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Three-dimensional Bayesian optical diffusion tomography
with experimental data
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Reconstructions of a three-dimensional absorber embedded in a scattering medium by use of frequency domain
measurements of the transmitted light in a single source –detector plane are presented. The reconstruction
algorithm uses Bayesian regularization and iterative coordinate descent optimization, and it incorporates es-
timation of the detector noise level, the source –detector coupling coefficient, and the background diffusion
coefficient in addition to the absorption image. The use of multiple modulation frequencies is also investi-
gated. The results demonstrate the utility of this algorithm, the importance of a three-dimensional model,
and that out-of-plane scattering permits recovery of three-dimensional features from measurements in a single
plane. © 2002 Optical Society of America

OCIS codes: 100.3010, 100.3190, 100.6890, 170.5280.
Quantitative imaging of soft tissue by use of light of-
fers chemical specificity through spectroscopy, and in-
struments can be safe and inexpensive.1 Thus there
is increasing interest in optical diffusion imaging, for
which the spatially dependent scatter and absorption
are to be reconstructed by use of measured data with
a number of source and detector locations and a dif-
fusion equation forward model.2 However, for in vivo
optical imaging to become practical, accurate three-di-
mensional (3-D) imaging in the heavily scattering tis-
sue environment is necessary. We previously reported
accurate and efficient inversions for two-dimensional
(2-D) test problems, using nonlinear optimization in
a Bayesian framework.3,4 Others have reported itera-
tive approaches based on a 2-D diffusion equation for-
ward model with experimental data.5,6 Whereas the
validity of a 2-D diffusion model for realistic problems
has been investigated and corrections proposed, it is
clear that, in general, accounting for out-of-plane scat-
tering will require a 3-D solution.7

Here we extend our previous 2-D Bayesian3 formu-
lation and iterative coordinate descent optimization
method for absorption imaging to three dimen-
sions, and we address the problem of estimating
source–detector coupling, the background diffusion
coeff icient, and detector noise variance, thereby cir-
cumventing the need for difficult and inconvenient
calibration measurements of homogeneous phantoms.
The estimation of source–detector coupling loss and
background parameters by a preprocessing technique
with an assumed homogeneous domain has been de-
scribed,6 and the source–detector coupling coefficients
have been estimated as part of a linear generalized
inverse.8 Here we incorporate estimation of the
ancillary parameters into the Bayesian framework
and update the estimates throughout the inversion
procedure. We use laboratory data to assess the
algorithm and the merits of using multiple modulation
frequencies.
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The frequency domain diffusion equation1 models
the propagation of modulated light in a highly scatter-
ing medium. The complex modulation envelope of the
photon f lux fk�r� at position r that is due to a point
source at position sk satisfies

= ? �D�r�=fk�r�� 1 �2ma�r� 2 jv�c�fk�r� � 2d�r 2 sk� ,

(1)

where c is the speed of light in the medium, v is the
modulation frequency, D�r� is the diffusion coeff icient,
and ma�r� is the absorption coefficient. Extrapolated
Dirichlet boundary conditions, which account for re-
fractive-index mismatch, may be imposed to model ab-
sorbing boundaries.9

We consider the case of a spatially variable absorp-
tion coeff icient and a constant (but unknown) diffu-
sion coeff icient. The set of absorption coeff icients and
the diffusion coefficient are denoted by vector x, where
x � �ma�r1�, . . . ,ma�rN �, D�T , and the domain of the
scattering region is discretized into N points at posi-
tions ri. The forward model is expressed as a complex
vector f�x� � �fv1 �x�, fv2�x�, . . . , fvQ �x��T , where fvi �x�
is the computed data vector for v � vi that corresponds
to all source and detector pairs. The true measure-
ments that correspond to f�x� are collected into column
vector y of length P � KMQ, where there are K source
positions, M detector positions, and Q modulation fre-
quencies. The solution of the optical imaging problem
will determine image x from measurements y .

Formulating the solution in a Bayesian framework,3

we compute the maximum a posteriori estimate of
x (the image) and simultaneously maximize the
conditional density with respect to a (a parame-
ter that scales detector noise variance) and g (the
source–detector coupling coefficient). More precisely,
the maximum a posteriori estimate is given by
© 2002 Optical Society of America
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x̂ � arg max
x$0

max
a

max
g

�log p�y jx,a,g� 1 log p�x�� ,

(2)

where p�y jx, a, g� is the data likelihood and p�x� is
the prior density for the image. The data likelihood
is formed by use of a Gaussian model.3 For the prior
density, we use the generalized Gaussian Markov ran-
dom field model3
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where s and p are hyperparameters (where p � 2
corresponds to the Gaussian case), N consists of all
pairs of neighboring nodes, and bi2j represents coeff i-
cients in a 26-node neighborhood system with values
inversely proportional to node separation.

