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TIMBIR: A Method for Time-Space Reconstruction
From Interlaced Views
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Abstract—Synchrotron X-ray computed tomography (SXCT)
is increasingly being used for 3-D imaging of material samples
at micron and finer scales. The success of these techniques has
increased interest in 4-D reconstruction methods that can image
a sample in both space and time. However, the temporal resolu-
tion of widely used 4-D reconstruction methods is severely limited
by the need to acquire a very large number of views for each
reconstructed 3-D volume. Consequently, the temporal resolution
of current methods is insufficient to observe important physical
phenomena. Furthermore, measurement nonidealities also tend to
introduce ring and streak artifacts into the 4-D reconstructions.
In this paper, we present a time-interlaced model-based iterative
reconstruction (TIMBIR) method, which is a synergistic combi-
nation of two innovations. The first innovation, interlaced view
sampling, is a novel method of data acquisition, which distributes
the view angles more evenly in time. The second innovation is a 4-D
model-based iterative reconstruction algorithm (MBIR), which
can produce time-resolved volumetric reconstruction of the sam-
ple from the interlaced views. In addition to modeling both the
sensor noise statistics and the 4-D object, the MBIR algorithm
also reduces ring and streak artifacts by more accurately model-
ing the measurement nonidealities. We present reconstructions of
both simulated and real X-ray synchrotron data, which indicate
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that TIMBIR can improve temporal resolution by an order of
magnitude relative to existing approaches.

Index Terms—Compressed sensing, interlaced views, MBIR,
optimization, ring artifacts, streak artifacts, synchrotron, time-
space imaging, X-ray computed tomography, zingers, 4D recon-
struction.

I. INTRODUCTION

F OUR-DIMENSIONAL synchrotron X-ray computed
tomography (4D-SXCT) is enabling scientists to study a

wide variety of physical processes such as solidification and
solid-state phase transformations in the field of material science
[1], [2]. In contrast to conventional CT, 4D-SXCT produces
time-resolved three-dimensional volumetric reconstruction of
the sample. The high intensity and strong collimation of syn-
chrotron radiation makes it especially suitable for high speed
imaging of a wide variety of samples at the micron scale [1]–
[3]. However, in-situ 4D imaging using SXCT still remains
a major challenge owing to limitations on the data acquisi-
tion speed [1]. Moreover, impurities in the scintillator and
imperfections in the detector elements cause ring artifacts in
the reconstruction [4], [5]. Furthermore, detector pixels occa-
sionally get saturated by high energy photons (often called
“zingers”) which cause streak artifacts in the reconstruction
[5], [6].

The traditional approach to 4D-SXCT is to acquire a sequence
of parallel beam projections of the object, which is rotated at
a constant speed, at progressively increasing equi-spaced view
angles (henceforth called progressive view sampling) as shown
in Fig. 1. Typically, the projections in each π radians rotation
are grouped together and reconstructed into a single 3D volume
using an analytic reconstruction algorithm such as filtered back
projection (FBP) [7], [8] or a Fourier domain reconstruction
method [9]–[11]. The time sequence of 3D reconstructions
then forms the 4D reconstruction of the object.

Unfortunately, this traditional approach based on progressive
view sampling and analytic reconstruction severely limits the
temporal resolution of 4D reconstructions. The number of 3D
volumes (henceforth called time samples) of the 4D reconstruc-
tion per unit time is given by Fs = Fc/Nθ where Nθ is the
number of views used to reconstruct each time sample, and Fc is
the data acquisition rate i.e., the rate at which projection images
are collected. The maximum data acquisition rate, Fc, depends
on a wide variety of hardware constraints such as the camera
frame rate, the data transfer rate, buffer memory sizes, etc. The
number of views, Nθ, required for spatial Nyquist sampling of
the projection data is π/2 times the number of detector pixels,
Np, in the sensor’s field of view perpendicular to the rotation
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Fig. 1. Illustration of data acquisition for 4D-SXCT. A parallel beam of X-rays
from a synchrotron is used to repeatedly image an object rotating at a constant
speed. The intensity of the attenuated X-ray beam after passing through the
object is measured by a 2D detector.

axis [7]. However, in practice, for Nyquist sampling the num-
ber of views, Nθ, is chosen to be approximately equal to the
number of cross-axial sampled pixels, Np [7]. This means that
in order to reconstruct a single time sample from a sensor with
a frame size of 1024× 1024 (i.e., a 1 mega-pixel sensor) one
needs Nθ = 1024 views of the object, resulting in a temporal
reconstruction rate that is reduced by a factor of 1024 relative
to the data rate, Fc. Consequently, the data rate becomes the
limiting factor on the temporal resolution in a typical 4D-SXCT
imaging system.

In order to increase the temporal reconstruction rate, either
the number of projections per rotation can be reduced or the
range of view angles used for reconstruction can be decreased.
However, if the number of views per rotation is reduced the
signal is under-sampled and analytic reconstruction algorithms
produce substantial artifacts due to aliasing [7], [12]–[14].
If the number of view angles used for a single reconstruc-
tion is reduced, the Fourier space of the object is not fully
sampled which results in a missing wedge of spatial frequen-
cies [15]. With analytic reconstruction algorithms, this missing
wedge results in time-varying non-isotropic resolution that will
typically produce severe reconstruction artifacts. Therefore,
using conventional reconstruction algorithms with a traditional
progressive view sampling approach presents a fundamental
limitation on the temporal resolution that can be achieved for
a given spatial resolution.

In order to improve the quality of reconstruction, several
new sampling strategies have been proposed for other tomo-
graphic applications. Using 2D Nyquist sampling theory, it has
been shown that using a hexagonal sampling strategy [16]–
[18] for the Radon transform the number of sample points
can be reduced. Alternatively, by formulating the data acqui-
sition as a time-sequential process, Willis et al. show that for
an object with localized temporal variation the sampling rate
can be reduced using an optimally scrambled angular sam-
pling order [19], [20]. Another novel angular sampling strategy
called equally sloped tomography [21], has been shown to
produce superior quality reconstructions when reconstructing
from a set of projections spaced equally in a slope parame-
ter rather than angle. In [22], Zheng et al. present a method
of reducing the number of projections by identifying favorable
views based on prior knowledge of the object. In [23]–[27],
the authors discuss different compressed sensing approaches for
tomography. In general, the methods which change the angular
order are optimal when the time interval between successive

views is independent of their angular separation. Thus, opti-
mal view sampling strategies have been shown to improve the
reconstruction quality, even with conventional reconstruction
algorithms.

An alternate approach to improving reconstruction quality
is to use more advanced model-based iterative reconstruc-
tion (MBIR) methods, which are based on the estimation of
a reconstruction which best fits models of both the sensor
measurements (i.e., the forward model) and the object (i.e.,
prior model) [5], [28]–[30]. These 3D reconstruction meth-
ods have been shown to be very effective when the angular
range is limited [31] and also when the number of views is
less than that required by Nyquist sampling criterion [5]. In
the context of medical CT, several authors have also shown
that modeling the temporal correlations [32]–[36] in addition
to modeling the spatial correlations improves the quality of 4D
MBIR reconstructions.

