
that s(z) > c for all x € RY. By condition 5 of Theorem III.1
(lower bound on [(x)), there exists > 0 so that

fr)>ld+a.

In this case, for all ||z|| > r, we have that

h(z) = l(z) + s(x)
> f(r) =l
> .

Therefore, if € A,, then ||z|| <r, and hence 4, is a
nonempty bounded and therefore compact set. Consequently,
h must take on its global minimum value for some value Zy;ap
in the compact set A,,.

Finally, we show result 3 of the theorem, that the plug-and-
play algorithm converges. Since the plug-and-play algorithm is
justan application of the ADMM algorithm, we can use standard
ADMM convergence theorems. We use the standard theorem as
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stated in [24, p. 16]. This depends on two assumptions. The
first assumption is that I(z) and s(x) must be proper, closed,
and convex functions, which we have already shown. The sec-
ond assumption is that the standard (un-augmented) Lagrangian
must have a saddle point.
The standard Lagrangian for this problem is given by
L(z,v;x) = l(z) + s(v) + A (x — v) | (26)
and the associated dual function is denoted by

g(r) =

€T

inf L(x,v;)).
JWERN ( )

We say that 2* € RN, v* € RN, A" € RE are a saddle point
if for all =, v, and A,

L(z,v;A*) > L(x*,y*; ") > L(z",y"; 1) .

Now we have already proved that a solution to our optimiza-
tion problem exists and is given by z* = v* = Zyap. So we
know that the primal problem has a solution given by

= inf {l(z)+
p= it i)+ ()
V=T

= l(z") + s(v") .

Now the pair (z*,v*) is a strictly feasible solution to the
constrained optimization problem because x* and v* meet the
constraint and they both fall within the open set R™V . This means
Slater’s conditions hold, and by Slater’s theorem, strong duality
must also hold for some A* [67], [68]. More specifically, we
know that there must exist a A* € R such that

pr=g(").
Using this result, we have that for any = and v,
L(z*,v";1%) = U(z") + s(v*) + [A] (2" — v")
I(z") + s(v")
= p'=g(x")
< L(x,v;A%).

So we have that L(x,v; A*) > L(z*,v*; 1*). Furthermore
since 2* = v*, we know that L(z*, v*; A*) = L(z*, v*; A) for all
A. Putting together these two results, we have that L(xz, v;1*)
> L(x*,y*; ") > L(z*,y*; 1), thus proving the existence of a
saddle point of the un-augmented Lagrangian, L(xz, v; A).

Adapting the theorem of [24, p. 16], we then have the stated
convergence results of equation (10).

klim {z®) — oy} =,
klim {1(z®)) 4+ s(o*))} = p*. [ ]

APPENDIX B
PROOF OF THEOREM [V.1

To prove that the DSG-NLM matrix W generated by equa-
tions (11) through (15) is a symmetric doubly stochastic matrix
with eigenvalues in the interval [0, 1], we start by first notic-
ing that the final resulting matrix is symmetric because all
five steps of equations (11) through (15) are symmetric in s

and r, so they produce symmetric weights with the property
that w, , = w; 5.

Next notice that equation (14) scales w, , so that the sums
of rows and columns are < 1. Equation (15) then adds the non-
negative value 1 — Zrem w; , to the diagonal of the matrix to
produce a final matrix with non-negative entries and rows and
columns that sum to 1. Putting this together, we have shown that
W is a symmetric, doubly stochastic matrix.

Finally, we show that the eigenvalues of W fall in the interval
[0, 1]. Since Ny > 1, any pixel can be reached from any other
by a path with each step restricted to a neighboring pixel. This
implies that W is irreducible, and the fact that each diagonal
entry is positive implies that W is primitive, so the Perron-
Frobenius theorem [69], [70] implies that its eigenvalues fall in
the interval [—1, 1].

Furthermore, W must also be positive definite. To see this,
note that Bochner’s theorem [71] implies that exp {—||P||3}
and A (s) are positive definite functions on their respective do-
mains (since each is the Fourier transform of a non-negative
function). From this and the Schur Product Theorem, the ma-
trix W resulting from equation (11) is non-negative definite.
Furthermore, the result of equation (12) is also non-negative
definite because it results from multiplication on the left and
right by the same positive diagonal matrix. Finally, equation
(14) scales the matrix by a positive number and equation (15)
adds a non-negative value to the diagonal of the matrix, so the
final matrix must be non-negative definite with eigenvalues that
lie in the interval [0, 1]. [ |
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