We assume here that g is real and is the same for
all source–detector pairs, which is appropriate for our
experimental arrangement. With a and g unknown,
and using the data and prior density functions, we can
rewrite Eq. (2) as

x̂ � arg min
x$0

min
g

min
a

∑
1
a

ky 2 gf�x�kL
2 1 P log a

1
1

psp

X
�i, j �[N

bi2j jxi 2 xj j
p
∏

, (4)

where L is the inverse of a diagonal covariance ma-
trix and kwkL

2 � w HLw . Viewing the argument in
Eq. (4) as a cost function, we sequentially update a, g,
and x in an iterative optimization scheme. Minimiza-
tion with respect to a, assuming that g and x are con-
stant, gives â � P21 ky 2 ĝf�x̂�kL

2. Minimizing with
respect to g for constant a and x gives

ĝ �
Re�fH �x̂�Ly �
fH �x̂�Lf�x̂�

, (5)

where H denotes the conjugate transpose. The up-
date with respect to D consists of one iteration of a
one-dimensional Newton’s method, with step

DD̂ �
Re�eH fD 0H �x̂�Lz�

ĝeHfD 0H �x̂�LfD 0�x̂�e
, (6)

where e � �1, 1, . . . , 1�T , z � y 2 ĝf�x̂�, and fD 0�x̂� is
the P 3 N Fréchet derivative10 of f� � at x̂ with respect
to D. The update of the ma components of x employs
the iterative coordinate descent algorithm.3

Measurements were made of an optically clear cul-
ture f lask containing a black plastic cylinder of 0.7-cm
diameter embedded in a turbid suspension, as shown
in Fig. 1. The region of the f lask containing the
suspension had dimensions 8.1 cm 3 2.9 cm 3 8.1 cm.
The suspension was a phosphate-buffered saline so-
lution of Intralipid diluted to a concentration of 0.4%.
The data were collected with an inexpensive appara-
tus (depicted schematically in Fig. 1) that contains
an infrared LED operating at 890 nm and a silicon
p–i–n photodiode.1 The source was placed at a f ixed
central position on one side of the f lask. On the other
side, the detector was mounted upon a translation
stage and moved to 25 locations at intervals of 0.2 cm
�62.4 cm�. Magnitude and phase data were collected
in the range of 10–81 MHz by use of a RF network
analyzer.

To investigate the possible benef its of using multi-
ple modulation frequencies, we selected data acquired
at 10, 46, and 81 MHz. At each frequency, the 25 mea-
surements were increased to 50 by use of the symme-
try of the problem to assume that the same data would
result from the detectors and source switching sides.
Inversions were performed with individual frequencies
and also with the three frequencies simultaneously.
In all inversions, the domain (including the extrapo-
lated boundary region computed for a refractive index
of 1.33) was discretized into 65 3 33 3 65 nodes, giv-
ing grid spacings of 1.4 3 1.1 3 1.4 mm. The values
of ma, D, and g were initialized to 1025 cm21, 0.05 cm,
and 1.0, respectively. For the prior density, we used
s � 2.0 cm21 and p � 2.0. The optimization proce-
dure described above, in which one iteration consists of
an update of all unknowns, was run for 100 iterations.

Reconstructed images of the absorption coeff icient
are shown in Fig. 2 for the measurement �z � 0�
plane. Figures 2(a)–2(c) show single-frequency re-
constructions obtained with modulation frequencies of
10, 46, and 81 MHz, respectively. Figure 2(d) shows
the reconstruction obtained with all three modulation

Fig. 1. (a) Culture f lask with the absorbing cylinder em-
bedded in a scattering Intralipid solution. (b) Apparatus
used to collect the data.

Fig. 2. Reconstructed images of the absorption coefficient
with data at modulation frequencies of (a) 10, (b) 46, (c) 81,
and (d) 10, 46, and 81 MHz.
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Fig. 3. Isosurfaces of the absorption coefficient images
contoured at one quarter of the maximum value with data
at (a) 10, (b) 46, (c) 81, and (d) 10, 46, and 81 MHz.

frequencies. All reconstructions show a circular,
centrally located absorber of approximately the correct
dimensions. Because the diffusion approximation
does not apply in regions of high absorption, the actual
values of the absorption within the cylinder cannot be
quantitatively interpreted. Figure 3 shows isosurface
plots of the absorption contoured at one quarter of the
maximum value, corresponding to the reconstructions
in Fig. 2. Despite the facts that data were collected
only in a single plane and that no quasi-2-D assump-
tions were incorporated into the inversion geometry or
into the prior model, the isosurfaces all resembled the
cylindrical form of the absorber. The reconstruction
in which all three modulation frequencies were used
was slightly more accurate, suggesting that the use
of multiple frequencies may offer advantages. All
the reconstructions contain some artifacts in the
vicinity of the detectors, possibly because of the slight
asymmetry in the measured data, the failure of the
diffusion approximation in the absorbing cylinder,
or the inf luence of the Green’s function singularity
when the Fréchet derivative is evaluated near the
detectors. The estimate of D was close to 0.08 cm,
which is consistent with previous measurements,1

except at 10 MHz, where it was somewhat lower.
Using a single value of D (i.e., both outside and inside
the absorbing cylinder) is not strictly correct and could
introduce some error into the estimate.

In conclusion, we have presented a 3-D Bayesian
inversion technique for optical diffusion absorption
imaging and applied it to laboratory data. Estimation
of source–detector coupling, background diffusion co-
efficient, and detector noise permit a fully automated
reconstruction procedure. The results are geomet-
rically accurate and show that the use of multiple
modulation frequencies may be useful. They also
demonstrate that use of a full 3-D model with Bayesian
regularization allows 3-D images to be recovered from
limited 2-D measurements. Accurate and eff icient
3-D inversion methods such as this will be essential
for practical optical diffusion imaging.
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