In this paper, we propose an approach to 4D reconstruc-
tion of time varying objects, which we call time interlaced
model based iterative reconstruction (TIMBIR). TIMBIR is the
synergistic combination of a novel interlaced view sampling
technique with an innovative model-based iterative reconstruc-
tion (MBIR) algorithm. In [37] we present preliminary results
using the TIMBIR method and in [38] we use TIMBIR to
determine the morphology of a growing metallic dendrite in
4D. In the new interlaced view sampling method, all the views
typically acquired over half a rotation using progressive view
sampling are instead acquired over multiple half-rotations.
Intuitively, interlaced view sampling spreads the view angles
more evenly in time as opposed to the conventional progres-
sive view sampling method that groups views at nearby angles
together in time. Nonetheless, interlaced view sampling when
used with conventional analytic reconstruction methods does
not result in any gains since the number of views in each half-
rotation is insufficient to achieve Nyquist sampling for a single
reconstruction of the object. Consequently, analytic reconstruc-
tion methods produce severe artifacts when used to reconstruct
the interlaced views at higher temporal rates.

In order to reconstruct the data acquired using the inter-
laced view sampling method, we propose a new 4D MBIR
algorithm. In addition to modeling the measurement noise
and spatio-temporal correlations in the 4D object, the MBIR
algorithm reduces ring and streak artifacts by modeling the
detector non-idealities [4], [6] and measurement outliers caused
by high energy photons (called zingers) [5]. We adapt our
forward model for 3D MBIR introduced in [5] to the current
4D framework and combine it with a modified q-generalized
Gaussian Markov random field (qGGMRF) [39] based prior
model, which models the spatio-temporal correlations in
the reconstruction, and formulate the MBIR cost function.
We note that our qGGMRF prior model is similar to the
total-variation (TV) prior used in compressive sensing (CS)
methods [24], [27]. The parameters of our qGGMRF prior
model can be adjusted to result in the TV prior that is widely
used in CS methods. We then present a fast distributed parallel
multi-resolution algorithm based on surrogate functions to
minimize this cost function. The source code for our algorithm
is available online at https://engineering.purdue.edu/~bouman/
software/tomography/TIMBIR/.
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Fig. 2. Illustration of interlaced view sampling pattern for different values of
K. (a–d) are plots of θn mod (π) vs. time index, n, for K = 1, 2, 4, and
16. The arrows show the relative difference between the angular values across
sub-frames.

The organization of this paper is as follows. In Section II, we
present the interlaced view sampling technique. In Section III,
we combine the synchrotron measurement model with the prior
and formulate the MBIR cost function. In Section IV, we pro-
pose an algorithm to minimize the MBIR cost function. In
Section V, we present a fast parallel distributed MBIR algo-
rithm. In Section VI, we present results using both simulated
and real datasets.

II. INTERLACED VIEW SAMPLING FOR TOMOGRAPHY

In order to satisfy the spatial Nyquist sampling requirement
for each 3D time sample of a 4D reconstruction, it is typi-
cally necessary to collect approximately Nθ = Np progressive
views, where Np is the number of sampled pixels perpendicu-
lar to the axis of rotation [7]. In the traditional approach, these
Nθ progressive views are taken in sequence while the sample is
rotated continuously over π radians. The object is then recon-
structed at a temporal rate of Fs = Fc/Nθ where Fc is the data
acquisition rate.

In contrast to this approach, we propose an interlaced view
sampling method where each frame of data consisting of Nθ

distinct views are acquired over K interlaced sub-frames (see
Fig. 2). Each sub-frame of data then consists of Nθ/K equally
spaced views, but together the full frame of data contains all Nθ

distinct views of the object. For a continuously rotating object,
the formula which gives the view angle as a function of the
discrete sample index, n, is given by

θn =

[
nK + Br

(⌊
nK

Nθ

⌋
mod K

)]
π

Nθ
, (1)

where K is a power of 2, b = Br(a) is the bit-reverse func-
tion which takes the binary representation of the integer a and
reverses the order of the bits to form the output b [40]. It is
interesting to note that there exist ordered subset methods [41]

for 3D tomography which use a similar bit-reversal technique
to determine the grouping of projection views. If we write
a in base 2 expansion as a =

∑l−1
i=0 bi2

i where l = log2(K),
then b =

∑l−1
i=0 bi2

l−1−i. If the angular range of the projec-
tions is limited to 2π radians, then the interlaced view angles
are given by

θn =

[(
n mod

2Nθ

K

)
K + Br

(⌊
nK

Nθ

⌋
mod K

)]
π

Nθ
.

(2)

If the angular range of the projections is limited to π radians,
then the interlaced view angles are given by

θn =

[(
n mod

Nθ

K

)
K + Br

(⌊
nK

Nθ

⌋
mod K

)]
π

Nθ
.

(3)

It is important to note that for the same index, n, the view
angles generated by equations (1), (2), and (3) are all sepa-
rated by an integer multiple of π radians. Hence, the projections
obtained using equations (1), (2), and (3) are essentially the
same. Fig. 2 compares progressive views with interlaced views
and also highlights the interlacing of view angles across sub-
frames. The object is then reconstructed at a temporal rate of
Fs = rFc/Nθ where r is the number of time samples of the
4D reconstruction in a frame. In TIMBIR, we reconstruct the
object at a temporal rate which is r times the conventional rate
of Fs = Fc/Nθ. We typically set the parameter r equal to the
number of sub-frames, K.

In TIMBIR, the conventional approach of reconstructing
using progressive views is obtained when r = K = 1. We will
show empirically that we can significantly improve the spatial
and temporal reconstruction quality by increasing the value of
K and r while using the same value of Nθ. Thus, we show
that we can get significantly improved reconstruction quality
by changing the view sampling method without increasing the
amount of input data.

In progressive view sampling, the entire set of Nθ distinct
views is acquired over a π radians rotation of the object.
However, in interlaced view sampling all the distinct Nθ views
are acquired over a Kπ radians rotation of the object. Thus, if
Nθ and Fc are fixed, then increasing the value of K increases
the rotation speed of the sample. We will show that increas-
ing the value of K can also improve the reconstruction quality.
However, in some cases, the increased rotation speed of the
sample may not be desirable. So in these cases, the parame-
ter K can be adjusted to balance the need for improved image
quality with the need to limit the sample’s rotation speed. While
increasing the rotation speed and reducing Nθ appears to be
an intuitive step for increasing the temporal resolution of the
reconstructions, we will empirically demonstrate that interlac-
ing the views will give us significant improvements in the
temporal reconstruction quality.

III. FORMULATION OF MBIR COST FUNCTION

The goal of SXCT is to reconstruct the attenuation coeffi-
cients of the sample from the acquired data. We reconstruct
the attenuation coefficients of the object from the acquired
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data using the MBIR framework. The MBIR reconstruction is
given by(

x̂, φ̂
)
= argmin

x,φ
{− log p(y|x, φ)− log p(x)}, (4)

where p(y|x, φ) is the pdf of the projection data, y, given the
object, x, and the unknown system parameters, φ, and p(x) is a
pdf for the 4D object.

A. Measurement Model

We begin by deriving a likelihood function p(y|x, φ) for the
projections, y, from a time varying object, x. We model each
voxel of the object as an independent piecewise constant func-
tion in time such that there are r equi-length reconstruction
time samples in each frame. Thus, the projections ranging from
(j − 1)Nθ/r + 1 to jNθ/r are assumed to be generated from
the jth time sample. The vector of attenuation coefficients of
the object at the jth time sample is denoted by xj .

