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Multislice helical computed tomography scanning offers the advantages of faster acquisition and
wide organ coverage for routine clinical diagnostic purposes. However, image reconstruction is
faced with the challenges of three-dimensional cone-beam geometry, data completeness issues, and
low dosage. Of all available reconstruction methods, statistical iterative reconstruction (IR) tech-
niques appear particularly promising since they provide the flexibility of accurate physical noise
modeling and geometric system description. In this paper, we present the application of Bayesian
iterative algorithms to real 3D multislice helical data to demonstrate significant image quality
improvement over conventional techniques. We also introduce a novel prior distribution designed to
provide flexibility in its parameters to fine-tune image quality. Specifically, enhanced image reso-
lution and lower noise have been achieved, concurrently with the reduction of helical cone-beam
artifacts, as demonstrated by phantom studies. Clinical results also illustrate the capabilities of the
algorithm on real patient data. Although computational load remains a significant challenge for
practical development, superior image quality combined with advancements in computing technol-
ogy make IR techniques a legitimate candidate for future clinical applications. © 2007 American
Association of Physicists in Medicine. [DOI: 10.1118/1.2789499]
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I. INTRODUCTION

Multislice CT scanning is particularly attractive for clinical
applications due to short acquisition times, thin slices, and
large organ coverage. Those acquisition trajectories produce
projection measurements that pass obliquely through the 2D
reconstructed image planes. As the pitch increases, deviation
from conventional approximate two-dimensional planar data
is further amplified. The accurate handling of this geometry
is critical to the elimination of unwanted reconstruction arti-
facts and the enhancement of image quality. Recent develop-
ments in analytical inversion algorithms give reason to hope
that for many, applications, image quality may be adequate
under single-pass, deterministic inversion culminating in
data backprojection.l’2 Imaging applications arise, however,
in which characteristics of the scanner hardware place a limit
on the quality of reconstructions. Helical “windmill” artifacts
may originate from portions of patient anatomy, particularly
in the case of abrupt edges in high-contrast materials, such as
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bones and prosthetics.3 Clinical diagnostics also require the
resolution of detail beyond the capability of even recent
scanners.

Traditionally, images have been reconstructed from CT
data using so-called analytical reconstruction algorithms
such as filtered backprojection (FBP) or convolution back-
projection (CBP). Some algorithms completely neglect the
cone-beam geometry of the measured data during back-
projection, and rely instead on helical projection data inter-
polations to limit the extent of geometric artifacts.*”’ Other
algorithms consider the cone-beam geometry by calculating
nutating image planes to minimize the error between the re-
construction plane and the projection ray paths in a 2D back-
projection step. These include the pi-algorithms,&9 ASSR,"
or AMPR."" However, these approaches are not sufficient
when the cone angle gets larger, and it becomes necessary to
consider the exact acquisition geometry in a 3D backprojec-
tion step, such as in the Feldkamp (FDK) algorithm,'? which
has been modified and generalized for general multislice
CT."*"% All these approaches are approximate by nature and
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reduce rather than eliminate cone-beam artifacts. By con-
trast, the algorithms of Katsevich'® provide an analytic solu-
tion to the helical cone beam scan inversion, with the hope of
completely eliminating cone-beam artifacts. However, they
were originally derived under the assumption of continu-
ously sampled detector surfaces, not the discrete form nec-
essary with hardware realizable in the foreseeable future. Al-
though modifications have been proposed for a detector with
discrete sampling,17 these still do not offer the possibility to
easily incorporate scanner-specific characteristics in the sys-
tem model. In addition, most single backprojection-based
techniques depend on projection data interpolation schemes,
which limit the resolution characteristics of the final output.

As an attempt to provide more flexibility in the recon-
struction choices, iterative reconstruction (IR) algorithms
have been recently introduced for multislice helical CT
images.lg_21 Enabled by recent advances in computer pro-
cessing hardware® or additional algorithm developments23
necessary to handle the additional computational cost, IR
methods are now considered an emerging reconstruction
technique for clinical CT patient data, with the objective of
improving image quality in situations challenging for state-
of-the-art convolution backprojection. Modern medical CT
imaging demands low-dose scans, high resolution recon-
structions, and artifact reduction even when data are limited
or incomplete. Fortunately, IR techniques are particularly
well equipped to address these challenges, although at the
cost of longer reconstruction time.

