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A Model-Based Image Reconstruction Algorithm
With Simultaneous Beam Hardening Correction
for X-Ray CT
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Abstract—Beam hardening is a well-known effect in X-ray CT
scanning that is caused by the interaction of a broad polychro-
matic source spectrum with energy-dependent material attenua-
tion. If the scanned object only consists of a single material, the
beam hardening effect can be corrected by sinogram precorrec-
tion techniques. However, when multiple materials are present,
it becomes much more difficult to fully compensate for this dis-
tortion; in general, the beam hardening can contribute to recon-
struction artifacts such as cupping and streaking. In this paper,
we present a novel model-based iterative reconstruction algo-
rithm that incorporates beam hardening correction (MBIR-BHC).
Unlike most correction algorithms, which require knowledge of
the X-ray spectrum or mass attenuation functions, the MBIR-
BHC algorithm works by simultaneously reconstructing the image
and estimating the beam-hardening function. The method is based
on the assumption that the object is formed by a combination of
two distinct materials that can be separated based on their densi-
ties. We formulate a poly-energetic X-ray forward model using a
polynomial function of two material projections: one for the low-
density material and one for the high. We then develop an alter-
nating minimization algorithm for jointly estimating the recon-
structed image, the material segmentation, and the coefficients of
the two component polynomial that models the beam-hardening
function. With this approach, the spectrum and mass attenua-
tion functions are not needed in advance, and the correction is
adapted to the dataset being reconstructed. We examine the per-
formance of the proposed algorithm using both simulated and real
datasets. Results indicate that the MBIR-BHC algorithm signifi-
cantly reduces several reconstruction artifacts without advanced
knowledge of the X-ray spectrum and material properties.

Index Terms—X-ray CT, model-based iterative reconstruction
(MBIR), beam hardening correction, poly-energetic.
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I. INTRODUCTION

-RAY computed tomography (CT) is a widely used
imaging modality that depends on the reconstruction of

material cross-sections from line integrals of X-ray density.
Typically, the required line integrals are obtained by assuming
that the X-rays are attenuated exponentially as predicted by
Beer-Lambert’s law [1]. However, this approximation only
holds when the X-ray source is monochromatic. When the
X-ray source has a broad spectrum, low-energy photons are
typically attenuated more rapidly than high-energy photons; so
the beam shifts toward higher energies (i.e., is “hardened”) as
it passes through the material. The total attenuation is formed
by the superposition of weighted exponentials, resulting in
the so-called beam-hardening effect [2], [3]. In practice, beam
hardening can contribute to cupping and streaking artifacts in
the reconstructed images [2]-[7].

Various algorithms have been proposed to address the beam
hardening effect [8]—[33]. One early approach was to pre-filter
the X-ray beam [19] by placing a thin metal plate between
the X-ray source and the objects, so as to pre-attenuate the
low-energy photons. While such a method is able to narrow
the X-ray spectrum and, therefore, reduce the beam hardening
effect, it also lowers the detected signal to noise ratio (SNR).
Another approach is dual energy scanning [11], [12]. These
methods work by reconstructing two material-independent den-
sity maps from low and high-energy X-ray measurements.
While this technique can fully account for beam-hardening, it
requires two spectrally district projection measurements, which
is generally much more complex and expensive.

Algorithmic correction is perhaps the most common
approach to beam-hardening correction. One widely-used algo-
rithmic correction is linearization, or polynomial pre-correction
[2], [8]-[10]. Pre-correction techniques are based on the
assumption that the object is made from a single material,
such as water. However, when multiple materials are present,
it is not possible to fully compensate for the beam hardening
distortion using a single pre-correction function. Alternatively,
iterative post-processing techniques are also widely used when
the object being scanned is composed of two known mate-
rials that can be easily segmented [13]-[17]. These methods
correct the sinogram using knowledge of the two materials’
mass attenuation functions, the X-ray source spectrum, and
an approximate spatial segmentation into the two materials. In
medical imaging applications, it may be reasonable to assume
that the object being scanned can be approximately segmented
into two known materials, (e.g., soft issue and bone) and the
X-ray spectrum is known; so these iterative post-processing
techniques can be effective [13], [15], [16]. However, in more
general CT applications, such as non-destructive evaluation
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or security scanning, the objects being scanned may be com-
posed of a number of unknown materials. So the assumptions
of iterative post-processing algorithms are violated, and the
methods are not straightforward to apply.

Recent results in model-based iterative reconstruction
(MBIR) have demonstrated its ability to improve the recon-
structed image quality [34]-[39]. MBIR algorithms typically
work by first formulating an overall objective function which
incorporates statistical models of both the forward acquisition
processes and the objects being reconstructed. The resulting
objective functions are then minimized using iterative optimiza-
tion methods. Several methods have also been developed in
order to address the problem of beam hardening in the context
of iterative reconstruction [22]-[25]. De Man et al. [22] pro-
posed an iterative method which incorporated the knowledge
of the known X-ray spectrum into the reconstruction process
in order to account for the beam hardening effect. Elbakri
et al. [23], [24] developed an iterative reconstruction method
based on the idea of material decomposition. The joint beam
hardening correction polynomial for a set of pre-determined
basis materials is pre-calculated and tabulated, and is utilized
during the iterative reconstruction. Srivastava et al. [26] and
Abella et al. [30] extended Elbakri’s approach. Their strategy
is to design functionals with tuning parameters so that it can
map the non-linear effect of two materials into one equiva-
lent material. Therefore, only a single material beam hardening
correction polynomial is required. However, all these meth-
ods require some additional knowledge of the system, such as
X-ray spectrum and mass attenuation functions of the basis
materials. In an alternative approach, Kyriakou et al. pro-
posed a method called Empirical Beam Hardening Correction
(EBHC), which does not rely on the prior knowledge of the
X-ray spectrum or mass attenuation functions [31]. EBHC
is based on direct reconstruction of a set of images formed
from sinograms corresponding to the low and high-density
components of the image. This set of reconstructions are com-
bined in a way that maximizes flatness of the final corrected
image.

In this paper, we propose a novel model-based iterative
reconstruction algorithm including correction of beam harden-
ing effects (MBIR-BHC). A preliminary study of this method
was presented in conference paper [40]. Unlike most previ-
ous methods, which require additional system information in
advance, MBIR-BHC works by simultaneously reconstructing
the image and estimating the beam hardening correction func-
tion. The method is based on the assumption that the object
is formed by a combination of two distinct materials that can
be separated according to their densities. We formulate a poly-
energetic X-ray forward model using a polynomial function of
two material projections: one for the low density material and
one for the high. We then develop an effective alternating opti-
mization algorithm for estimating the reconstructed image, the
material segmentation, and the coefficients of the two compo-
nent polynomial. Since the correction polynomial and materials
segmentation mask are both estimated during the reconstruc-
tion process, no additional system information is needed and
the correction is automatically adapted to the dataset being
reconstructed.

We evaluate the proposed MBIR-BHC algorithm using both
simulated and real X-ray CT datasets, including high and
low density objects. The experimental results show that the
MBIR-BHC algorithm significantly reduces several reconstruc-
tion artifacts and improves the overall image quality.