A widely used model for X-ray transmission measurements
is based on Beer’s law and Poisson counting statistics for the
measurement [42]. Using this model, if λn,i is the measure-
ment at the ith detector element and nth view and if λD,i is
the measurement in the absence of the sample, then an estimate

of the projection integral is given by yn,i = log
(

λD,i

λn,i

)
. If we

denote y to be the vector of projections yn,i and x to be the
vector of attenuation coefficients at all time steps, then using
a Taylor series approximation to the Poisson log-likelihood
function [43] it can be shown that,

− log p (y|x) ≈ 1

2

L∑
j=1

nj−1∑
n=nj−1

M∑
i=1

×
(
(yn,i −An,i,∗xj)

√
Λn,i,i

σ

)2

+ f(y), (5)

where nj = jNθ

r + 1, L is the total number of time samples in
the reconstruction, An,i,∗ is the ith row of the forward projec-
tion matrix An, Λn is a diagonal matrix modeling the noise
statistics, M is the total number of detector elements, and
f(y) is a constant that will be ignored in the subsequent opti-
mization. The variance of the projection measurement, yn,i, is
inversely proportional to the mean photon count and hence we
set Λn,i,i = λn,i [42]. Since λn,i is not equal to the photon
count but is proportional to the photon count, there exists a con-
stant of proportionality σ such that λn,i

σ2 is the inverse variance
of the projection measurement, yn,i.

While this model is useful in several applications, it does not
account for the non-idealities in the synchrotron measurement
system. In particular, the log-likelihood term in (5) corresponds
to a quadratic penalty on the weighted data mismatch error and
does not account for the occurrence of zingers [5]. The zinger
measurements correspond to a distribution with heavier tails
than that corresponding to (5). Hence we change the quadratic
penalty in (5) to a generalized Huber penalty (see Fig. 3) of the
form [5], [44]

βT,δ(z) =

{
z2 |z| < T

2δT |z|+ T 2(1− 2δ) |z| ≥ T,
(6)

Fig. 3. Plot of the generalized Huber function βT,δ used in the likelihood
term with T = 3 and δ = 1

2
. Projections with large data mismatch error are

penalized thereby reducing their influence in the overall cost function.

where T and δ are parameters of the generalized Huber func-
tion. In our model, the parameters of the generalized Huber
function are chosen such that 0 < δ < 1 and T > 0. The gener-
alized Huber function is non-convex in this range of parameter
values. This penalty implies that if the ratio of the data mis-
match error to the noise standard deviation is greater than the
parameter T , then the measured projection corresponds to a
zinger.

Next, we model the non-idealities in the measurement system
that cause ring artifacts. It has been shown [8] that the non-
idealities that cause ring artifacts can be modeled via an additive
detector dependent offset error, di, in the projection measure-
ments, yn,i. Hence, if we assume an unknown offset error di
in the projection, yn,i, then an estimate of the line integral is
given by,

ỹn,i = yn,i − di. (7)

The offset error, di, is typically not known from the measure-
ments and hence we jointly estimate it during reconstruction.
Thus, the new likelihood function that models the offset error
and the zinger measurements is given by

p(y|x, d, σ) = 1

Z (σ)
exp {−U(y, x, d, σ)} , (8)

where

U(y, x, d, σ) =
1

2

L∑
j=1

nj−1∑
n=nj−1

M∑
i=1

βT,δ

(
(yn,i −An,i,∗xj − di)

√
Λn,i,i

σ

)
, (9)

Z(σ) is a normalizing constant and d = [d1 · · · dM ] is the vec-
tor of all offset error parameters. Since (8) is a pdf, we can show

that Z(σ) = Z(1)σML
Nθ
r using the property that (8) integrated

over y should be equal to one [45]. Thus, the log-likelihood
function is given by

− log p(y|x, d, σ) = U(y, x, d, σ) +ML
Nθ

r
log(σ) + f̃(y),

(10)

where f̃(y) is a constant which is ignored in the subsequent
optimization. We note that when δ = 0, p(y|x, d, σ) is not a
density function since it does not integrate to 1 and hence we
assume δ > 0 in the rest of the paper.
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B. Prior Model

We use a q-generalized Gaussian Markov random field
(qGGMRF) [39] based prior model for the voxels. The prior is
used to model the 4D object in time as well as space. Using this
model, the logarithm of the density function of x is given by

− log p(x) =
L∑

j=1

∑
{k,l}∈N

wklρs(xj,k − xj,l)

+

P∑
k=1

∑
{j,i}∈T

w̃jiρt(xj,k − xi,k) + constant,

(11)

where

ρs(Δ) =
ΔtΔ

3
s

∣∣∣ Δ
Δsσs

∣∣∣2
cs +

∣∣∣ Δ
Δsσs

∣∣∣2−p , ρt(Δ) =
ΔtΔ

3
s

∣∣∣ Δ
Δtσt

∣∣∣2
ct +

∣∣∣ Δ
Δtσt

∣∣∣2−p ,

and xj,k is the kth voxel of the object at time sample j, P is
the total number of voxels in each time sample, N is the set
of all pairwise cliques in 3D space (all pairs of neighbors in a
26 point spatial neighborhood system), T is the set of all pairs
of indices of adjacent time samples (two point temporal neigh-
borhood system), p, cs, ct, σs and σt are qGGMRF parameters,
Δs is a parameter proportional to the side length of a voxel
and Δt is a parameter proportional to the duration of each
time sample in the reconstruction. The weight parameters are
set such that wkl ∝ |k − l|−1, w̃ji ∝ |j − i|−1, and normalized
such that

∑
l∈Nk

wkl +
∑

i∈Tj
w̃ji = 1, where Nk is the set of

all spatial neighbors and Tj is the set of all temporal neighbors
of voxel xj,k. The terms Δs and Δt in the prior model ensures
invariance of the prior to changing voxel sizes [46].

C. MBIR Cost Function

By substituting (10) and (11) into (4), we get the following
MBIR cost function,

c(x, d, σ) =
1

2

L∑
j=1

nj−1∑
n=nj−1

M∑
i=1

βT,δ

(
(yn,i −An,i,∗xj − di)

√
Λn,i,i

σ

)

+
L∑

j=1

∑
{k,l}∈N

wklρs(xj,k − xj,l)

+

P∑
k=1

∑
{j,i}∈T

w̃jiρt(xj,k−xi,k)+ML
Nθ

r
log(σ).

(12)

The reconstruction is obtained by jointly minimizing the cost,
c(x, d, σ), with respect to x, d and σ. Additionally, we impose
a linear constraint of the form Hd = 0 to minimize any shift in
the mean value of the reconstruction. The form of the matrix H
can be adjusted depending on the application. The form of the
matrix H used in our application is described in appendix.

IV. OPTIMIZATION ALGORITHM

The cost function (12) is non-convex in x, d and σ.
Minimizing the current form of the cost function given by (12)
is computationally expensive. So, instead we use the functional
substitution approach [47], [48] to efficiently minimize (12).
Our method also ensures monotonic decrease of the cost func-
tion (12). A substitute cost function csub(x, d, σ;x

′, d′, σ′) to
the cost function c(x, d, σ) at the point (x′, d′, σ′) is a function
which bounds the cost function from above such that minimiz-
ing the substitute cost function results in a lower value of the
original cost function.

