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ABSTRACT

The estimation of phase errors due to atmospheric turbulence from digital-holography (HD) data with high
throughput and low latency is critical for applications such as wavefront sensing and directed energy. The problem
of focusing outgoing directed energy is particularly difficult because the phase errors must be estimated with
extremely low latency for use in closed-loop correction of the outgoing light before the atmospheric parameters
decorrelate. This low latency requirement necessitates that the phase distortion be estimated from a single shot
of DH data. The Dynamic DH-MBIR (DDH-MBIR) algorithm has been shown to be capable of accurately
estimating isoplanatic phase-errors using the expectation-maximization (EM) algorithm; however, DDH-MBIR
was introduced using data that models only frozen flow of atmospheric turbulence.

In this paper, we characterize the performance of the Dynamic DH-MBIR algorithm in more realistic settings.
Specifically, Dynamic DH-MBIR produces accurate phase estimates in the case of moderate levels of atmospheric
boiling.
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1. INTRODUCTION

The goal of a directed energy system is to focus a beam of light on a distant object. In terrestrial applications,
this can be difficult because atmospheric turbulence introduces random phase errors (or distortions) that tend to
disperse the otherwise focused beam. A solution to this problem is to pre-distort the phase of the outgoing beam.
This can be done by first performing wavefront sensing (WFS), in which the phase distortion of incoming light
is measured. The outgoing light can then be pre-distorted with the conjugate phase. However, this approach
requires that the WFS be performed with very low latency, so that the phase corrections can be applied before
the atmospheric distortion changes.

Digital holography (DH) sensors can be used to estimate the wavefront from direct measurements of the
light. DH sensors measure the amplitude and phase of incoming light by interfering the received light with a
reference beam. The resulting complex-valued measurements can then be used to computationally estimate phase
distortions by solving an inverse problem.1 We previously introduced2 the Dynamic DH-MBIR algorithm (DDH-
MBIR) that can accurately estimate phase-errors due to atmospheric turbulence while meeting the low-latency
and high-throughput requirements of applications such as directed energy.

In this paper, using simulations, we characterize the performance of DDH-MBIR under a more realistic
atmospheric turbulence model that includes boiling effects. DDH-MBIR achieves an average Strehl ratio over
roughly 0.8 for a boiling level of 10% and an average Strehl ratio above 0.5 of a boiling level of 15%.
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2. DYNAMIC DH-MBIR

2.1 Forward Model

A DH sensor allows us to measure the complex electromagnetic field reflected from an object using spatial-
heterodyne interferometry. As in Pellizzari, et al.,3 we model the complex-valued measurements at time n as

yn = Aϕngn + wn, (1)

where yn ∈ CM is the rasterized vector of complex DH measurements, gn ∈ CM is the vector of unknown
complex reflection coefficients from the illuminated object, wn ∈ CM is a vector of complex measurement noise,
and Aϕn

∈ CM×M is a linear transformation that is dependent on the unknown phase error, ϕn.

If the wavelength of the light is small compared to the resolved pixel size on the object, then the reflection
coefficient, gn, is accurately modeled as a circularly symmetric, complex Gaussian with unknown variance, rn.
In this case, rn is real-valued reflectance with rn = E[|gn|2] and gn ∼ CN(0, rn).

We assume an isoplanatic propagation model in which the phase distortion, ϕn, occurs close to the detector.4

The isoplanatic linear forward model can be decomposed as

Aϕn = DaD(ejϕn)F Γ

whereDa is a diagonal matrix that models the camera aperture, D(ejϕn) is a diagonal matrix of phase distortions,
F is a normalized 2D discrete Fourier transform (DFT), and Γ is a diagonal matrix of quadratic phase factors
resulting from Fresnel propagation.5

2.2 Dynamic DH-MBIR Algorithm

The Dynamic DH-MBIR (DDH-MBIR) algorithm estimates rn and ϕn from a streaming sequence of DH data, yn.
As previously specified,2 DDH-MBIR uses the expectation-maximization (EM) algorithm to solve the joint-MAP
estimate