The paper is organized as follows. Section II presents the
poly-energetic X-ray model and formulates the problem of joint
reconstruction and correction. Section III describes the alter-
nating optimization. Section IV shows the experimental results
on the simulated and real data to demonstrate the improvement
achieved by MBIR-BHC as compared to traditional methods.
Finally, Section V concludes the discussion.

II. POLY-ENERGETIC X-RAY MODEL AND STATISTICAL
APPROACH FOR RECONSTRUCTION

A. Poly-energetic Model for X-ray CT

Let u(€) € RY be the vector whose the j-th entry 1;(€)
is the energy-dependent linear attenuation coefficient of the
j-th pixel. The received photon intensity of the ¢-th projection,
denoted by \;, can be modeled as a Poisson random variable
with the mean given by

BpuE)) = [ Siele S Aomae )

where S;(€) is the source-detector energy spectrum, and A is
the system forward projection matrix whose entries represent
the contribution of the i-th projection to the j-th pixel. For
each projection, the standard CT projection measurement Y; is
generated by

i
A1

Y; = —log 2)

where A7 ; is the expected photon intensity in an air-calibration
scan for the i-th projection, given by

A = / Si(€)de. 3)
R
Denote the normalized energy spectrum as S; given by
~ Si(€
T,i

We will assume that S;(&) is the same for all the projec-
tions; so the projection index 4 can be dropped in S;. Putting
(1) through (4), the expected projection measurement can be

approximated as
Ai
-1 E ’
o ( [)\T,i D

—log ( / S(E)e™ i A’inf)de). (5)
R

So (5) is the conventional model for the non-linear beam
hardening that results from a poly-energetic X-ray beam.

Our objective will be to formulate a simple parametric model
of the beam-hardening that occurs with a single, polychromatic

E[Yi|u(E)]

1%




202 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 1, NO. 3, SEPTEMBER 2015

scan of an object composed of two distinct materials, one with
high density and the other with low. To do this, we first define x;
to be the weighted average of the linear attenuation coefficient
of the j-th pixel with respect to the energy spectrum

v 2 /}R S(6)11;(E)dE. ©)

Using this definition, we can rewrite the energy-dependent
linear attenuation coefficient of the j-th pixel as

wi(€) = z7;(E) @)

where (&) is the absorption spectrum of the j-th pixel, given
by

o mE
zj fp S(E)u;(E)dE

Notice that in this formulation, r;(£) carries the energy
dependency and x; only depends on the pixel location j.
Moreover, from (8) we see that the weighted energy spectrum
of r;(£) is normalized to 1; so for all j

() = pi(€) _

®)

/ S(E)r;(€)dE = 1. )
R

We first consider the simple case when the scanned object
only contains one absorptive material denoted by M. The
functions r; (&) are identical for all pixels j and we have

i (€) = jrm(€)

where 74(€) is the absorption spectrum for the material M.
Substituting (10) into (5), we may define the beam hardening
function faq(p;) given by

(10)

fm(pi) & —log (/ S”(S)eW“)pidé’) (11)
R

where p; is the ¢-th projection given by

pi=> Az
J

Let z € RY be the vector with entries z; defined in (6).
Using this notation, the expected projection measurement is
then given by

12)

E[Yilz] = fam(pi)- (13)

So from (13), we see that the expected projection measure-
ment E[Y;|z] will be a non-linear function f of the projection
p;. Differentiating (11), we show in Appendix V that

d

i)lp,—0 = 1, 14
dpifM(p)pl 0 (14)
and therefore, we also know that
d ._
P @i)lyi=o = 1 (15)

dy;

where y; is the dummy variable for the inverse function f;/ll.
This implies that when the value of the projection is very small
(i.e. when the projection passes through a thin soft material), the
beam hardening effect is negligible. In practice, since human
soft tissue has energy-dependent attenuation similar to water,
most current medical systems perform a beam hardening pre-
correction with respect to water. More specifically, typical
medical imaging systems apply a beam-hardening correction
with the form f;,ll = fv}l, where the subscript W explicitly
indicates water as the reference material.

Next consider the case of two materials. In this case, a sin-
gle correction function can not fully compensate for the effects
of beam hardening. In order to better model this case, we will
assume the object is made of two distinct materials, one of low
density and a second of high density. More formally, we model
the absorption spectrum r;(£) as a convex combination of two
distinct absorption spectra given by

ri(€) £ (1= b;)re(€) +bjru(€). (16)
where 71,(€) and r(€) represent the absorption spectrum of
the “low” and “high” density materials respectively, and b; rep-
resents the fraction of material that is of high density for the
j-th pixel. Using this model, the linear attenuation coefficient
of the j-th pixel can be written as

1 (€) =z (1 = bj)rr(€) +bjru(€)). 17

In this work, we consider only the case in which b; is binary,
ie. b; € {0,1}; so each pixel will be composed entirely of
either low or high density materials. In order to determine the
values of b;, we will estimate them directly from the CT data as
part of the reconstruction process. While more discrete classes
could be used, this simple two-material decomposition model
strikes a balance between accuracy and model simplicity.

Substituting (17) into (5), we obtain

ElYila] = h(pLi, pa.i) (18)
where h(p L,isD 177) 1s now a two dimensional beam hardening
function given by

h(pr,ispm.i)
2 —log ( / S(E)e’“L(S)”L=iTH(g)pHJdé’) (19)
R

and pr,; and pg ; are now the projections of the low and high
density materials given by

PLi = ZAi,jafj(l —bj), (20)
J

PH,i = ZAi’jijj' (21)
J

So from (18), we see that with two materials, the expected
projection measurement is now a non-linear function of the
two dimensional projections of the two materials. Our approach
will be to adaptively estimate this 2D beam hardening function
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TABLE 1
COEFFICIENTS OF THE BEAM HARDENING FUNCTION h
USED FOR UN-CORRECTED DATA

1=0[l=1]i1=21=3
k=0 0 1 70,2 70,3
k=1 71,1 7,2 | 7,3
k= Y2,0 2,1 ¥2,2 Y2,3
k=3 73,0

during the reconstruction process. To do this, we adopt a simple
polynomial parametrization of the function given by

oo o0

ZZ'}%ZPLZ le)l7

k=0 1=0

h pL iy PDH, z (22)

where «;,; are coefficients to be jointly estimated during the
reconstruction. Notice that the idea that using the polynomial
to fit the multi-material beam hardening function has been used
in various correction algorithms before [3], [23], [41].

In fact, some of the coefficients in (22) are determined by the
physics; so this will simplify our problem. More specifically,
if both the projections py, ; and pg ; are 0, plugging them into
(19), we see that

Y0,0 = h(0,0) = —log </ S(S)eodé’) =0. (23
R

Also differentiating (19) with respect to pr,; and pg ;, we
obtain in Appendix V the following two relationships

-h(pL,i,0) |py =0 = 1, (24)

N2

- 1o}
V1,0 = op

0
Yo,1 = Wh(oapH,i) |pri=0 = 1. (25)

N2

Table I lists the coefficients of the function h. We will refer
to an p-th order model as one that includes all the unknown
coefficients for 0 < k + 1 < p.