A. Construction of Substitute Function

To derive a substitute function to the overall cost we find a
substitute function to each term of the cost (12) and sum them
together to derive an overall substitute function. In particular,
we will use quadratic substitute functions, as they make the
subsequent optimization computationally simple.

A sufficient condition for a function q(z; z′) to be a substitute
function to g(z) at the point z′ is that ∀z, q(z; z′) ≥ g(z) and
q(z′; z′) = g(z′). We can prove that

QT,δ(z; z
′) =

{
z2 |z′| < T
δT
|z′|z

2 + δT |z′|+ T 2(1− 2δ) |z′| ≥ T

is a substitute function to βT,δ(z) at the point z′ by show-
ing that it satisfies the sufficiency condition [44]. If the
error sinogram is defined as ej,n,i = yn,i −An,i,∗xj − di
and e′j,n,i = yn,i −An,i,∗x

′
j − d′i is the error sinogram at

the current values of (x′, d′, σ′), then a substitute function
to βT,δ(ej,n,i

√
Λn,i,i/σ) in the original cost is given by

QT,δ

(
ej,n,i

√
Λn,i,i/σ; e

′
j,n,i

√
Λn,i,i/σ

′) [44].
A quadratic substitute function for the prior term ρs(xj,k −

xj,l) can be shown to be [28],

ρs(xj,k − xj,l;x
′
j,k − x′

j,l) =
asjkl
2

(xj,k − xj,l)
2 + bsjkl,

(13)

where

asjkl =

⎧⎨
⎩

ρ′
s(x

′
j,k−x′

j,l)

(x′
j,k−x′

j,l)
x′
j,k �= x′

j,l

ρ′′s (0) x′
j,k = x′

j,l

, (14)

and bsjkl is a constant. A quadratic substitute function for the
prior term ρt(xj,k − xi,k) can be shown to be [28],

ρt(xj,k − xi,k;x
′
j,k − x′

i,k) =
atkji
2

(xj,k − xi,k)
2 + btkji,

(15)

where

atkji =

⎧⎨
⎩

ρ′
t(x

′
j,k−x′

i,k)

(x′
j,k−x′

i,k)
x′
j,k �= x′

i,k

ρ′′t (0) x′
j,k = x′

i,k

, (16)
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and btkji is a constant. Thus, a substitute function to (12) is
given by,

csub(x, d, σ;x
′, d′, σ′)

=
1

2

L∑
j=1

nj−1∑
n=nj−1

M∑
i=1

QT,δ

(
ej,n,i

√
Λn,i,i

σ
; e′j,n,i

√
Λn,i,i

σ′

)

+ML
Nθ

r
log(σ) +

L∑
j=1

∑
{k,l}∈N

wklρs(xj,k − xj,l;x
′
j,k − x′

j,l)

+
P∑

k=1

∑
{j,i}∈T

w̃jiρt(xj,k − xi,k;x
′
j,k − x′

i,k). (17)

B. Parameter Updates used in Optimization

To minimize the cost function given by (12), we repeatedly
construct and minimize (17) with respect to each voxel, xj,k,
the offset error parameters, di, and the variance parameter, σ.
To simplify the updates, we define b′j,n,i to be a indicator vari-
able which classifies measurements as anomalous based on the
current value of the error sinogram, e′j,n,i, and the current value
of the variance parameter, σ′, as shown below,

b′j,n,i =

{
1
∣∣e′j,n,i√Λn,i,i/σ

′∣∣ < T

0
∣∣e′j,n,i√Λn,i,i/σ

′∣∣ ≥ T
(18)

and let b̃′j,n,i = 1− b′j,n,i.
1) Voxel Update: In order to minimize (17) with respect to

a voxel k at time step j, we first rewrite (17) in terms of xj,k in
the form of the following cost function,

c̃sub(xj,k) = θ̃1xj,k +
θ̃2
2

(
xj,k − x′

j,k

)2
+
∑
l∈Nk

wklρs(xj,k − x′
j,l;x

′
j,k − x′

j,l)

+
∑
i∈Tj

w̃jiρt(xj,k − x′
i,k;x

′
j,k − x′

i,k), (19)

where

θ̃1 = −
nj−1∑

n=nj−1

M∑
i=1

An,i,ku
′
j,n,i,

θ̃2 =

nj−1∑
n=nj−1

M∑
i=1

A2
n,i,kv

′
j,n,i,

u′
j,n,i =

√
Λn,i,i

σ′

[
b′j,n,ie

′
j,n,i

√
Λn,i,i

σ′ + b̃′j,n,iδT sgn
(
e′j,n,i

)]
,

v′j,n,i =

√
Λn,i,i

σ′

[
b′j,n,i

√
Λn,i,i

σ′ + b̃′j,n,i
δT∣∣e′j,n,i∣∣

]
, (20)

and sgn is the signum function. Then, the optimal update for
xj,k is obtained by minimizing (19) with respect to xj,k and is
given by

x̂j,k =

∑
l∈Nk

wkla
s
jklx

′
j,l +

∑
i∈Tj

w̃jia
t
kjix

′
i,k + θ̃2x

′
j,k − θ̃1∑

l∈Nk
wklasjkl +

∑
i∈Tj

w̃jiatkji + θ̃2
.

(21)

Fig. 4. Pseudo code to update a voxel. The voxel update is obtained by min-
imizing a quadratic substitute function in xj,k while the other variables are
treated as constants.

In order to speed up the computation of voxel updates, we
update certain groups of voxels sequentially. In particular, let
w be the axis of rotation and u− v axes be in the plane per-
pendicular to w. A voxel-line [28] consists of all voxels along
w-axis which share the same u− v coordinate. Since all voxels
along a voxel-line share the same geometry computation in the
u− v plane, we update all the voxels along a voxel-line sequen-
tially. To further speed up convergence of the algorithm, we use
the over-relaxation method [28] which forces larger updates of
voxels. The update for voxel xj,k is then given by

x′
j,k ← x′

j,k + α
(
x̂j,k − x′

j,k

)
, (22)

where α is the over-relaxation factor which is set to be equal to
1.5. Typically, α is chosen in the range of (1,2) which ensures
decreasing values of (12) [28]. The pseudo code to update a
voxel-line is shown in Fig. 4.

2) Offset Error Update: To minimize (17) with respect to d,
subject to the constraint Hd = 0, we first rewrite (17) in terms
of the offset error d as,

c̃sub(d) =
1

2

L∑
j=1

nj−1∑
n=nj−1

(
d− d̄j,n

)t
V ′
j,n

(
d− d̄j,n

)
(23)

where d̄j,n,i = e′j,n,i + d′i and V ′
j,n is a diagonal matrix such

that V ′
j,n,i,i = v′j,n,i (given by (20)). We use the theory of

Lagrange multipliers [50] to minimize (23) with respect to the
offset error parameters, di, subject to the constraint Hd = 0.
The optimal update for d is given by

d′ ← Ω−1

⎛
⎝ L∑

j=1

nj−1∑
n=nj−1

V ′
j,nd̄j,n

− Ht
(
HΩ−1Ht

)−1
HΩ−1

L∑
j=1

nj−1∑
n=nj−1

V ′
j,nd̄j,n

⎞
⎠ (24)

where Ω =
∑L

j=1

∑nj−1
n=nj−1

V ′
j,n.
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Fig. 5. Pseudo code of the 4D MBIR algorithm. The algorithm works by alter-
natively minimizing a substitute cost function (17) with respect to all the voxels,
xj,k , offset error, di, and variance parameter σ.

