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Abstract
Scanning transmission electron microscopy (STEM) has been successfully utilized to 
investigate atomic structure and chemistry of materials with atomic resolution. However, 
STEM’s focused electron probe with a high current density causes the electron beam damages 
including radiolysis and knock-on damage when the focused probe is exposed onto the 
electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron 
dose used in STEM for the investigation of biological/organic molecules, soft materials 
and nanomaterials in general. With the recent emergence of novel sparse signal processing 
theories, such as compressive sensing and model-based iterative reconstruction, possibilities 
of operating STEM under a sparse acquisition scheme to reduce the electron dose have been 
opened up. In this paper, we report our recent approach to implement a sparse acquisition 
in STEM mode executed by a random sparse-scan and a signal processing algorithm called 
model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% 
of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds 
to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned 
with an electron probe to obtain a sparse image. Sparse images are then reconstructed using 
the MBIR inpainting algorithm to produce an image of the specimen at the original resolution 
that is consistent with an image obtained using conventional scanning methods. Experimental 
results for down to 5% sampling show consistency with the full STEM image acquired by 
the conventional scanning method. Although, practical limitations of the conventional STEM 
instruments, such as internal delays of the STEM control electronics and the continuous 
electron gun emission, currently hinder to achieve the full potential of the sparse acquisition 
STEM in realizing the low dose imaging condition required for the investigation of beam-
sensitive materials, the results obtained in our experiments demonstrate the sparse acquisition 
STEM imaging is potentially capable of reducing the electron dose by at least 20 times 
expanding the frontiers of our characterization capabilities for investigation of biological/
organic molecules, polymers, soft materials and nanostructures in general.
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1.  Introduction

Since Albert Crewe’s pioneering works on scanning transmis-
sion electron microscopy (STEM) [1–4], modern STEM has 
been one of the mainstream techniques for high-resolution char-
acterization of various materials at the nanoscale. Specifically, 
with the recent development of the aberration correctors for 
electron probe-forming lenses and the field emission gun (FEG) 
having high coherency and brightness, sub-angstrom resolution 
imaging with a substantially increased signal-to-noise ratio 
(SNR) has been realized [5, 6]. Along with its atomic spatial 
resolution, aberration-corrected STEM equipped with spectro
meters including electron energy loss spectroscopy and x-ray 
energy dispersive spectroscopy has been successfully demon-
strated its capability of chemical analysis with single atomic 
sensitivity [7, 8].

In recent years, along with the remarkable advancements in 
STEM in terms of its hardware, researchers’ attention has also 
been paid to the STEM probe control protocol and/or image 
acquisition algorithm. Sang and LeBeau [9] demonstrated that 
drift image distortion could be successfully removed by per-
forming a series of fast-acquisitions of images with rotating 
the scan coordinate system between successive acquisitions. 
In addition to the efforts reducing the scan-distortion artifacts, 
the possibility of the low dose imaging in STEM has also been 
investigated by Buban et al where they investigated the feasi-
bility of the STEM approach based on a fast raster scan and a 
low probe current for low dose imaging [10].

Recently, new sparse signal processing theories, such as 
compressive sensing (CS) [11] and model-based iterative 
reconstruction (MBIR) [12], that allow to reconstruct an orig-
inal signal from a sparsely acquired one, have been emerged 
into the field of electron microscopy and those theories 
opened a new possibility for STEM to be operated within the 
scheme of sparse sampling theories. The last few decades have  
seen significant progress in the design of algorithms that can 
reconstruct an image from a sparse set of measurements. 
While the Nyquist sampling criteria guarantees perfect signal 
reconstruction when the sampling rate is at least twice the 
maximum signal frequency, it is possible to reconstruct a 
signal from far fewer measurements if we can exploit some a 
priori information about the signal. This is particularly true in 
the case of images that have local and non-local correlations 
and hence are generally sparse in some basis. One such class 
of image reconstruction algorithms, termed as MBIR, casts 
the reconstruction of an unknown image from noisy measure-
ments in a probabilistic framework that exploits information 
about the noise statistics in the measurement, the physics of 
data formation and low dimensional models for the image. 
Often such modeling results in the reconstruction being cast 

as an optimization problem where we find the reconstruction 
that best matches the data while being constrained by the 
assumptions of the image model.