Successful methods adapted for iterative reconstruction
from CT data are based on the statistics of random fluctua-
tions in sinogram measurements.>*2® Rather than manipulat-
ing data to force it to conform to traditional analytical recon-
struction models, statistical methods attempt, to the degree
possible, to explicitly include nonidealities in the problem
description. This view of image reconstruction requires only
knowledge of a description of the way in which each mea-
surement is influenced by unknown image values. Such de-
ficiencies in data as Poisson counting noise and incomplete
scan coverage are expected and their description is built into
the reconstruction process. Rather than treating all measure-
ments with equal weighting, a statistical model allows differ-
ent degrees of credibility among data. This modeling pro-
vides statistical methods a robustness not easily incorporated
into single backprojection techniques. Problem formulation
for image reconstruction becomes the expression of a statis-
tical measure relating sinogram data to the estimated image
volume, in the form of an objective function, which may be
solved iteratively. The addition of a stabilizing function in
the form of a regularization prior may further reduce artifacts
and image noise. A priori information about the distribution
of the image space, such as an image smoothness penalty,
provides another tool for controlling image quality.

This view of the reconstruction problem represents a sig-
nificant departure from conventional analytical techniques.
The nonquadratic nature of the objective function often re-
sulting from modeled image statistics affects the usual trade-
off between image noise and resolution. While the choice of
appropriate filter kernels represents the principal method of
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adapting image characteristics to clinician’s expectations for
single backprojection-based techniques, several elements of
statistical IR methods may be tuned simultaneously to maxi-
mize image quality. However, the texture of IR images, a
consequence of statistical modeling, requires careful investi-
gation of the practical facets of image quality (contrast,
noise, resolution) to warrant application to clinical diagnos-
tics.

Since the introduction of IR methods to CT, much of the
effort has been devoted to demonstrating the feasibility of
the proposed techniques and illustrating some of its benefits
in the general case. The results in this paper focus on dem-
onstrating the value of iterative reconstruction in reducing
artifacts, improving resolution, and lowering noise in recon-
structed images. The great majority of artifacts we attack, as
well as limitations in reconstruction resolution, result from
the combination of detector aperture width and limited sam-
pling rates. Section II introduces the general framework of
the statistical reconstruction problem, and shows the formu-
lation of the objective function. Section III presents more
details on the forward modeling calculations, leading to ac-
curate reconstructions. A novel approach to regularization is
introduced in Sec. IV, with the design of a general family of
convex potential functions flexible enough to provide suffi-
cient control over desired final image quality. An efficient
technique for the iterative solution of the optimization prob-
lem is then reviewed in Sec. V. Finally, using the scans and
techniques introduced in Sec. VI, the results presented in
Sec. VII demonstrate both superior spatial resolution perfor-
mance and helical artifact reduction over analytical methods,
thus positioning IR methods for future clinical use.

Il. STATISTICAL MODEL FOR IMAGE
RECONSTRUCTION

Let x={x;;j €{1,...,M}} be the discrete vector of three-
dimensional image space. Its elements represent attenuation
coefficients, or unknown densities of the elements of space
forming the 3D volume and are the object of the reconstruc-
tion. Let y={y;;i € {1,...,N}} be the discrete vector of pro-
jection measurements, representing the line integrals through
the imaged object for a variety of positions and projection
angles. Our IR algorithm uses the same calibrated and pre-
processed data as conventional FBP.

An underlying assumption fundamental to the statistical
formulation of the reconstruction problem is that x and y are
random vectors, according to a common probability density
function determined by patient anatomy and x-ray physics.
The CT transmission scan does not provide the y; directly,
but rather is formed of a collection of recorded detector mea-
surements {\;;i € {1,...,N}} that are related to the line inte-
gral projections by Beer’s law of attenuation.”’ They repre-
sent the detected x-ray intensity after attenuation by the
scanned object, and follow a Poisson distribution:

\; ~ Poisson{l,e™i},

where /; is the impinging x-ray photon intensity, and y is the
ideal noiseless projection integral computed from the true 3D
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attenuation values x. The reconstruction problem may be for-
mulated in the Bayesian framework as the maximum a pos-
teriori (MAP) estimate

% = arg max P(xly),
X

where P(.) denotes the probability, which is equivalent to

X = arg max {log P(y|x) + log P(x)}. (1)

Frequently, a model of the form y=Ax+n is used, linearizing
the relation between x and y with the matrix A, an operator
transforming the image space in a manner similar to the CT
scanning system. The noise values in n represent random
fluctuations of the measurement about its mean as a result of
photon and electronic noise.

The first term on the right-hand side of Eq. (1) is the
log-likelihood term. A good approximation to the log-
likelihood for the x-ray transmission problem is based on a
second-order Taylor series expansion, in terms of the un-
known image, and of the log of the Poisson probability mass
function for the measurement counts )\i.zs This yields the
quadratic expression:

1
log P( Y|X) ~ - 52 d{y; - [Ax]i)2 +f(y)

1
=— E(y - AX)TD(y - AX) +f(y) s (2)

where D is a diagonal matrix, and f(y) is some function of
the data. For transmission tomography, the coefficients d; of
D are proportional to detector counts \;, which are maximum
likelihood estimates of the inverse of the variance of the
projection measurements.”>%’