3) Variance Parameter Update: The update for the vari-
ance parameter, σ2, is obtained by taking the derivative of (17)
with respect to σ2 and setting it to zero. The update is then
given by,

σ′2 ← r

NθLM

L∑
j=1

nj−1∑
n=nj−1

M∑
i=1

[
e′2j,n,iΛn,i,ib

′
j,n,i

+ b̃′j,n,iδT
∣∣e′j,n,i∣∣σ′√Λn,i,i

]
. (25)

Thus, the pseudo code of the optimization algorithm to
minimize (12) is shown in Fig. 5. The sequence of costs is con-
vergent since the surrogate function approach ensures mono-
tonic decrease of the original cost function (12). We have also
empirically observed that the reconstructions converge. In some
cases, theoretical convergence proofs exist for majorization
techniques with alternating minimization [51], [52]. However,
due to the complicated nature of our cost function we have
no theoretical proof of convergence for our algorithm. Finally,
we implemented non-homogeneous iterative coordinate descent
(NHICD) [28] to improve the convergence speed of the algo-
rithm. NHICD works by more frequently updating those voxels
which have a greater need for updates. We also use multi-
resolution initialization [44], [53] in which reconstructions at
coarser resolutions are used to initialize reconstructions at finer
resolution to improve convergence speed. The multi-resolution
method transfers the computational load to the coarser scales
where the optimization algorithm is faster due to the reduced
dimensionality of the problem. Furthermore, we use bilinear
interpolation to up-sample reconstructions at coarser resolu-
tions to finer resolutions.

C. Algorithm Initialization

Since the MBIR cost function is non-convex, using a reason-
able initial estimate is important to obtain a reasonable solution.

At the coarsest scale of the multi-resolution algorithm, the vari-
ance parameter, σ, is initialized to one, the offset error, di, is
set to zero and all voxels are initialized to zero. Furthermore,
to prevent the algorithm from converging to a local minimum,
we do not update the offset error, di, and variance parameter, σ,
at the coarsest scale. At the ith multi-resolution stage, the prior
model parameter Δs is set to 2S−i where S is the total number
of multi-resolution stages and the parameter Δt is set to Nθ/r.

The algorithm stops when the ratio of average magnitude of
voxel updates to the average magnitude of voxel values is less
than a pre-defined threshold (convergence threshold). We use
different values for the convergence threshold at different multi-
resolution stages. If the convergence threshold at the finest
multi-resolution stage is T , then the convergence threshold at
the kth multi-resolution stage is chosen to be T/(S − k + 1).

V. DISTRIBUTED PARALLELIZATION OF MBIR

To enable high spatial and temporal resolution reconstruc-
tions typically required for 4D-SXCT, we propose a distributed
parallel MBIR algorithm optimized to run on a high perfor-
mance cluster (HPC) consisting of several supercomputing
nodes. Each node consists of one or more multi-core processors
with a single shared memory. In the distributed MBIR algo-
rithm, the computation is distributed among several nodes so
that the data dependency across nodes is minimized. If a node
requires information from another node, then the information
is explicitly communicated using a message passing interface
(MPI). The multiple cores in each node are used to further
speed up computation using OpenMP based shared memory
parallelization.

Each iteration of the distributed MBIR algorithm consists of
two update phases as shown in Fig. 6. All the voxels updated in
the first phase in Fig. 6 are not updated in the second phase and
all the voxels updated in the second phase are not updated in
the first phase. The algorithm alternates between the two update
phases until convergence is achieved.

Due to the specific form of the voxel updates in (21), we need
to ensure that only those voxels that do not share sinogram1

entries or spatio-temporal neighbors are updated in parallel to
ensure that the cost function decreases with each update. We
equally divide all the slices in each time sample of the recon-
struction (along w-axis) across multiple nodes as shown in
Fig. 6. Each node only updates voxels in its share of the 3D
volume at all the time samples. The projection data, y, is dis-
tributed such that each node only stores those projection slices
in its local memory which depend on its share of the reconstruc-
tion. Such a distribution ensures that voxel updates in a node
do not require sinogram entries from another node. Thus, there
is no sinogram dependency across nodes. However, there is a
voxel neighborhood dependency across nodes since the voxel
slices which are on the “edge” of a 3D volume within a node
(along w-axis) contain spatial neighbors which are stored in
other nodes. Additionally, within a given node there are spa-
tial and temporal neighbors which we need to ensure are not
updated in parallel.

1A sinogram image is a column wise stack of a single projection slice (i.e.,
projection values along a single detector line) across all the views.
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Fig. 6. Block diagram describing the distributed parallel MBIR algorithm. The data y is split axially among multiple nodes. Each node then updates only those
slices of the reconstruction that depend on its share of the data. In phase 1, all the even numbered slice-blocks are updated at even time samples and all the odd
numbered slice blocks are updated at odd time samples. In phase 2, all the odd numbered slice-blocks are updated at even time samples and all the even numbered
slice blocks are updated at odd time samples. The algorithm iterates between the two phases until convergence is achieved.

To address this problem, we first equally divide the slices
in each node into an even number of blocks which we call
“slice-blocks” as shown in Fig. 6. In each phase, the different
darkly shaded slice-blocks in Fig. 6 are updated in parallel and
the lightly shaded slice-blocks are updated in the next phase.
The voxels within a slice-block are updated serially taking into
advantage the same geometry computation along a “voxel-line”
[28] as explained in the previous section. In phase 1, all the
odd numbered slice-blocks at odd time samples and even num-
bered slice-blocks at even time samples are updated in parallel.
In node k, after the updates of phase 1, the first slice of each
odd time sample is communicated to node k − 1 and the last
slice of each even time sample is communicated to node k + 1.
In phase 2, all the even numbered slice-blocks at the odd time
samples and the odd numbered slice-blocks at the even time
samples are updated in parallel. In node k, after the updates of
phase 2, the last slice of each odd time sample is communi-
cated to node k + 1 and the first slice of each even time sample
is communicated to node k − 1. All the slice-blocks within a
node are updated in parallel using a OpenMP based shared
memory parallelization scheme. This update scheme ensures
that the cost-function (12) decreases monotonically with every
iteration.

After updating the slice-blocks in each phase, only those
elements of the error sinogram, e, and offset error, d, depen-
dent on the last updated slice-blocks are updated. To update
the variance parameter, σ, each node computes the summa-
tion in equation (25) corresponding to its share of the data
and communicates the result to a master node. The master

node then updates σ by accumulating the result from all the
nodes and broadcasts the updated value back to the nodes.
The updated values of slices from node k − 1 and node k + 1
required by node k are communicated using MPI calls. The off-
set error, d, is updated when the slices are communicated across
nodes. Thus, the compute nodes are not idle during commu-
nication. In all our experiments, the time taken for computing
the offset error update was found to be greater than the time
taken for communicating the slices. Thus, the algorithm is lim-
ited by computational speed and not by the time taken for
communication and synchronization.