Recent theoretical results from the field of CS have fur-
ther enhanced interest in the area of MBIR methods. Midgley 
research group has demonstrated that CS is applicable to 
STEM electron tomography [13–15]. Furthermore, Binev 
and coworkers have discussed the possibility of exploiting the 
sparsity of images in a wavelet basis to perform sparse image 
reconstruction for STEM [16]. Stevens et al, conceptually pro-
posed a CS STEM image acquisition strategy in which STEM 
images are acquired not by conventional raster scan but by 
the random subsampled scan and sparsely acquired images are 
recovered via Bayesian dictionary learning [17]. Although it 
requires hardware modifications, Béché et al, experimentally 
demonstrated that the fast electromagnetic electron deflection 
synchronized with continuous raster scan in STEM allows CS 
imaging [18].

As an effort to implement a sparse acquisition scheme in 
STEM with no hardware modification, we propose a STEM 
technique operated by a non-raster scan method, so called the 
random sparse-scan. We report the first experimental results 
obtained with the random sparse scan STEM technique imple-
mented on a widely used conventional microscope, an FEI 
Titan 80-300 S/TEM and discussed the potential of this tech-
nique towards a low dose STEM imaging of beam sensitive 
nanomaterials.

2.  Methods

The random sparse-scan STEM (SSTEM will be used in what 
follows) technique is mainly comprised of a non-raster scan 
based image acquisition followed by an image inpainting pro-
cess to reconstruct the fully sampled image from a subsampled 
one. Figure  1 describes the process flow of the method for 
acquiring a subsampled image and image reconstruction. The 
image acquisition is performed utilizing a high angle annular 
dark field (HAADF) detector with conventional STEM align-
ments. The ROI of a specimen is expressed as an array of ‘dis-
crete’ unit sampling areas (figures 1(b) and (d).

As in conventional HAADF-STEM, incoherently scattered 
electrons are collected by a HAADF detector during dwelling 
of electron probe onto a unit sampling area. Although the col-
lection of the signals using a HAADF detector is the same as 
that for a conventional detector, the electron probe positioning 
scheme is entirely different. Figure 1(d) illustrates the random 
SSTEM image acquisition protocol. In conventional STEM, 
the signal is continuously collected from each ‘unit sampling 
area’ of the ROI by a continuous raster scan (figure 1(b)). 
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The ‘unit sampling area’ means a discrete area on the sample, 
which corresponds to a single pixel of a STEM image.

In contrast to a conventional STEM, only a small number 
of unit sampling areas, which is determined by the predefined 
sampling ratio, are randomly chosen and exposed to the elec-
tron probe during the random sparse-scan (figure 1(d)), and 
therefore, the image having intensities of randomly chosen 
unit sampling areas is acquired as illustrated in figure 1(e). 
During the sparse-scan process, the electron probe is posi-
tioned to stay on the randomly selected unit sampling areas 
for a certain dwell time and then repositioned to the probe 
parking position, which is a predetermined position away 
from the region of interest of the sample. This process is 
repeated until the total number of the scanned unit sampling 
area satisfies the predefined sampling ratio. To implement the 
sparse-scan of the electron probe, TEM imaging and analysis 
software (TIA) scripting was utilized on an FEI Titan 80-300 
S/TEM. Then, the sparsely acquired image (figure 1(e)) is 
used to reconstruct the full image (figure 1(f)) by the MBIR 
based image-inpainting algorithm—termed Plug-and-Play 
priors [19]. As the specimen for the sparse acquisition experi-
ments, Au nanoparticles deposited on holey carbon film is 
chosen to demonstrate the resolution capabilities of SSTEM. 
More detailed description on the process flow of sparse 
acquisition using TIA scripting is described in the following 
section.

2.1.  Acquisition of sparse STEM images

We designed a random sparse scanning application (SSTEMbot)  
which employs a custom automation interface supported by 
the TIA. The automation interface enabled us to control the 
electron probe in a custom manner without any hardware 
modification: First, experimental parameters, such as digital 
image resolution, dwell time, and sampling ratio are preset. 
Second, a matrix corresponding to the predefined digital 
image resolution is prepared to store the intensities collected 
from each unit sampling areas (these unit sampling areas of 
a sample correspond to pixels in a STEM image). Third, por-
tion of the matrix elements are randomly chosen according 
to the sampling ratio, and the locations of the chosen matrix 
elements define the positions of the unit sampling areas at 
which the electron probe is positioned. Fourth, the SSTEMbot 
begins to examine each unit sampling area and stores the 
integrated intensity value for the corresponding pixel of the 
image matrix. Then, the STEM probe is moved to the pre-
defined parking position. The SSTEMbot continues to reposi-
tion the electron probe to another unit sampling area until 
all the randomly selected unit sampling areas are examined. 
Figure  2 shows the sparse image which is acquired by the 
SSTEMbot.