This two-material beam-hardening model can also be used
in the case when the projection measurement is pre-corrected
for beam hardening of a single material. To see this, sup-
pose the projection measurements have been pre-corrected with
respect to the material M using the function f;ll. As a result,
the expected projection measurement, after pre-correction, is
approximately given by

E[Y;|e] = h(pr.i.pr.i) (26)
where the 2D beam hardening function h is now given by

h(pr.i i) = I

: <log ( / S(g)e““)mTH<5>pH»id5>). 27)
R

Using the similar approach as in (22), we can parametrize h
using a high-order polynomial as

[SSINeS)
hpLz»sz ZZ

k=0 1=0

pL ’L pH z) (28)

TABLE I1
COEFFICIENTS OF THE BEAM HARDENING FUNCTION h USED
FOR PRE-CORRECTED DATA

1=0|l=1]1=2[1=3
k= 0 1 0,2 50,3
k=1 1 1 | 2 | 71,3
k= 0 2,1 2,2 2,3
k=3| o0 :

where 7, ; are the polynomial coefficients. Moreover, we show
in Appendix V that in this case similar constraints hold with

Yo,0 = h(0,0) =0, (29)
- a -
M,0 = 6pL,ih(pL,i7 0)lpr.=0 = 1, (30
- o -
Yo,1 = apH.’ih(O;pH,i)‘pH,i:O =1 (31)

In practice, it is common to pre-correct the projection mea-
surements, Y;, for the beam hardening due to the low-density
material. In medical applications, this correction is usually
based on a water phantom since human soft tissue is largely
composed of water. In this case, the pre-correction is given by
f;tl = fo ! where f I ! is the ideal beam-hardening correction
for the low density material. By definition, we know that this
pre-correction will linearize the low density measurement so
that

h(pr,i,0) = f (fr(pr.))

This implies that 730 =0 for k # 1. Table II lists the
coefficients of the function .

In summary, we have shown that the two-material beam-
hardening model can be used for both pre-corrected and un-
corrected projection data. In both cases, the three coefficients
Y0,0 =0 and 79,1 = 71,0 = 1 are pre-determined. Depending
on the selected model order, the set of remaining coeffi-
cients are then estimated as part of the reconstruction algo-
rithm. In particular, for a 2-nd order model (p = 2), the
unknown coefficients to be estimated are vj; for (k) €
{(1,1),(0,2)}; and for a 3-rd order model (p = 3), then the
unknown coefficients to be estimated are ~;; for (k,l) €
{(L 1)> (27 1>7 (07 2)7 (17 2)7 (07 3)}

As a final remark, we will use the unified notation A(-, )
and 7, to denote the correction polynomial and its coeffi-
cients throughout the following discussion This is only to keep
our notation simple. We will explicitly state the pre-correction
information and the polynomial order we use when we present
the experiment results.

=PL,i- (32)

B. Statistical Model and Objective Function

Let z € RN be the image vector, y € RM be the vector of
the projection measurements, b € {0, 1}” be the vector of the
material segmentation label mask, and v € RX be the vector of
the fitting coefficients 7y, ;. So K = 2 if the 2-nd order model in
Table II is used and K = 5 if the 3-rd order model is used, etc.
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We treat v as the nuisance parameter and formulate the problem
of simultaneous image reconstruction and beam hardening cor-
rection as the computation of the maximum a posterior (MAP)
estimate given by

{2,b,7} = arg min, >, - {—log P(y[x, b,7) — log P(x,b)}
(33)

where P(y|z, b, ) is the likelihood function corresponding to
the X-ray forward model, and P(x,b) is the joint prior distri-
bution over the image = and the material segmentation mask
b. Note that we require the image to be non-negative. The
parameter vector ~y is adaptively estimated in this framework.
Such an approach has been studied previously in [42] and one
may interpret it as computation of the joint maximum a pos-
teriori (MAP) and maximum likelihood (ML) estimates of the
unknown variables and the nuisance parameters, respectively.
Assuming the projection measurements Y; are condition-
ally independent with mean given by (19), the negative log
likelihood function can be written, within a constant, as

M

1
—logP(ylz,b,7) ~ 5 D wilyi = h(p:))”
=1

(34)

where ~y is implicitly specified in h(p;) by (22) and p; =
[pL.: pr.i]T, and w; is the statistical weight for the i-th pro-
jection, which is approximately proportional to the inverse of
variance of the measurement Y;. Note that taking the log of the
signal in equation (19) can cause a slight mean shift in the sig-
nal since the log is concave. However, for the purposes of this
paper, we will assume that means shift is negligible. Using this
assumption, w; can also be computed approximately as

_ N

(35)

W;

where o2 is the variance of the additive electronic noise.

To model the joint prior over = and b, we adopt the Markov
random field (MRF) model. We want to model not only the
interactions among pixels or segmentation labels themselves,
but also the interactions between pixels and segmentation
labels. Our model is a two-layer pairwise MRF, one for the
image = and the other for the material segmentation mask b.
Nodes on one layer connect to their corresponding counterparts
on the other. Note that the joint MRF model for image and seg-
mentation label has also been applied in CT artifact reduction
and segmentation problem [43]. Fig. 1 illustrates this graphi-
cal model. From this structure, we may write the joint prior
distribution over = and b as

N

]P’(Lb):%exp — > agrp(xs k) — By (x;,b))

{4,k eC Jj=1

- Z 15,k (b, br)

{j,k}ecC

(36)

where C denotes the set of all pairwise cliques, p, ¥ and ¢ are
the positive potential functions on z, b, and the interactions

Fig. 1. Tllustration of the joint prior over « and b as a two-layer MRF. Pixels
x; are connected through the blue potentials p. Material segmentation labels b;
are connected through the red potentials ¢. Pixels and segmentation labels are
also connected through the green potentials ).

between them, respectively, and Z denotes the partition func-
tion making the whole function a valid probability distribution
[44]. The parameters o, B and 7;) are the correspond-
ing weights for edges in the graph. We choose o1, and n; i
to be inversely proportional to the distance between pixel j
and k. Moreover, the scales of these parameters are empir-
ically adjusted to balance among noise, resolution and seg-
mentation error in the final reconstruction. We have listed
the selected parameters for each dataset we test in the Result
section.

For the pixel pairwise potential p, we use the g-generalized
Gaussian MRF (q-GGMREF) potential function [35], given by

|z — 2k |P
L+ (2 — ay)/clp1

[I>

where 1 < ¢ < p = 2. Notice that the function only depends on
the pixel difference A = x; — x, and a pair of pixels with small
difference results high probability. Here c is a tuning parameter
to balance the performance between noise reduction and edge
preservation. If |A| < ¢, p(A) = |AlP and if [A] > ¢, p(A) =~
|A/cld.

The potential 1, which captures the inter-layer interactions,
should be chosen such that it gives high probabilities if the seg-
mentation label correctly reflects the pixel value and gives low
probabilities otherwise. We design the potential v to be

(@, 05) & (25 = T)4 (L= bj) + (T —25)1b;  (38)
where (2)4 = max{x,0} and T is the user-defined threshold.
This is a linear loss function which penalizes the mismatch of
the pixel and its corresponding segmentation label. Specifically,
when b; = 0, indicating that the pixel belongs to the low den-
sity material, ¢ will impose a linear penalty if x; exceeds the
attenuation threshold 7". Symmetrically, a linear penalty will be
imposed in the case when z; < T'and b; = 1.