VI. EXPERIMENTAL RESULTS

A. Simulated Data Set

In this section, we compare FBP and MBIR reconstructions
of simulated datasets using both the traditional progressive view
sampling and the proposed interlaced view sampling meth-
ods. The simulated dataset is generated from a time-varying
phantom by accurately modeling the data acquisition in a real
physical system. First, a 2D phantom is generated using the
Cahn-Hilliard equation which models the process of phase sep-
aration in the cross-axial plane (u− v axes) [54]. The two
phases of the object have attenuation coefficients of 2.0 mm−1

and 0.67 mm−1 respectively. The 3D phantom is then gener-
ated by repeatedly stacking the 2D phantom along the axial
dimension (w−axis). This phantom is representative of the phe-
nomenon that we are interested in studying in 4D. A u− v
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Fig. 7. The conventional approach to reconstruction using progressive views. (a–d) shows the time-varying phantom with two attenuation phases. Reconstruction
of progressive views with Nθ = 256 using FBP is shown in (e–h) and using MBIR is shown in (i–l) (K = 1, Nθ = 256, r = 1). The first three columns show
a u− v slice of the object sampled at different time instants. The last column shows the time evolution of a v-axis slice of the object (along the red line in (a)).
Reconstruction of rapidly time-varying objects using conventional methods results in poor temporal resolution and spatial artifacts.

slice of the phantom at different time instants is shown in
Fig. 7(a)–(c) and Fig. 7(d) shows a v-axis slice of the phan-
tom (along the red line in Fig. 7(a)) as a function of time. The
phantom is assumed to have a voxel resolution of 0.65× 0.65×
0.65 μm3 and a size of Nw ×Nv ×Nu = 16× 1024× 1024.
The phantom is sampled in time at the data acquisition rate,
Fc, and the projections are generated by forward projecting the
sampled phantom at the appropriate angles. To simulate the
detector non-idealities in SXCT, we add an offset error di to
the projection yn,i at every nth view. To simulate the effect of
zingers, we randomly set 0.1% of the projections, y, to zero.
We also simulate the measurement data λn,i to have Poisson
statistics. The simulated value of the variance parameter is
σ2 = 10.

The simulated sensor has a resolution of Np = 256 pixels in
the cross-axial direction and 4 pixels in the axial direction. A
3D time sample of the 4D reconstruction has a voxel resolution
of 2.6× 2.6× 2.6 μm3 and a size of Nw ×Nv ×Nu = 4×
256× 256. The temporal reconstruction rate is Fs = rFc/Nθ

where r is the number of time samples of the reconstruction in
a frame, Fc is the data acquisition rate, and Nθ is the number
of distinct views acquired. Since the temporal reconstruction
rate varies with r, the reconstructions are up sampled in time
to the data acquisition rate, Fc, using cubic interpolation and

then compared with the phantom. Also, since the phantom has
higher spatial resolution than the reconstructions, the phan-
tom is down-sampled by averaging over blocks of pixels to
the reconstruction resolution before comparison. The regular-
ization parameters in the prior model are chosen such that
they minimize the root mean square error (RMSE) between
the reconstruction and the phantom. The parameter p of the
qGGMRF model is set to 1.2 and the parameters of the gen-
eralized Huber function are set to be δ = 0.5 and T = 4. We
use a convergence threshold of T = 0.01.

The traditional approach to 4D-SXCT is to use progressive
view sampling and an analytic reconstruction algorithm such as
FBP. So, we first generate a dataset of progressive views sat-
isfying the Nyquist spatial sampling criterion and reconstruct
it using FBP and MBIR algorithms. For analytic algorithms,
the Nyquist view sampling requirement for a sensor of size
Np = 256 in the cross-axial dimension is to acquire projections
at Nθ = 256 distinct angles using progressive view sampling.
Thus, we generate a dataset of progressive views with Nθ =
256 and then reconstruct it at a temporal rate of Fs = Fc/256
by reconstructing r = 1 time sample every frame. The FBP
reconstruction of this dataset is shown in Fig. 7(e)–(h) and the
MBIR reconstruction is shown in Fig. 7(i)–(l). When compared
to FBP, MBIR produces lower noise reconstructions while
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Fig. 8. Comparison of TIMBIR with other approaches to high temporal resolution reconstruction. The first three columns show a u− v slice of the 4D recon-
struction at different times and the last column shows a v-axis slice of the reconstruction versus time. All reconstructions have a temporal reconstruction rate
of Fs = Fc/32. (a–d) is MBIR reconstruction (r = 8) of progressive views with Nθ = 256. (e–h) is MBIR reconstruction (r = 1) of progressive views with
Nθ = 32. The reconstruction (r = 8) of interlaced views with K = 8, Nθ = 256 using FBP is shown in (i–l) and using MBIR (TIMBIR) is shown in (m–p).
Progressive view sampling results in poor reconstruction quality in time and/or space. Moreover, interlaced view sampling combined with FBP still causes severe
artifacts due to under-sampling of view angles. However, TIMBIR produces high quality reconstructions in both time and space.

preserving the spatial resolution (Fig. 7(e)–(g) and Fig. 7(i)–
(k)). Furthermore, FBP reconstructions suffer from strong ring
and streak artifacts. From Fig. 7(h) & (l), we can also see that
neither FBP nor MBIR are able to reconstruct temporal edges
accurately with progressive views.

Next, we investigate different methods of increasing tem-
poral resolution using progressive views. First, we reconstruct
a dataset of progressive views satisfying the Nyquist crite-
rion at a temporal rate faster than the conventional method.
Thus, we reconstruct a progressive view dataset with parameter
Nθ = 256 using MBIR at a rate of Fs = Fc/32 by reconstruct-
ing r = 8 time samples every frame. As shown in Fig. 8(a)–(c),
the reconstruction obtained using this method has strong arti-
facts due to a missing wedge of view angles in the data used

to reconstruct every time sample of the reconstruction. In the
next approach, we reduce the number of distinct angles in the
progressive view dataset to Nθ = 32 and reconstruct at a rate of
Fs = Fc/32 by reconstructing r = 1 time sample every frame.
In this case, due to the severe under sampling of views, the
MBIR reconstruction suffers from severe loss in quality as
shown in Fig. 8(e)–(h). This illustrates that merely reducing
the number of views every π radians and using an advanced
reconstruction algorithm such as MBIR is insufficient for our
problem. Thus, there is an inherent sub-optimality in using
progressive view sampling to achieve high temporal resolution
reconstructions.