In the figure, the 20% sampled image is compared to the 
100% sampled one (figures 2(a) and (b)). Figures 2(c) and (d) 
illustrates the details of the images acquired conventionally 

Figure 1.  Illustration of the process flow of the sparse acquisition STEM technique. (a) Object for the conventional or random sparse scan 
(here, gold nanoparticles on amorphous carbon film). (b) Continuous raster scan in the conventional STEM. (c) The 3D intensity surface 
plot of the acquired conventional STEM image. (d) Discontinuous random sparse scan (e) The 3D intensity surface plot of the sparsely 
collected STEM image. (f) 3D intensity surface plot of the reconstructed image from the sparsely acquired STEM image.

Meas. Sci. Technol. 28 (2017) 045402



S H Hwang et al

4

and sparsely showing a small magnified section  from the 
same areas of the 100% and 20% sampled images, respec-
tively. As an example, the experimental parameters for 1% 
sub-samples image are 0.24 µs dwell time, 0.114 s unit sam-
pling area collection time and 755 s total run time of the pro-
gram. The average time to collect a unit sampling area, which 
does not change with sampling, includes probe parking time, 
time delay between scan/check commands in the SSTEMbot 
code, time for while loop to check the end of scan, the time 
to calculate the time interval to collect a unit sampling area, 
the time for actual execution of the process by TEM, and the 
dwell time. For high sampling ratios, we also implemented 
an optional drift correction algorithm into the SSTEMbot. 
The total run time also includes additional processing times 
for separate functions running in the code during collection, 
such as preparation parameters to scan, calculation and define 
region to scan, etc. Therefore, improving the speed of the 
communication between the software (TIA) and the hardware 
of the current conventional STEM instruments is critical to 
reduce these internal delays and to achieve full potential of the 
sparse collection strategy in low dose imaging.

2.2.  Reconstruction algorithm

We used the MBIR [20] approach to reconstruct the image 
from the sparse set of measurements. MBIR is a powerful 
framework for solving reconstruction and other inverse prob-
lems in imaging. Along with modeling the physics of image 
formation, and the noise in the image, these methods allow 
for the incorporation of models for the image (prior model), 
enabling significant improvements in image quality in a 
variety of applications [21–23].

In MBIR, a statistical model for the image is combined 
with a statistical model for the image to formulate the recon-
struction as solving an estimation problem. In particular, if y 
is the measured image organized as a M 1×  vector and x is 
the underlying image to be reconstructed organized as a N 1×  

vector, we will require a description of p y x( ), the probability 
density function of the measured image given the unknown 
(forward model) and a description of p x( ), the probability 
density function of the unknown image (prior model). Given 
these probabilistic formulations, the reconstruction is typi-
cally given by the maximum a posteriori probability (MAP) 
estimate, which using Baye’s rule can be expressed as,

x p y x p x

x l y x s x

arg min log log

arg min ;
x

x

{ ( ) ( )}

{ ( ) ( )}β

= − | −

= +

�

�� (1)

where l y x;( ) is the log-likelihood function, s x( ) is the log-
prior function and β is a parameter used to adjust the relative 
weights between the two models. We also emphasize that the 
formulation of the models determines the quality of the recon-
struction while the specific choice of optimization affects 
the speed of reconstruction. At this stage, MBIR can simply 
viewed as finding the value that best matches the data while 
being constrained by the prior model. MBIR methods typi-
cally tradeoff bias (resolution) for variance (noise) in order 
to produce a reconstruction. Thus, a higher bias introduced 
via the prior model can blur details in the images while low-
ering the noise variance. However, compared to conventional 
methods they tend to have a lower error in the sense of bal-
ancing the noise v/s resolution tradeoff.

While it is possible to formulate the forward model based 
on knowledge of the physics of the acquisition and the noise 
characteristics of the detector, formulation of a prior model 
for images requires accurately modeling the ensemble 
behavior of the image to be acquired. The choice of the prior 
model can help to significantly improve image quality as dem-
onstrated by the recent success of various image denoising 
algorithms [24–29]. However, extending these models to 
other applications has been challenging in general. The Plug-
and-Play (P&P) priors framework, inspired by the ADMM 
algorithm [30] for solving equation (1) under certain condi-
tions, provides a method to easily integrate a wide variety of 

Figure 2.  Example of a sparse acquisition STEM image. (a) 100% sampled conventional STEM image. (b) 20% sampled image from the 
random sparse-scan. The location of the green and red boxes in (a) and (b) are magnified to show the details of the images. (c) The magnified 
image of the area highlighted with the green box in the 100% sampled STEM image. (d) The magnified image of the area highlighted with 
the red box in the 20% sampled STEM image. Only 20% of pixels have the intensity values while the rest are skipped during scanning and 
remain black with zero intensity.