The potential ¢ over the binary segmentation label should
encourage the similarity of the neighboring labels. We design it
to be

@by, br) £ 1 —6(bj — by) (39)
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where ¢(-) is the discrete delta function taking the value 1 at 0
and 0 elsewhere.

Combining the log likelihood term of (34) and the two-layer
MREF joint prior over « and b in (36), we obtain the overall MAP
estimation problem as

sz Yi z)

{&,b,4} = argmin

z>0,b,y
+ > agaplr;— o)+ Y ma(l—8(b; — b))
{s.k}eC {j,k}eC
N
+ 8 (@) = T)4(1 = bj) + (T = )4b;) (40)
j=1

We refer to (40) as the objective function in our reconstruc-
tion framework.

III. ITERATIVE BEAM HARDENING CORRECTION
AND IMAGE RECONSTRUCTION

A. Estimation of the Beam Hardening Correction Polynomial

Fixing  and b, we first attack the problem of minimizing the
objective function with respect to . This becomes a standard
weighted least squares problem given by

1
4 = argmin,_ = sz h(pi))? —argmln@Hy—HVH%v

(41)

where H € RM>X s a matrix whose columns correspond spe-
cific terms in the correction polynomials of all the projections
in (28) and W = diag{w+, - - - , wps }. The solution can then be
computed in the closed form as

4= (H"WH) 'H"Wy. (42)

B. Image Reconstruction as Optimization

Next, we fix 7 and b and minimize the objective function
(40) with respect to x. Since h(p;) is a polynomial function of
pi, which is in turn a linear function of x, (40) will be a higher
order function of z, rather than a simple quadratic. Thus, the
function (40) can be in general difficult to solve.

We approach the optimization by applying the Newton-
Raphson technique. More specifically, we replace the orig-
inal optimization (40) over x with the following modified
optimization

M
i =arg Héin Z(d(i)’T(pi —pi)+ %(Pz —5)TQ™ (pi — 1))
z2 i=1
+ﬁz +(1=b5) + (T' = ;) 4 b))

+ Y ogupla; — k)

{j,k}ecC

(43)

where d(V) € R? and QY € R2*? are the gradient and Hessian
of the function Jw;(y; — h(p;))? at the point p;, given by

A9 = —w;(y; — h(p:)) Vh(p:), “)
QW = w,Vh(p:)Vh(p:)" — wi(y; — h(p:)Hess(h(p;)).
(45)

and p; is the projection vector of the previous estimate of Z. The
term Hess(h(p;)) € R?*? is given by

i 9
2, h(pi) OpL..0pm. h(pi)
; h(Pz‘)

Hess(h(p;)) = 5 2
mh(m Gr

pi=pi-
(46)

By doing this, we essentially reduce (40) to (43), which is a
quadratic function plus the remaining prior terms. The same
approach has been used in other non-quadratic optimization
problems such as [45], [46]. Such a quadratic approximation
is generally not an upper bound, which means convergence
of the algorithm is not guaranteed without further innovations.
However, this approximation is effective and in practice, as we
will show in the Results section, we have empirically observed
that the resulting updates consistently reduce the objective func-
tion of (40). The overall algorithm works by first constructing
the quadratic approximation (43) using the previous projec-
tions p; and optimizing (43) to obtain the next estimate of Z.
The projections p; are then updated and are used in the next
iteration.

There are a number of techniques that can be applied to
optimize the quadratic approximation (43). We choose the iter-
ative coordinate descent (ICD) algorithm. The ICD algorithm
updates each pixel in sequence with the other pixels fixed until
convergence. Here we present a sketch of derivations of the
pixel update and more detailed derivations can be found in
Appendix VI. Following the similar strategy in [36], the j-th
pixel update can be computed by solving the 1D optimization
given by

1
xj = argmin | 0y (u — ;) + 502(11 — ;)2

u>0
+ B ((u—=T)4+ (1 =bj) + (T'— u)+b;)
+ Z o g (u — zp)? 47)
kedyj

where Z; denotes the previous value of the pixel, 0 represents
the set of neighbors of the j-th pixel, and the coefficient o/ j,
is given by

(T — xk)

—_— 48
2(Zj — xx) )

o'jr = ajk

Here p'(+) is the first derivative of p(-) and 6y and 65 are the
first and second derivatives of the first term in (43) with respect
to x;, given by
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ICDUpdate { /* ICD update for the j-th pixel */
jj Iy
01,05 < calculate using (49) and (50)
Dy, Dy < calculate using (51) and (52)
if b; = 0 then
x; < calculate using (53)
for ; =1to M do
PLi < Ppri+ Aij(z; — I5)
end for
else if b; = 1 then
x; < calculate using (55)
for : =1to M do
PH,i < PH,i + Ai (25 — Z5)
end for
end if
return z;

}

Fig. 2. Pseudocode of ICD update of the pixel x;. First, we calculate the
parameters 01, 02, D1 and Ds. Second, we perform the update procedure
according to (53) or (55) depending on the value of b;. Finally, we update the
projection vector using (56) and return the pixel update.

z + from FBP or generic MBIR
b < initially segment x using (57)
for : =1 to M do
p; < calculate using (20) and (21)
Di < i
end for
repeat
7 < solution of (41)
for ; =1to M do
d®, QW « calculate using (44) and (45)
end for
for j =1to N do
x; < calculate using ICDUpdate in Figure 2
end for
for j=1to N do
b; < solution of (58)
p; < updated using (59)
end for
for : =1 to M do
Di < Di
end for
until convergence

Fig. 3. Pseudocode of the MBIR-BHC algorithm for simultaneous image
reconstruction and beam hardening correction. First, we initialize the recon-
struction x and the segmentation b, and compute p; for all <. Then, the algorithm
iterates and for each iteration, the optimal coefficient 4 is first calculated fol-
lowed by the calculation of the parameters d(9) and Q(®) for all i. After that,
the optimal x is solved by minimizing the quadratic approximation (43) and the
optimal segmentation b is estimated using ICM. Finally, the expansion point is
updated which will be used in the next iteration.

TABLE III
REGULARIZATION PARAMETER SETTING OF MBIR-BHC FOR DIFFERENT
EXPERIMENTS
Experiment | e | B | n |
two-material phantom 0.382 | 0.024 | 0.024
multi-material phantom (noiseless) | 0.514 | 0.033 | 0.033
multi-material phantom (noisy) 0.013 | 0.033 | 0.033
modified NCAT phantom 0.630 | 0.040 | 0.040
real baggage scan 0.607 | 0.039 | 0.039
0.07,
0.06|
2005
%DM
%DDS
S 002
001
20 80 100

40 60
energy (keV)

Fig. 4. Normalized energy spectrum of the X-ray source used for simulation.