Finally, we investigate the effect of interlaced views on the
spatial and temporal reconstruction quality when reconstructing
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TABLE I
ROOT MEAN SQUARE ERROR BETWEEN THE RECONSTRUCTION AND THE

PHANTOM. TIMBIR HAS THE LOWEST RMSE AMONG ALL THE METHODS

Fig. 9. Illustration of the effect of K on the RMSE between the reconstruction
and the phantom when r = 8 and Nθ = 256. Since the RMSE reduces as K is
increased, interlacing of views is vital when reconstructing at a higher temporal
rate of Fs = Fc/32 (r = 8).

using FBP and MBIR algorithms. We reconstruct a dataset of
interlaced views in which each frame of Nθ = 256 distinct
angles is interlaced over K = 8 sub-frames. The object is then
reconstructed at a rate of Fs = Fc/32 by reconstructing r = 8
time samples every frame. The reconstruction using FBP is
shown in Fig. 8(i)–(l) and using MBIR is shown in Fig. 8(m)–
(p). We can see that reconstructing the interlaced views with
FBP results in extremely poor quality reconstructions. In con-
trast, MBIR with interlaced views (TIMBIR) results in a
substantially better reconstruction of the object with minimal
artifacts as shown in Fig. 8(m)–(p). Furthermore, we can see
that TIMBIR is able to more accurately reconstruct temporal
edges (Fig. 8(p)) than other methods (Fig. 8(d), (h) & (l) and
Fig. 7(h), (l)). Thus, by comparing Fig. 8(m)–(p) with Fig. 8(a)–
(h) and Fig. 7(i)–(l), we can conclude that interlaced view
sampling is superior to progressive view sampling when recon-
structing using MBIR. Furthermore, by comparing Fig. 8(i)–(l)
with Fig. 7(e)–(h), we can conclude that combining interlaced
view sampling with FBP does not result in any improvements.
In Fig. 10, we plot a single voxel as a function of time for differ-
ent values of r,K, and Nθ. We can see that TIMBIR produces
the most accurate reconstruction of the voxel as a function of
time among all the methods. The root mean squared errors
(RMSE) between the reconstructions and the phantom ground-
truth shown in Table I support these visual conclusions. Thus,
TIMBIR with its synergistic combination of interlaced sam-
pling and MBIR reconstruction results in a much higher quality
reconstruction than either method can achieve by itself.

Fig. 9 shows the RMSE between the MBIR reconstructions
and the phantom as a function of K when Nθ = 256 and r = 8.

Fig. 10. Plot of a voxel as a function of time for different values of r,K, and
Nθ . The most accurate reconstruction of the voxel as a function of time is
obtained for the case of TIMBIR with parameters r = 8,K = 8, and Nθ =
256.

We can see that the RMSE reduces as the number of sub-frames,
K, is increased from 1 to 8. This shows that interlacing of views
is vital to achieving high temporal resolution reconstructions.

In the supplementary document, we have presented addi-
tional results comparing the segmentation quality of the recon-
structions using different methods. We have also presented
reconstructions with ring and streak artifacts obtained by using
the standard forward model given in (5).

B. Real Data Set

To demonstrate the performance gains achieved by TIMBIR
in a real physical system, we reconstruct the dendritic growth
in an Al-Cu alloy [1] in 4D. Dendrites are complex tree like
structures which form as liquids are cooled from a sufficiently
high temperature. It is of great interest to study dendritic growth
since the morphology of the growing dendrites determine the
properties of many materials. Thus, by studying the dendritic
growth we can better understand the processes controlling the
morphology of these tree like structures.

In our experiments, the data acquisition rate is limited to
Fc = 192 Hz due to limitations on the camera frame rate,
the data transfer rate, and buffer sizes. The detector width
is Np = 1600 pixels in the cross-axial direction and 1080
pixels along the axial direction with a pixel resolution of
0.65 μm× 0.65 μm. However, we only reconstruct a window
of 4 pixels in the axial direction and Np = 1536 pixels in
the cross-axial direction. The reconstructions have a size of
Nw ×Nv ×Nu = 4× 1536× 1536 and a voxel resolution of
0.65× 0.65× 0.65 μm3. The exposure time of the detector
is set to 1 ms. The regularization parameters, σs and σt, are
chosen to provide the best visual reconstruction quality. The
parameter p of the qGGMRF model is set to 1.2 and the param-
eters of the generalized Huber function are set to be δ = 0.5
and T = 4. We use a convergence threshold of T = 0.05. We
increased the threshold from T = 0.01 used for simulated data
to T = 0.05 for real data to reduce run time.

Imaging is done using polychromatic X-ray radiation from
a synchrotron. The attenuated X-rays from the object are
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Fig. 11. Reconstructions of dendritic growth using Nyquist progressive views. The first three columns show a u− v slice of the sample at different times. The last
column shows a v-axis slice of the sample (along the red line in (a, e)) as a function of time. The reconstruction (r = 1) from progressive views with Nθ = 1536
(Nyquist criteria) using FBP is shown in (a–d) and using MBIR is shown in (e–h). The reconstruction shown in (a–h) has a low temporal reconstruction rate of
Fs = 0.125 Hz which is insufficient to temporally resolve the growing dendrites.

converted to visible light using a 25 μm thick LuAG:Ce scintil-
lator which is then imaged by a PCO Edge CMOS camera. We
also use a 10× magnifying objective to get an effective pixel
resolution of 0.65 μm× 0.65 μm. The polychromatic radiation
results in beam hardening which causes cupping artifacts in the
reconstruction. To correct for these artifacts, we use a simple
quadratic correction polynomial of the form y = az2 + z where
z is the measured value of the projection and y is the projection
after correction [55]. The corrected projections are then used
to do the reconstruction. To find the optimal value of a, we
observed the reconstruction for cupping artifacts for increasing
values of a. Based on this empirical analysis, we used a value
of a = 0.5 which was found to minimize cupping artifacts.

First, we reconstruct the 4D object using a progressive view
dataset satisfying the Nyquist criterion. To acquire Nθ progres-
sive views over a rotation of π radians at a data acquisition
rate of Fc, the object has to be rotated by an angle of π radi-
ans every F−1

c Nθ seconds. Thus, the angular rotation speed
of the object is fixed at Rs = πFc/Nθ = 0.3925 radians per
second and data is acquired at a rate of Fc = 192 Hz using pro-
gressive view sampling with parameter Nθ = 1536. The object
is then reconstructed at a rate of 0.125 Hz by reconstructing
r = 1 time sample every frame. With this method, we get a
temporal resolution of F−1

s = 8s. The FBP and MBIR recon-
structions of data acquired using this technique are shown in
Fig. 11(a)–(d) and Fig. 11(e)–(h) respectively. From Fig. 11(d),
(h), we can see that a temporal resolution of 8s is inadequate to
temporally resolve the growing dendrites. Furthermore, it also

causes blur artifacts in the reconstructions as seen in Fig. 11(b),
(f). The strong ring artifacts in the FBP reconstructions results
in additional distortion. However, by modeling the measure-
ment non-idealities, MBIR is able to substantially reduce ring
artifacts. Thus, using the conventional method we cannot recon-
struct the dendritic growth with sufficient resolution in time and
space.

To increase the temporal resolution with progressive views,
we reduce the number of distinct angles to Nθ = 48 (Sub-
Nyquist) per π radians, increase the rotation speed to Rs =
12.56 radians per second, and acquire data at the maximum
rate of Fc = 192 Hz. The object is then reconstructed at a
rate of Fs = 4 Hz by reconstructing r = 1 time sample every
frame. The reconstructions using this method are shown in
Fig. 12(a)–(d). Note that the dendritic structure is different than
in Fig. 11(a)–(h) because it is not possible to replicate such
physical phenomenon in an exact manner with each experi-
mental run. With this method, we get a temporal resolution of
F−1
s = 0.25s. In this case, even though the temporal resolution

is high (Fig. 12(d)), the spatial reconstruction quality is very
poor (Fig. 12(a)–(c)).