(r̂n, ϕ̂n) = argmin
r,ϕ

{− log p(yn|r, ϕ)− log p(r)− log p(ϕ)}. (2)

The key innovation of the DDH-MBIR algorithm is the initialization of rn given by

rinitn ← (1− λ) rn−1︸︷︷︸
1st term

+λα |AH
ϕn−1

yn|2︸ ︷︷ ︸
2nd term

. (3)

This initialization leverages the temporal correlation of both ϕ and r. It is formed by a weighted sum of two
terms where λ and α are user selectable weights in the range [0, 1]. Since r does not typically change substantially
between samples, the first term, rn−1, provides a good initial condition for the estimation of rn.

The second term uses the magnitude squared of the back-projected data. Intuitively, this second term
incorporates a small amount of continuous bootstrapping into the dynamic update loop, which keeps the DDH-
MBIR output away from solutions associated with local minima.

In this paper, we fix the number of iterations/timestep to 1. Figure 1 shows the pseudo-code and a flow
diagram for DDH-MBIR. The computation of the EM() function is dominated by the application of two FFTs.6

The RemoveTipTilt() function removes the linear component of the phase corresponding to spatial shifts of the
reconstructed image.

3. EXPERIMENTAL RESULTS

In this section, we present estimation results from synthetic data using the Dynamic DH-MBIR algorithm.



function DDH MBIR(λ, α,Nk)
n← 0; r ← 0; ϕ← 0
while Data is available do

y ← ReadData(n)
y ← Normalize(y)
ϕ← RemoveTipTilt(ϕ)

r ← (1− λ)r + 1
2λα

∣∣∣AH
ϕ y

∣∣∣2
(r, ϕ)← EM(r, ϕ; y)
WriteData(n, r, ϕ)
n← n+ 1

end while
end function

Figure 1: Left: Pseudo-code for the Dynamic DH-MBIR algorithm. Each iteration initializes r with a weighted
combination of the previous estimate and a back-projection of the DH data. Right: DDH-MBIR flow diagram.

3.1 Atmospheric Turbulence Model

Phase-errors due to atmospheric turbulence, at any given time n, are modeled as a single phase screen placed
near the detector; this is called the isoplanatic case. Wind and atmospheric boiling are the two dominant forces
of change of the phase screen as a function of time n. Wind is modeled as a spatial shift in the phase screen
in a particular direction and with a certain speed. Atmospheric boiling is modeled as the addition of a phase
screen with certain properties that are stochastic in nature. To run simulations in a computationally feasible
manner, we use the auto-regressive method developed in Srinath, et al.,7 with modified von Karman statistics.
The fraction of atmospheric boiling is specified by b > 0 in

Φn = τΦn−1 + bPΩn

where Φn is the Fourier transform of ϕn, τ is the complex-valued AR coefficient that also encodes the wind
velocity, b =

√
1− |τ |2, P is the von Karman power spectral density, and Ωn is the Fourier transform of white

noise.

3.2 Data Simulation

We generated data using the 1951 USAF resolution test chart for r along with a phase-error model described
above. At each timestep, the DH data, yn, was generated as in Pellizzari, et al.3 We also removed the piston,
tip, and tilt of the phase-errors because we are interested only in estimating the higher-order aberrations.

Furthermore, we used an isoplanatic model, image and phase distortion array sizes of N ×N where N = 256,
a sampling frequency of fs = 10kHz, a Greenwood frequency fg = 100Hz, a turbulence strength of D/r0 = 10
where D is the diameter of the aperture and r0 is Fried’s parameter,8 a wavelength of 1.064µm, and an SNR
of 10dB. Using these parameters, we find the magnitude of the phase displacement between time samples by
scaling Equation 4.15 in Tyson9 to convert from m/s to pixels/sample. This gives

∥v∥ = 1

0.43

fg
fs

N

D/r0
.