M

i A i) |Aii(1—0;)
- E (1),T 5. TQ( ) ;
" =1 <(d o) ) { j“ajbj J D @
M A; (1 =0))
- (1 —b) A bl O@® [Fea\E T
0, = ;:1 [Aw(l b;) Awbj} Q [ b, ] . (50)

To obtain the optimal solution to (47), we define two quanti-
ties D4 and Do as

Dy =0, — 02:?,‘]' -2 Z O/j’kxka (51
keoj
Dy=0+2)Y o (52)

kedyj

Using this notation, the optimal update can be obtained by
applying a shrinkage operation. More specifically, when b; = 0,
we have the update given by

Dy s
—— T - — T 53
ljes&( D, 2132>+ o9
where the shrinkage operator is defined as
Si(z) = sign(z) max{|z| — A, 0}, (54)
and when b; = 1, we have
D, B
i+ S —— =T+ — T. 55
AN 2‘52<D2 +2D2)+ ©5)

Having obtained the optimal x;, we then re-allocate the
projection using the projection update equation given by

PL,i PL,i A; (1 —bj) -
|:pH,i:| - [pH,i] * { A; b; (zj — Tj).

This will finish the ICD update of one specific pixel. Fig. 2
summarizes the pseudocode of the ICD update for a specific
pixel.

(56)



JIN et al.: MODEL-BASED IMAGE RECONSTRUCTION ALGORITHM WITH SIMULTANEOUS BEAM HARDENING CORRECTION 207

(a) ground truth (b) FBP (c) MBIR-mono
() ®) - (2 () (¢) - ()

(d) EBHC (e) 2-nd order MBIR-  (f) 3-rd order MBIR-
BHC BHC
@) () - @ G @© - @ & @ - @)

Fig. 5. Comparison of FBP, MBIR-mono, EBHC and 2-nd and 3-rd order MBIR-BHC reconstructed images. Top row: the reconstructed images. Bottom row: the
difference images. The display window for the reconstructed images is [-400 400] HU. The display window for the difference images is [-200 200] HU. Notice
that the MBIR-BHC algorithm reduces visible beam-hardening artifacts in the reconstruction of simulated data.

C. Optimization Over the Material Segmentation Mask

The segmentation vector b is initialized by thresholding the
initial reconstruction (™ at the begining of the algorithm,
given by

(57)

, _ Jo. e <
T 1, otherwise.

During the alternating optimization, we fix x and -, and find
the configuration of b which minimizes the overall objective
function (40). We use the iterative conditional mode (ICM)
algorithm. This requires us to solve the 1D optimization of a
particular segmentation label as follows

M
1
b; = argmin { — E w;(y; — h(p;))?
T e {2 — o

+ Y k(1 =5t — b))

=ry
+ B((x; —T)+(1 =) + (T - 90;‘)#)} . (58)

The actual implementation is to evaluate the 1D objective
function (58) for ¢ = 0 or 1 and to choose the optimal configu-
ration of ¢ which gives the lower cost. After the label is updated,
we adjust the projection according to this optimal configuration.
If we let Bj and b; be the labels of the pixel before and after the
ICM update, the projection update is given by

Pral Pral b= g

PH,i PH,i bj —b; ’
Fig. 3 shows the pseudocode of the overall MBIR-BHC
algorithm for simultaneous image reconstruction and beam
hardening correction, which alternates over the optimization

of the polynomial coefficients v, the image x and the material
segmentation label mask b.

(59)

IV. RESULTS

In the following section, we evaluate MBIR with beam-
hardening correction (MBIR-BHC) using both simulated and
real data sets, and we compare it to FBP, generic MBIR with a
mono-energetic X-ray model (MBIR-mono), and the Empirical
Beam Hardening Correction (EBHC) method [31]. The cost
function for MBIR-mono is given by

1
§||y—A$||%v+ Z jp(T; — k) 03

T = argmin
r> |
{s.k}ec

0
(60)

and we use the g-GGMREF potential function (37) for p. Both
MBIR-mono and MBIR-BHC use the FBP reconstruction as an
initial condition for optimization. Also, the segmentation, b,
is initialized with a thresholded version of the FBP image, and
we use a 3 x 3 neighborhood with coefficients o ;. and 7; 1
selected so that
Qjk = QGjk,  Mjk = N9k (61)
Here «, 1 are two scalars and g; ;. are the relative weights for
different neighboring pixels, given by the following 2D array of
values,

0.11 | 0.14 | 0.11
0.14 0 0.14
0.11 | 0.14 | 0.11

where the center cell represents the pixel being considered. In
Table III, we list the parameters «, § and 7 that were used for
each experiment. For the EBHC method, the basic images are
reconstructed using FBP. Unless otherwise stated, all MBIR-
BHC results use a 2-nd order model with p = 2.
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TABLE IV
MEAN INTENSITY (HU) OF THE WATER REGION IN FIG. 5

ground truth 0
FBP -5.8
MBIR-mono -1.5
EBHC -44.2
2-nd order MBIR-BHC -71.2
3-rd order MBIR-BHC -1.3

A. Simulation Results

In this section, we study the performance of different
methods on various phantoms using the computer-simulated
parallel-beam transmission polychromatic X-ray projections.
The X-ray source spectrum we use is modelled using SPEC78
software from IPEM Report 78 [47] (tube voltage 95 kV, inci-
dent mean 56.4093 keV, std 14.2177 keV), and its normalized
energy spectrum is plotted in Fig. 4. Furthermore, in all the
following simulation studies, the projections are pre-corrected
with respect to water using the standard polynomial fitting tech-
nique described in [3]. The resulting pre-corrected projection
will be used as the input for the different methods.

1) The Two-Material Disk Phantom: The first phantom we
study is a two-material phantom, made of a water disk with
two aluminium insertions, as shown in Fig. 5(a). The radius of
the water disk and the aluminium insertions are 90 mm and
10 mm, respectively. The parallel-beam projection sinogram
has 1024 detectors with 0.24 mm spacing and 720 projection
angles over 180 degrees. We do not simulate the noise and scat-
ter effects. All the reconstructed images are 512x512 over the
250 mm FOV. For MBIR-BHC, both the 2-nd and 3-rd order
polynomial model are used and the segmentation threshold 7’
is 800 HU. The reconstruction results using different meth-
ods are presented in Fig. 5(b)—(i). Both FBP and MBIR-mono
reconstructions contain streak artifacts due to the aluminium
insertions. The EBHC method is able to partially suppress the
streaks. However, the dark band connecting two insertions is
still noticeable. The MBIR-BHC reduces the streak artifacts
more effectively. However, in this case, the 3-rd order MBIR-
BHC model seems to provide little benefit relative to the 2-nd
order MBIR-BHC model. In Table IV, the mean intensity of the
water region is listed. Notice that the EBHC tends to introduce
a bias in the reconstruction.

Using the two-material phantom, we further investigate the
modeling error in MBIR-mono and MBIR-BHC method. In
particular, we simulate the projection y; as in (27) using Monte
Carlo method followed by the water pre-correction, and cal-
culate the modeling error as the difference between y; and
the forward projection of the phantom. Mathematically, the
modeling error in MBIR-mono is given by

N
eEMBIR—mono) =y — Z Ai,jxgphantom)’ (62)

j=1
and for MBIR-BHC, it is

eMPIRBHC) — ), Z Ve (pri)* (pr.i)'
0<k+I<p

(63)
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Fig. 6. Comparison of the modeling error for the three forward models of
MBIR-mono, MBIR-BHC with a 2-nd order model, and MBIR-BHC with a
3-rd order model. Notice that MBIR-BHC with the second order model
produces the smallest modeling error.