Meas. Sci. Technol. 28 (2017) 045402



S H Hwang et al

5

sophisticated prior models (image constraints) into the MBIR 
framework by implicitly defining them via image denoising 
algorithms. In short, the ADMM framework involves repeated 
application of the following steps until convergence:

	 1.	 { }← ( ) ν+ − +λ ��x l y x x uarg min ;
x

2 2
2

 //Invert forward model

	 2.	ν ν ν+ − +λ
β

� �x u sarg min
v

2 2
2{ }← ( )  //Denoise +�x u

	 3.	 ν+ − ��u u x← ( )

where λ is a parameter of the algorithm. Notice that the 
second step is a denoising operation that only depends on the 
choice of prior model. We define this denoising operator for a 
specific prior model to be given by

H y y x s x; arg min
1

2
.n

x n

2
2 2

2( ) ( )
⎧
⎨
⎩

⎫
⎬
⎭

σ
σ

= − +� (2)

If we define the forward model inversion operator as

F y x l y x x x, ; arg min ;
2

.
x

2
2{ }( ) ( )λ

λ
= + −� �� (3)

then the Plug-and-Play priors algorithm for any image model 
implemented via a denoising operator, H, is given by repeating 
the following steps until convergence

	 1.	x uν= −� �
		 x F y x, ;← ( )λ��  //Invert forward model
	 2.	 x uν = +� �
		 v H v ; n

2← ( )σ��  //Denoise v� based on desired prior; n
2σ = β

λ
	 3.	u u x← ( )ν+ − ��

Thus, the Plug-and-Play method provides a flexible frame-
work that allows state-of-the-art forward models of imaging 
systems to be matched with state-of-the-art prior or denoising 
models in the MBIR framework [19, 31].

Next, we apply the above Plug-and-Play framework for the 
STEM sparse reconstruction problem. We model each meas-
urement as the sum of the pixel value and zero mean Gaussian 

noise with standard deviation wσ . If A is a M N×  binary matrix 
which maps the underlying image to the measurements, then 
we model each measurement yi as

y Ax wi i i( )= +

where Ax i( )  is the ith element of the vector Ax  , wi is a zero 
mean Gaussian random variable with variance w

2σ . This results 

in l y x y Ax; 1

2 2
2

w
2( ) = −
σ

. Using this model we can compute 

the forward model inversion operator F y x, ;( )λ�  in (3) to be 

A A I A y xt t1
1

w
2  [ ]⎡

⎣⎢
⎤
⎦⎥λ λ+ +

σ

−
� . We note that for sufficiently large 

number of counts, the Gaussian assumptions are reasonable, 
while for the low-dose case this model can easily be replaced 
by a Poisson model. We choose the BM3D [28] filter for the 
denoising operator H. The BM3D denoising algorithm works 
by finding similar patches in the image, transforming them 
into a new basis, zeroing out the small coefficients and then 
applying an inverse transform to obtain the denoised patches. 
The BM3D filter has been shown to be very effective in the 
case of denoising natural images. Furthermore, the BM3D is 
a non-iterative method resulting in a fast implementation for 
the inpainting problem. Using these models our STEM image 
reconstruction method is summarized in figure 3.

3.  Results and discussion

Figure 4 shows the results of image inpainting from sparsely 
acquired STEM images of Au nanoparticles on holey carbon 
film. 100% sampled (conventional STEM) image is shown 
in figure 2(a). First, second, and third columns are sparsely 
sampled (upper row) and reconstructed (bottom row) images 
with the sampling ratio of 10%, 5%, and 3%, respectively. 
The reconstructed image from the 10% sampled image shows 
high consistency with the conventional image in terms of 
the morphology of each particle, edge sharpness, and con-
trast variation between or within particles (figure 4(d)). For 
5% sampling and reconstruction, although the edge of each 

 

Figure 3.  Plug-and-Play algorithm used for the STEM inpainting problem. The algorithm alternates between a model inversion and a 
denoising step. The prior model only influences the denoising step of the algorithm.
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particle is blurred compared to the conventional image, the 
morphologies and the contrast of particles are still consistent 
with the conventional one (figure 4(e)). The rightmost image 
reconstructed from the most sparsely acquired (3% sampling) 
starts losing the details of the original image (figure 4(f)). The 
contrast variation, which is shown in the conventional image, 
is somewhat suppressed and the edges of the particles are fur-
ther blurred.