In our simulation we assumed a flow downward and to the right, which gives a vector displacement of v =
(0.421, 0.421) pixels per time step.

We set σr = 2 and σϕ = 0.175 for the potential functions in the prior models specified in Pellizzari, et al.10

3.3 Algorithm Parameters and Metrics

In all our simulations, the DDH-MBIR parameters are α = 0.0025 and λ = 0.25. We found that these parameters
worked best for each boiling level.



(a) b = 0.03 (b) b = 0.06

(c) b = 0.1 (d) b = 0.15

Figure 2: Box plots of Strehl ratio for 10 simulations of DDH-MBIR with the window-averaged (window size: 20
timesteps) Strehl curve of a particular simulation overlaid in blue. Each figure for a different boiling fraction, b.
DDH-MBIR achieves a very good Strehl ratio through b = 0.1 and produces reasonable results even at b = 0.15.

We used peak Strehl ratio, S, to evaluate the quality of the phase-errors estimates, where

S =
[|AH

ϕ̂n−ϕn
Da|2]max

[|AH
0 Da|2]max

,

and ϕ̂n is the estimated phase, AH
0 is back-propagation through a vacuum, and [·]max indicates the maximum

value of the argument.

3.4 Results and Observations

Figure 2 shows box and whiskers plots of Strehl ratio as a function of time, averaged over 10 simulations, with
results from a typical simulation overlaid in blue. Each plot is at a different boiling level. Figures 3, 4 and 5
show the true and estimated phase-errors at times n = 0, 30, and 90 at boiling levels b = 0.06, 0.1, and 0.15,
respectively. In figure 4, the estimate at n = 90 is quite close to the ground truth. This gives an additional
viewpoint besides the Strehl ratio. At boiling level of b = 0.15, the phase estimate, shown in figure 5, shows a
number of features of the ground truth at time n = 90.

From the top row in figure 5 we see how quickly the phase errors change from time n = 30 to n = 90 at this
boiling level. For additional context, given the 10 kHz sampling rate, at boiling levels of b > 0.1 the phase errors
look drastically different in less than 0.006 seconds.



Figure 3: Boiling fraction b = 0.06. Top row: true phase-errors at times n = 0, 30, and 90 (from left to
right). Bottom row: estimated phase-errors at times n = 0, 30, and 90 (from left to right). At low boiling levels,
DDH-MBIR estimates the phase errors quickly and accurately.

Steady state Strehl, defined to be the average Strehl over timeframes n = 500 to n = 1000, gives us a single
number to characterize the performance of DDH-MBIR. Figure 6 shows how the steady state Strehl changes
with increased boiling.

4. CONCLUSION

We characterized the Dynamic DH-MBIR algorithm’s performance, at the low latency requirement of only 1
iteration per timestep, under a realistic atmospheric turbulence model that includes wind and boiling. Dynamic
DH-MBIR performs well with atmospheric boiling up to b = 0.1 when considering peak Strehl ratio and degrades
gracefully through b = 0.15. However, we speculate that this could likely be even higher if we consider other
metrics such as Power in the Bucket (PIB). And, in practice, the algorithm’s peak Strehl at the boiling levels of
b = 0.15 or higher may be adequate for practical application.
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Figure 5: Boiling fraction b = 0.15. Top row: true phase-errors at times n = 0, 30, and 90 (from left to
right). Bottom row: estimated phase-errors at times n = 0, 30, and 90 (from left to right). At this boiling level,
DDH-MBIR is able to track the large scale features of the phase errors but is not completely accurate at fine
scales.

Figure 6: Steady state Strehl ratio averaged over 10 simulations as a function of boiling fraction. Steady state
Strehl is defined as the average Strehl over timeframes n = 500 to n = 1000. The average Strehl ratio stays
above 0.8 through a boiling fraction of 10% and degrades gracefully for boiling fractions through 15%.
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