TABLE V
QUANTITATIVE COMPARISON OF THE MODELING ERROR

| | MBIR-mono | 2-nd MBIR-BHC | 3-rd MBIR-BHC
absolute mean 0.1187 0.1172 0.1177
variance 0.0476 0.0436 0.0448

where pr, ; and pg; are the projections of low and high density
materials of x(Phantom) and Y, are the convergent parameters
produced by MBIR-BHC. We study the 2-nd order MBIR-BHC
(p = 2) and 3-rd order MBIR-BHC (p = 3). Fig. 6 compares
the modeling error of MBIR-mono and MBIR-BHC. All three
methods have visible errors in the trace of high density inser-
tions. Notice that the approximation error by the 2-nd order
MBIR-BHC is somewhat smaller than the error for MBIR-
mono. However, once again, the 3-rd order MBIR-BHC model
is no better than the 2-nd order model. The corresponding quan-
titative results listed in Table V also show that the 2-nd order
MBIR-BHC gives smaller absolute mean and variance of the
approximation error than MBIR-mono.

2) Multi-Material Disk Phantom: We continue the
simulation study using a multi-material phantom, which
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(b) FBP (c) MBIR-mono
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Fig. 7. Comparison of FBP, MBIR-mono, EBHC and MBIR-BHC reconstructed images. Top row: the reconstructed images. Bottom row: the difference images.
The display window for the reconstructed images is [—200 200] HU. The display window for the difference images is [—200 200] HU. Notice that the MBIR-BHC
algorithm reduces visible beam-hardening artifacts in the reconstruction of simulated data.

TABLE VI
CHEMICAL COMPOSITION OF VARIOUS MATERIALS USED IN FIG. 7(A)

TABLE VII
VALUES OF THE POLYNOMIAL COEFFICIENTS ESTIMATED
BY MBIR-BHC FOR THE EXPERIMENT IN FIG. 9

cylinder # material I density (g/cc) l chemical formula I
1 wolypropyiens 0.90 CaHe | model 1,1 70,2 2,1 1,2 70,3
5 - — T CaHs 2-nd order [ 0.00945 [ -0.03231 0 0 0
3 acrylic 12 CsHgO2 3-nd order | 0.03923 | -0.03038 | -0.00731 | -0.00913 | 0.00511
4 ULTEM 1.32 C37H24N20¢
5 ETFE 1.7 CoHy + CoFy
8 PVC 1.4 CoH3Cl
600
e
400 <A] ;?;:—BHC ’/'/
. (@) 2-nd order MBIR- (b) 3-rd order MBIR- © () - (a)
200 e

100 '2‘2'
0 'ﬁ
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Fig. 8. Comparison of the reconstruction accuracy of FBP, MBIR-mono,
EBHC and MBIR-BHC. Ground truth values are calculated using (6). Notice
that the MBIR-BHC reconstruction algorithm produces relatively low bias in
the reconstructed density.

consists of a water disk with radius of 90 mm, with several
insertions of radius 10 mm, as shown in Fig. 7(a). The chemical
composition of the numbered objects are listed in Table VI.
We first simulate a parallel-beam projection sinogram with
1024 detectors of 0.24 mm and 720 projection angles over
180 degrees. We do not simulate the noise and scatter effects.
All the reconstructed images are 512x512 over the 250 mm
FOV. For MBIR-BHC, the 2-nd order polynomial model is used
and the segmentation threshold 7" is 800 HU. The reconstruc-
tion results using different methods are presented in Fig. 7.

BHC BHC

Fig. 9. Comparison of 2-nd order MBIR-BHC and 3-rd order MBIR-BHC. The
display window for the reconstructed images is [—200 200] HU. The display
window for the difference image is [—50 50] HU. Notice that the 2-nd order
model produces good results with lower complexity than the 3-rd order model.

Notice that severe streaks through the high density objects are
present in FBP and MBIR-mono reconstructions. In the EBHC
reconstruction, streaks are suppressed but there are still notice-
able artifacts remaining. In contrast, MBIR-BHC significantly
reduces the streak artifacts. A corresponding improvement is
also observed in the difference images. Fig. 8 shows a com-
parison of the mean reconstructed values of the objects # 1-5
as compared to the theoretically correct values obtained from
equation (6). The three algorithms of FBP, MBIR-mono and
MBIR-BHC all produce attenuation coefficients with approx-
imately equal accuracy, while EBHC introduces a bias in the
mean reconstructed values.

Using the same simulated data from the multi-material phan-
tom, we further investigate the effect of the order of the
polynomial model in MBIR-BHC. Table VII lists the values
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(a) FBP (b) MBIR-mono (c) MBIR-BHC

Fig. 10. Comparison of FBP, MBIR-mono and MBIR-BHC reconstructions
on noisy sinogram. The display window for the reconstructed images is
[—200 200] HU. Notice that the MBIR-BHC algorithm robustly removes
beam-hardening artifacts in the presence of simulated measurement noise.
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breast
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soft tissue
water

air

(b) attenuation map

Fig. 11. Material composition of the modified NCAT phantom. Top row: color-
coded material composition of the phantom. Bottom row: the attenuation map
of the phantom. The display window is [—200, 400] HU.

of the polynomial coefficients estimated by the 2-nd and 3-
rd order MBIR-BHC. Fig. 9 compares the result of 2-nd and
3-rd order models for MBIR-BHC. By visual comparison, the
3-rd order MBIR-BHC reconstruction is slightly better than
the 2-nd order result and the subtle improvement can be also
noticed in the difference image. However, increasing parame-
ters in higher order models may lead to the over-fitting of the
projection data and also requires more computation. In prac-
tice, we have found that the 2-nd order MBIR-BHC model is
sufficient to provide good results.

Fig. 10 illustrates the robustness of the MBIR-BHC algo-
rithm to sensor noise using the multi-material disk phantom.
Our simulated data uses independent additive Gaussian noise
with inverse variances given by (35) using A\ ; = 20000 for all
i=1,...,M and 02 = 16. For the purposes of this particu-
lar comparison, we adjust the regularization in the MBIR-mono
and MBIR-BHC to approximately match the noise variance of
FBP. In practice, this means that the MBIR reconstructions are
under-regularized since generally speaking MBIR can produce
the same resolution as FPB at lower noise levels. Notice that

TABLE VIII
CHEMICAL COMPOSITION OF VARIOUS MATERIALS USED
IN THE SIMULATION

material | density (g/cc) | chemical composition
water 1.0 H2O
H: 10.2%, C: 14.3%, N: 3.4%,
soft tissue 1.06 0O: 70.8%, Na: 0.2%, P: 0.3%,
S: 0.3%, CI: 0.2%, K: 0.3%
H: 10.2%, C: 11.0%, N: 3.3%,
blood 106 O: 74.5%, Na: 0.1%, P: 0.1%,
S: 0.2%, CI: 0.3%, K: 0.2%,
Fe: 0.1%
H: 3.4%, C: 15.5%, N: 4.2%,
bone 1.92 O: 43.5%, Na: 0.1%, Mg: 0.2%,
P: 10.3%, S: 0.3%, Ca: 22.5%
H: 10.6%, C: 33.2%, N: 3.0%,
breast 1.02 0: 52.7%, Na: 0.1%, P: 0.1%,
S: 0.2%, CI: 0.1%
polyethylene 0.93 H: 14.372%, C: 85.628%
aluminum 2.7 Al
titanium 4.506 Ti
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Fig. 12. Comparison of the reconstruction accuracy of FBP, MBIR-mono,
EBHC and MBIR-BHC on NCAT phantom. Ground truth values are calculated
using (6). Notice that the MBIR-BHC reconstruction algorithm produces the
lowest bias in estimated density among the tested algorithms.

both the FBP and MBIR-mono reconstructions contain streaks,
while the MBIR-BHC effectively removes the streak artifacts
even in the presence of noise.