In order to evaluate the quality of the reconstructed images, 
intensity profiles along the red line shown in figure 5(b) were 
also measured both from 100% sampled (reference) image 
and from the reconstructed images with 20%, 10%, 5%, and 
3% sampling ratio as shown in figure 5. As can be seen, the 
normalized profiles down to 10% are remarkably consistent 
with the profile taken from the reference image. The pro-
files taken from the 5% and 3% sampled images show some 

Figure 4.  Random sparse images and their reconstructions. (a)–(c) Are the random sparse images with the sampling ratio of 10, 5, and 3%, 
respectively. The reconstructions from the 10, 5, and, 3% sampled images are shown in (d)– (f), respectively.

Figure 5.  Comparison of the measured intensity profiles along the line from the reference (100% sampled image) and those reconstructed 
from the 20%, 10%, 5%, and 3% subsampled images. (a) Measured intensity profiles (solid line: 100% sampled, broken line: subsampled) 
along the red line marked on the inset image. (b) STEM image showing the location where intensity profiles were measured.

Meas. Sci. Technol. 28 (2017) 045402
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differences in terms of the intensities, however, the measured 
particle size by the reference line are still consistent with the 
reference image. This indicates that the shape and size of elec-
tron beam sensitive specimens, such as viruses, proteins and 
small metal nanoclusters/nanoparticles can still be identified 
even with the 3% subsampling.

We also quantified other parameters, such as average diam-
eter and the number of the gold particles from the conventional 
STEM image and the reconstructed images to compare the 
effect of the sampling ratio in quantitative analysis. Table 1 
illustrates the number of particles and average diameter of 
particles in the reference (conventional STEM image) and the 
reconstructed images from sparsely scanned images.

Particles smaller than 3 nm were excluded for this study 
because the contrast of those small particles was not sufficient 
to identify them in the selected magnification. The results 
from the 20%, 10%, and 5% sampled images show very 
high consistency with the reference with respect to both the 
average diameter and the number of particles. In the case of 
the number of particles, 20%, 10%, and 5% sampling show 
almost the same value (~150) to that of the reference. As for 
the average diameter of the particles, the values of the refer-
ence, 20%, and 10% sampled images are also equivalent to 
each other up to one place of decimals, and the difference 
between the reference and 5% sampling is only about 2%. It is 
noteworthy that even the 3% sampled image can estimate the 
diameter of particles with precision of about 95%. Moreover, 
further improvement can be obtained through the optimization 
of the reconstruction algorithm by adapting an online strategy 
for reconstruction—instead of reconstructing the images 
offline. If what we learn about the image during acquisition is 
incorporated into the reconstruction algorithm in real time, we 
can optimize the acquisition to focus on the important areas of 
the image for more reliable quantitative analysis [32].

To quantitatively discuss the effect of the reconstruc-
tion with varying sampling ratio, peak signal-to-noise ratios 
(PSNR), which is a quality metric evaluating the image pro-
cessing result, were calculated, where we used the fully sam-
pled image as the ground-truth. PSNR is defined with the 
following equation:

R
PSNR 10 log

MSE10

2⎛
⎝
⎜

⎞
⎠
⎟=

I m n I m n

M N
MSE

, ,
M N,

1 2
2[ ( ) ( )]∑

=

−

×

where MSE, I, M, and N are the mean squared error, the pixel 
intensity of an image, the number of rows and columns in 
the images, respectively. I1, I2 and R are the reference (fully 
sampled) image, the reconstructed image and the maximum 
possible pixel value of the image, respectively.

PSNR values of each sampling ratio decrease rather gradu-
ally with lowering sampling ratio down to 5%, which is fol-
lowed by a relatively rapid decrease for the sampling ratios 
below 5%. Based on this information, PSNR can be a guide-
line for selecting optimum electron dose (i.e. sampling ratio). 