Next, we study the effect of TIMBIR on the reconstruc-
tion quality when reconstructing at a higher temporal rate of
Fs = 4 Hz. To acquire Nθ interlaced views over a rotation of
Kπ radians at a rate of Fc, the object has to be rotated by an
angle of π radians every F−1

c Nθ/K seconds. Thus, the angular
rotation speed of the object is fixed at Rs = πKFc/Nθ = 12.56
radians per second and data is acquired at a rate of Fc = 192 Hz
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Fig. 12. Comparison of reconstructions of dendritic growth using TIMBIR with other approaches to high temporal resolution reconstructions. The first three
columns show a u− v slice of the sample at different times. The last column shows a v-axis slice of the sample (along the red line in (a, e)) as a function of time.
The MBIR reconstruction (r = 1) from progressive views with Nθ = 48 (Sub-Nyquist) is shown in (a–d). The MBIR reconstruction (r = 8) from interlaced
views with K = 32, Nθ = 1536 is shown in (e–h) (TIMBIR). Even though the reconstruction in (a–d) has a rate of Fs = 4 Hz, the spatial reconstruction quality
is very poor. However, the TIMBIR reconstruction in (e–h) not only has a rate of Fs = 4 Hz to temporally resolve the growing dendrites, it also has good spatial
reconstruction quality. Note that results in (a–d) and (e–h) correspond to data from different experiments.

Fig. 13. Run time analysis of the distributed parallel MBIR algorithm. (a) is a plot of the run time using 16 cores (or 1 node) vs. the total number of the slices,
Nw , at different cross-axial detector resolutions, Np. (b) is a plot of the run time using 192 cores (or 12 nodes) vs. the total number of slices, Nw . (c) is a plot of
the run time speed-up factor vs. the number of cores. The speed-up factor with n cores is computed as the ratio of the average run time per iteration with 1 core to
that with n cores. We can see that the algorithm speed up factor gradually deviates from the ideal behavior when the number of cores is increased. Furthermore,
the speed up behavior improves when the number of slices, Nw , is increased.

using interlaced view sampling with parameters K = 32 and
Nθ = 1536. The object is then reconstructed at a rate of Fs =
4 Hz by reconstructing r = 32 time samples every frame. The
reconstructions using this method are shown in Fig. 12(e)–(h).
We can see that the reconstruction using TIMBIR has very good
spatial (Fig. 12(e)–(g)) and temporal resolution (Fig. 12(h)).
Thus, TIMBIR with its synergistic combination of interlaced
view sampling and MBIR algorithm is able to reconstruct the
dendritic evolution at a high spatial and temporal resolution.
We have empirically found that using a value of K less than but
closest to

√
Nθ gives us good results.

C. Computational Cost

We study the variation of run time of the MBIR algorithm
with the number of cores when reconstructing one frame of
projections with parameters K = 32, Nθ = 1536, r = 32. The
algorithm run time is determined for two different cross-axial
detector resolutions of Np = 768 and 1536 and for differ-
ent number of axial slices, Nw. The cross-axial reconstruction
resolution is Nv ×Nu = Np ×Np and the number of slices in
the reconstruction is Nw. To determine the run time, we run
the algorithm on the Conte supercomputing cluster at Purdue
University. Each node on Conte consists of two 8 core Intel
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Xeon-E5 processors. Fig. 13(a), (b) shows the run time as a
function of the number of slices, Nw, for two different cross-
axial detector resolutions of Np = 768 and 1536. The run time
using 16 cores (or 1 node) is shown in Fig. 13(a) and using 192
cores (or 12 nodes) is shown in Fig. 13(b). Thus, we can see
that increasing the number of cores from 16 to 192 significantly
reduces the run time of the MBIR algorithm.

In Fig. 13(c), we plot the speed-up factor as a function of the
number of cores for different number of slices when Np = 768.
The speed-up factor with n cores is computed as the ratio of the
average run time per iteration with 1 core to that with n cores
at the finest multi-resolution stage. From the figure, we can see
that initially the speed-up improvement is almost linear with the
number of cores and gradually deviates from the ideal behav-
ior when the number of cores is increased. Furthermore, when
the number of slices, Nw, is increased, the speed-up behavior
improves since the computation can be more efficiently dis-
tributed among the different nodes. Thus, using the distributed
MBIR algorithm we can efficiently reconstruct large volumes
using multiple cores. In the future, we believe the run time can
be significantly reduced using better parallel architectures.

VII. CONCLUSION

In this paper, we propose a novel interlaced view sampling
method which when combined with our 4D MBIR algorithm
is able to achieve a synergistic improvement in reconstruc-
tion quality of 4D-SXCT. In addition to accounting for spatial
and temporal correlations in the object, the MBIR algorithm
also accounts for the measurement non-idealities encountered
in a SXCT system. Using the new interlaced view sampling
strategy with the 4D MBIR algorithm (TIMBIR), we were
able to achieve a 32× improvement in temporal resolution by
reconstructing 32× more time samples while preserving spa-
tial reconstruction quality. We also present a distributed parallel
MBIR algorithm to enable reconstructions of large datasets. In
the future, by using better spatial and temporal prior models we
expect to achieve much better reconstruction quality than pre-
sented in this paper. Furthermore, the TIMBIR method can be
extended to any tomographic technique involving sampling of
projections at different angles.

APPENDIX

THE OFFSET ERROR CONSTRAINT MATRIX, H

In this section, we briefly discuss our choice of the H matrix.
We choose the matrix H such that we enforce a zero constraint
on the weighted average of the offset errors, di, over overlap-
ping rectangular patches. Since the number of constraints is
much less than the number of parameters, di, the matrix H will
have many more columns than rows. Furthermore, all the rows
of H sum to the same value and all the columns sum to the same
value.

The offset error constraint Hd = 0 is better expressed as a
constraint on the two dimensional form of the offset error, d̃i,j .
Let d̃i,j be the offset error corresponding to the ith row and jth

column of the detector. We then impose a zero constraint on

Fig. 14. Diagram showing the overlapping rectangular patches over which the
weighted sum of the offset error is zero. The patches are such that they overlap
half-way along both the u-axis and v-axis and cover the entire detector plane.

the weighted average of the offset error, d̃i,j , over overlapping2

rectangular patches as shown in Fig. 14. The patches are such
that they overlap half-way along both the u-axis and v-axis and
cover the entire detector plane.

Let h̃N (i) be a triangular window of the form

h̃N (i) =

⎧⎪⎨
⎪⎩
i 1 ≤ i ≤ N

2N − i+ 1 N + 1 ≤ i ≤ 2N

0 otherwise.

(26)

Then, the function h(i, j) = h̃P (i)h̃Q(j) is used to appropri-
ately weight the offset error terms, d̃i,j , over the rectangular
patches. Let h(k,l)(i, j) be the weighting function for the kth

patch along the u-axis and lth patch along the v-axis obtained
by appropriately shifting h(i, j). Then, the constraint corre-
sponding to the (k, l) patch is given by,

Mr∑
i=1

Mc∑
j=1

h(k,l)(i, j)d̃i,j = 0. (27)

where Mr and Mc are the total number of rows and columns of
the detector respectively. In our application, we choose P such
that it is closest to

√
Mr and is a factor of Mr (similarly, we

choose Q depending on Mc). Thus, the number of constraints
is approximately equal to

√
MrMc. Each constraint indexed by

(k, l) in (27) corresponds to one of the rows of H . The offset
error d is the vector form of d̃i,j and the elements of H corre-
spond to the weights, h(k,l)(i, j), used in (27). Thus, the matrix
H has a size of

√
MrMc ×MrMc.
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