3) Modified NCAT Phantom: The third phantom we inves-
tigate is based on the NCAT phantom [48]. It has a FOV of
320 mm, and we manually inserted several regions of high and
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(e) Difference: (a) - 11(b)

(f) Difference: (b) - 11(b)

(g) Difference: (c) - 11(b) (h) Difference: (d) - 11(b)

Fig. 13. Comparison of FBP, the generic MBIR with mono-energetic X-ray model (MBIR-mono), and MBIR-BHC reconstructed images. First row: the recon-
structed images. Second row: the difference images. The display window for the reconstructed images is [—200 400] HU. The display window for the difference
images is [—200 200] HU. Notice that the MBIR-BHC algorithm reduces visible beam-hardening artifacts in the reconstruction of the simulated human phantom.
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Fig. 14. Convergence of MBIR-BHC algorithm. The plots show (a) value of the exact objective function of (40); (b) the change of the objective function relative
to the converged value; (c) the average change of pixel value; and (d) estimated polynomial coefficients, after each iteration.

low density materials, such as soft tissue, bone, blood and met-
als, indicated in Fig. 11. The densities and the mass attenuation
coefficients of the materials used in the phantoms are obtained
from the NIST XCOM database [49] and the chemical com-
positions of these materials are listed in Table VIII according
to [50].

The simulated parallel-beam geometry has 1400 detectors
with 0.23 mm spacing and 720 projection angles over 180
degrees. We do not simulate the noise and scatter effects. All the
reconstructed images are 512x512. For MBIR-BHC, the 2-nd
order polynomial model is used and the segmentation threshold
T is 800 HU. The reconstruction results are shown in Fig. 13.

Due to the presence of high density metal insertions, the
FBP reconstruction exhibits several streaking artifacts crossing
through the image, which degrades the overall image qual-
ity. While the generic MBIR-mono reconstruction generally
improves the image quality and smooths out several degraded
regions, it fails to eliminate the streaks connecting the high den-
sity regions, such as bone and metal. The EBHC method is not
as effective on this data set, probably due to the presence of
multiple high density objects. By comparison, the MBIR-BHC

method dramatically reduces most of the streaking artifacts,
while producing a better rendering in uniform regions and pre-
serving the shape of edges as well. The difference between the
reconstruction and the ground truth also demonstrates the effec-
tiveness of MBIR-BHC in removing streaks. We also plot the
mean pixel values of different regions in the phantom versus
their theoretical values in Fig. 12. In the low attenuation region,
FBP, MBIR-mono and MBIR-BHC give roughly equal accu-
racy estimate, while EBHC tends to under estimate the pixel
value. In the high attenuation regions, all the methods pro-
duce lower accuracy estimates of density, but the MBIR-BHC
method produces the most accurate results.

B. Real Scan Data Results

In this section, we apply different methods to a real X-ray
CT scan dataset taken of actual baggage with high and low
density objects. The dataset is acquired from the Imatron C300
CT scanner, provided by the ALERT DHS center, Northeastern
University, USA. The parallel-beam sinogram has 1024 detec-
tors with 0.46 mm spacing and 720 projection angles over 180
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(a) FBP

(d) Difference: (c) - (a)

(b) MBIR-mono

(e) Difference: (c) - (b)

(f) MBIR-BHC segmentation mask

Fig. 15. Comparison of FBP, the generic MBIR with mono-energetic X-ray model (MBIR-mono), MBIR-BHC, on the real X-ray CT data of a scanned baggage.
Top row: the reconstructed images. Bottom row shows the segmentation mask of MBIR-BHC and difference images between MBIR-BHC and FBP, difference
between MBIR-BHC and MBIR-mono. The display window for the reconstructed images (a)-(c) is [—~1000, 1000] HU. The display window for the difference
images (d)-(e) is [—500, 500] HU In (d), white pixels indicate the pixels which are classified as the high density materials in MBIR-BHC. Notice that the
MBIR-BHC algorithm reduces visible beam-hardening artifacts such as streaking on this real data set.

degrees, rebinned from a fan-beam scan. The projection data
is water pre-corrected. The reconstructed images have a FOV
of 475 mm with the resolution of 512x512. We use the 2-nd
order MBIR-BHC and choose the segmentation threshold 7" to
be 800 HU.

We first investigate the convergence behavior of the MBIR-
BHC algorithm. Fig. 14(a) plots the objective function after
each iteration of optimization over x, b and . As we have
described in Section III, the objective function (40) is approx-
imated by the quadratic approximation (43) using the second
order Taylor series expansion with the expansion point itera-
tively refined during the reconstruction. While we point out
that this approximation is not guaranteed to be an upper
bound of the original objective function, which would ensure
the convergence, we see from Fig. 14(a) that in practice the
objective function decreases, which suggests that the proposed
strategy is effective for this high order non-linear optimiza-
tion problem, and yields convergent results empirically. In
Fig. 14(b), we plot the change of the objective function relative
to the converged value on a log scale, given by

() — cost(®®)
log (cos cos > 64)

cost(c®)

where cost(>) is the converged value of the objective function.
Note that the change is also monotonic decreasing. Fig. 14(c)
plots the average pixel change after each iteration in log
scale. and Fig. 14(d) plots the coefficients of the correction

polynomial after each iteration. As shown in the figures, the
average pixel change decreases to zero and the coefficients
of the polynomial converge to a stable estimate after a few
iterations.

Fig. 15 shows the reconstruction results of this baggage
scan dataset using different methods. By visual comparison
to FBP and generic MBIR-mono, the MBIR-BHC method
reduces the streaking and blooming artifacts significantly and
produces reconstructions with higher resolution. This can be
clearly observed in the zoomed-in region in Fig. 16. The metal
baggage handle causes a severe blooming artifact in the FBP
image, and affects the nearby low density uniform regions as
well. While the generic MBIR-mono algorithm recovers a few
structures with better detail, it does not effectively address
the artifacts due to the metal and many streaks remain on
the final reconstructed image. On the other hand, the MBIR-
BHC algorithm was able to produce more accurate and clearer
structures. The streaking artifacts in the uniform attenuation
regions, caused by the nearby high-density metal, are signifi-
cantly reduced in the reconstructed images of the MBIR-BHC
algorithm. Also, MBIR-BHC improves the overall resolution.
Fig. 15(d) illustrates the segmentation mask of MBIR-BHC
after the reconstruction is finished. It can be observed that
the algorithm correctly identifies the high density regions and
eliminates the segmentation noise.