As previously reported, a lower bound of sampling ratio 
depends on the complexity and fine details (e.g. grain bound-
aries, location of atomic columns) of the specimen under 
investigation [17]. That is, the optimum sampling ratio for 
the sparse acquisition is not invariant of materials. Therefore, 
the random sparse acquisition STEM should be preceded by a 
PSNR study to determine the optimum sampling ratio for each 
specific material system. However, the upper bound of the 
sampling ratio optimization is physically limited by the beam 
sensitivity and the damage threshold of a specific material. In 
this regard, the optimization process should be done below the 
maximum sampling ratio below which no significant electron 
beam damage is observed. Based on the calculated PSNR for 
Au on carbon film shown in figure 6, it can be inferred that 5% 
sampling is applicable to typical nanoparticle samples.

So far, our experimental results have demonstrated that 
the random sparse-scan approach in STEM can generate high 
quality STEM images even with a low sampling ratio, such 
as 5%, and this demonstrates the high potential of the sparse 
STEM acquisition for a low dose imaging. However, there are 
currently practical challenges and limitations for this tech-
nique to be used for high-resolution STEM imaging and/or 
low dose imaging due to the inherent instrumental limitations 
in widely used conventional microscopes:

First, the electron emission from the electron gun is contin-
uous and turning on/off the emission is not freely controllable. 
Because of this, electron dose keeps accumulating during the 
time interval between the probe re-positionings throughout 
the random sparse-scan. To minimize or effectively reduce 
the detrimental electron exposures, an electrostatic electron 
deflector can be added as an additional hardware in STEM. 
The electrostatic electron deflector can be synchronously 
operated with the random sparse-scan to deflect the electron 
beam out from the optic axis of the STEM instrument as dem-
onstrated by Reed et  al for the movie-mode dynamic TEM 
(DTEM) [33]. Second, both hardware and software of the 
widely used conventional STEMs are optimized for a line-by-
line or a pixel-by-pixel scan (i.e. raster scan) and it is currently 
unrealizable to shorten the intervals between the random 
sparse-scans to be negligible in comparison to the dwell time 
using the available software–hardware architecture in con-
ventional STEM instruments. Due to this instrumentational 
limit, repositioning of the electron probe during the random 
sparse scan causes longer times to acquire an image than the 
time required to acquire an image by conventional raster scan. 
Moreover, since the ‘scan-skip-scan’ type of probe control 
in the sparse-scan is more complicated than the continuous 

Table 1.  Results of the quantification of the particle size and 
number from the conventional STEM image (here, the reference) 
and the reconstructed images with 20%, 10%, 5%, and 3% 
sampling.

Reference 20% 10% 5% 3%

Number of particles 150 150 150 149 144
Average diameter  
(nm)

12.43 12.43 12.44 12.14 11.78
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raster scan, it inevitably takes longer time than conventional 
imaging. As a result, it requires drift correction especially for 
high sampling ratios (drift correction is implemented in the 
SSTEMbot to alleviate the potential of sample drifting due to 
scan-skip-scan type of probe control). Therefore, the longer 
acquisition times, mainly caused by the repositioning of the 
electron probe during the intervals, may potentially increase 
an electron dose due to the continuous emission from the gun. 
In this regard, developing a sparse and fast image collection 
scheme, which is implementable on a conventional scan-coil 
control system, is crucial to achieve its full potential in a low 
dose imaging. Kovarik et al demonstrated that a continuous 
lateral scan with a random vertical perturbation, which is 
analogous to the raster scan can improve the image collec-
tion speed, although their method requires the custom-build 
external control hardware for the scan coils [34].

4.  Conclusions

In this paper, we implemented a random sparse acquisition 
STEM technique on a widely used FEI Titan 80-300 S/TEM 
microscope. The random sparse-scan was performed by the 
SSTEMbot application, employing a custom automation inter-
face supported by TIA. Sparse images of Au on carbon film 
with varying sampling ratios were reconstructed by the MBIR 
algorithm, so called the Plug-and-Play priors. The results of 
the reconstruction from the sparse images of down to 5% were 
consistent with that of the conventionally acquired image. 
These results demonstrate the significant potential of the 
sparse acquisition STEM for low-dose imaging of the beam 
sensitive materials. However, the instrumental limitations in 
current conventional microscopes, such as the continuous 
electron beam emission and the time delays between the repo-
sitioning of the electron probe due to the internal electronic 
delays, limits the full utilization of this innovative technique 
in nanomaterials research. However, modifications of the con-
ventional STEMs, such as adding electrostatic electron beam 

deflectors and faster electronics for the STEM control hard-
ware, and optimization of the image inpainting algorithm used 
in the reconstruction of the images offers a viable potential 
solution to achieve low dose and high resolution imaging in 
the sparse acquisition STEM.
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