We also include the normalized error sinograms obtained
from the generic MBIR-mono and MBIR-BHC algorithms in
Fig. 17 which illustrates the improvement of MBIR-BHC due
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(c) MBIR-BHC

Fig. 16. Comparison of FBP, MBIR-mono, MBIR-BHC on the real X-ray CT
data of a scanned baggage. Images are zoomed-in a region including metal
objects. The display window is [—1000, 1000] HU. Notice that the MBIR-BHC
reconstructions have reduced streaking, more uniform homogeneous regions,
and less blooming of metal in this real data set.

to the proposed X-ray model with the polynomial parametriza-
tion. The normalized error sinogram is the difference between
the sinogram data and the forward projection of the image, nor-
malized by the weighting coefficients. If the forward model
is correct and the reconstruction is a least-weighted-squares
fit to the data, this normalized error should appear as approx-
imately white noise with unit variance across the sinogram.
Mathematically, for the generic MBIR algorithm, the normal-
ized error sinogram is calculated as

N
GEMBIR-monO) _ \/UTL yi — Z AL,jl] , (65)
j=1

and for the proposed MBIR-BHC algorithm, it is

MBIR-BHC
! ) = wi(yi — i)

As seen from the figure, the MBIR-BHC shows a more
uniform normalized error sinogram map with less fluctuation.
Several traces due to the presence of the metal in the error
sinogram of MBIR-mono nearly disappear in MBIR-BHC.

As seen from the results, MBIR-BHC has improved the
overall image quality and significantly reduced the streaking
artifacts due to beam hardening of the high density materials.
Nonetheless, MBIR-BHC does not remove all beam-hardening
artifacts. The remaining artifacts may be due to various reasons,
including inaccurate modeling. For real scan data, other phys-
ical effects, such as scattering, may also influence the results.

(66)
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Fig. 17. Comparison of MBIR-mono and MBIR-BHC on the normalized error
sinogram

While Fig. 6 indicates that the 2-nd order MBIR-BHC for-
ward model is more accurate, the 3-rd order model shows little
further improvement.

V. CONCLUSION

In this paper, we have presented a model-based iterative
method for simultaneous image reconstruction and beam hard-
ening correction (MBIR-BHC) which does not require any
prior knowledge of the nonlinear characteristics of the sys-
tem. The main idea is to jointly estimate the reconstruction and
the beam hardening correction polynomial using an alternating
optimization approach. The method is based on the assump-
tion that distinct materials can be separated according to their
densities. Under this assumption, the proposed method simulta-
neously estimates the reconstruction, the material segmentation
mask, and the joint polynomial correction function of different
material projections. Two separated projections are computed
implicitly based on the low and high density materials dur-
ing the iterative process. Therefore, no system information is
needed and the correction is adapted to the dataset being used
automatically. The experimental results on both the simulated
and real dataset demonstrated the efficiency of the proposed
algorithm in reducing several artifacts in the reconstructed
image, such as streaking.

APPENDIX A
DERIVATIONS OF THE RELATIONSHIPS IN SECTION II

In this appendix, we derive the equations (14), (24)—(25), and
(29)—(31) in Section II.
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To see (14), we differentiate (11) and obtain
d (o) Jo S(E)feermEride
dp MY o 8(E)e—rm@migg 7=
 Jp S(E)em M Erip(€)dE
o f]R S’(g)e—rM(f)pidg

= / S(E)rpm(E)dE =1

pi=0 = —

pi=0

where the last equality is the result of (9).
To see (24), we differentiate (19) and obtain

0
V1,0 = ap h(pr.i;0)lp, ;=0

52

= - 0 IOg (/ g(g)e_TL(g)pL’idg) |pL,i:0
R

opL,i
_ Jo S(E)e e ©Epip (£)dE
Jo S(E)e—rrEpide

= / S(E)rp(E)dE =1
R

pL,i=0

and (25) can be derived in the similar manner, changing the
differentiation with respect to pg ;.
For (29), plugging pr, ; = pa,; = 0 into (27), we obatin

Y00 = frp <—log (/R S(g)eodf:)) =f710)=0. (67)

Finally, to see (30), we apply the chain rule using (15) and
(24) and obtain

h(prL.i;0)lp, ;=0

9
71’0781)»

L.t
_ dfuf (h(pr:,0)) 0
dh(pr,i,0)  Opr

= / S(E)rp(£)dE =1
R

h(pL,iv 0) ‘PL.,i:O

and (31) can be derived in the similar manner, changing the
differentiation with respect to pg ;.

APPENDIX B
DERIVATION OF THE ICD UPDATE EQUATIONS

In this appendix, we derive the ICD pixel update in detail. We
rewrite (40) as a function of the pixel x;, drop the terms which
are independent of x;, and obtain the 1D optimization problem
over x; given by

&; = argmin

- 1 -
91(u — I'j) + 592(’[1, — .’Ej)g
u>0

+ B((u=T) (1 =bj) + (T = u) 4 b))

+ Z ajep(u — )

kedyj

(68)

T T

(2) bj =0 by b =1

Fig. 18. Illustration of the solutions of (74) and (75). The blue solid lines depict
the right side of the normal equations. The red dashed lines depict the left
side of the normal equations for different D1 and D2. The solutions are the
intersections of the blue and red lines.

where 7 is the previous pixel value and 6, and 60, are given
by (49) and (50). Following the similar strategy in [36], we
simplify the optimization by replacing the function p with a
quadratic substitute functional ¢ given by

q(u —z; %5 — ) = ajp(u—o5)* + Cjx (69)
where a; 5, and C} , are given by
p'(Z; — w)
- TR 70
Qj k Q(i‘] — xk) ’ ( )
- a; -
Cir=p(&; —ak) — £l (; — xk)2. (71)

2

It can be easily shown that this function ¢ is an upper bound
of p, satisfying the two constraints given by

(72)

q(u — o3 35 — xp) > plu — x),
P (73)

q(Tj — ;T — xx) = p(Tj — x).

Therefore, such substitution will not alter the optimal solu-
tion when the algorithm converges. Substituting (69) into (68)
and dropping the terms which do not depend on u, we obtain
the 1D optimization (47) with a;7 & given by (48).

To derive the optimal solution to (47), we separate the
cases when b; = 0 or 1. We first suppose b; = 0 and zero the
derivative of (47) to obtain the normal equation given by

91 - 92§:j -2 Z a;7kzk + 92 + 2 Z OZ;7k u
k€dj kedj
= —pstep(u —T)
Dy + Dyu = —fstep(u — T)

(74

where step(-) is the unit step function, and Dy and Ds are given
by (51) and (52). The solution to (74) can be obtained using
the shrinkage operator in solving LASSO and [; regularized
problems [51], and the closed form solution is given by (53).
For the case when b; = 1, we have the normal equation given
by

D1 + Dou = Bstep(T — u). (75)
and the update equation in this case becomes (55). Fig. 18
illustrates these two cases graphically.
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