1
dl.OC)\l.zll.e_yiE 5 . (3)
7,

The elements d; in the quadratic form of Eq. (2) reflect in-
herent variations in credibility of data. For example, if a
particular measurement y; is photon-starved by some highly
attenuating object, a problem which may cause artifacts in
conventional images, the model reduces the weighting asso-
ciated with that measurement by reducing the corresponding
d;. The dependence of the weighting matrix on the data dif-
ferentiates this model from Gaussian approximations. The
quality of the quadratic approximation in Eq. (2) improves as
the signal-to-noise ratio grows, and is quite accurate for
Poisson counts in the range of clinical CT.® We have re-
cently proposed a more accurate noise model based on a
compound Poisson-Gaussian model of the measurement
counts for inclusion of electronic noise in the statistical
model in cases where photon starvation occurs,” but the
simple model of Eq. (3) was used to generate all results in
this paper.

Combining Eq. (2) with the MAP estimate of Eq. (1)
yields
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1
& = arg min E(y -Ax)'D(y-Ax) + U(x) {, (4)

where U(x) is a scalar regularization term that is equal to
log P(x) within an additive constant. The function U(x) typi-
cally penalizes local differences between voxel elements, and
in Sec. IV we introduce a novel choice of U(x) which is
appropriate for our problem.

Note that FBP typically applies some kind of low-pass
filtering of the noisy projection data to reduce noise in the
low-signal regions. Whereas this is a form of statistical mod-
eling, it is inaccurate, at best, as it does not consider the true
distribution of the noise in the measurements. IR offers the
opportunity to better model the physics of data acquisition.
In practice, the measurement counts \; are subject to a num-
ber of calibration preprocessing steps, including physical dis-
tortions such as scatter and beam hardening corrections, and
other specific scanner corrections such as detector response
and normalization. Although they could be included directly
in the forward model and the noise model,” in this paper we
use the fully precorrected y; directly in the quadratic form of
Eq. (4), and rely on the robustness of the quadratic approxi-
mation for the typical dose levels of clinical CT scans.”®

lll. COMPUTATION OF THE FORWARD
MODEL

The crucial advantage of statistical reconstruction meth-
ods is that they allow any choice of the matrix A. Any scan-
ning geometry can be accurately modeled by proper compu-
tation of the entries in A, regardless of the three-dimensional
sampling pattern. The model can be designed to realistically
represent the scanner, although this may come at the cost of
great computational expense. Because it is necessary to in-
clude the nonplanar character of the measurements of the
helical scan in the forward model, a fundamental component
of our approach is to compute the coefficients in the three
spatial dimensions. The details of the calculation of the ele-
ments of the forward model lie at the core of any efficient
implementation of the iterative algorithm, and often drive
computation time and reconstruction accuracy.

The majority of projection algorithms in the literature are
optimized for the projection of the complete image volume
into the sinogram space. This is primarily because iterative
reconstruction methods such as conjugate gradient (CG)32 or
ordered subsets (OS)33 require a full forward and/or back-
projection for each iteration. Consequently, the computation
and memory requirements of some forward and backprojec-
tion operators have been optimized for this situation. Sid-
don’s method™ is one of the fastest algorithms recognized to
date to directly compute the ray path through voxel space,
using a parametric description of the ray. It has been opti-
mized and improved upon with accelerations such as in Ref.
35. Other fast techniques propose simple incremental com-
putations among image voxels for a single projection view in
order to maximize performance. For instance, the distance-
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driven (DD) method®® leads to fast implementation without
degrading the frequency response for rectangular basis func-
tions.

On the other hand, voxel-based iterative algorithms, such
as Gauss-Seidel (GS)*’ or the algorithm of Sec. V, may be
preferred to projection-based techniques due to their conver-
gence speed. Previously, we have calculated the forward pro-
jection using a solid voxel model,"®" which is based on the
computation of the intersection between the ray path and 3D
voxels in the helical cone-beam geometry using the Liang-
Barsky line-clipping algorithm.38 While this model can be
very accurate, it is computationally expensive because it re-
quires the projections of many rays per voxel/detector pair to
account for the finite size of the detector and voxel elements.
As an alternative, the DD kernel of Ref. 36 has been shown
to produce images free of artifacts related to the forward
model, so we propose here an implementation tailored to
coordinate descent optimization algorithms. We operate di-
rectly in the native geometry of the scanner in order to avoid
any loss of accuracy which might affect resolution perfor-
mance. The computation for a single voxel consists of three
steps repeated for each projection view:

(1) For each view angle, project the voxel’s center onto the
detector array.

(2) Estimate the 2D footprint of the voxel onto the detector
array by appropriately magnifying a “flattened” version
of the voxel and placing it at the position computed in
(1). Notice that this footprint may overlap several detec-
tor elements.

(3) Apply the DD projection kernel per Egs. (11) and (12) to
compute the coefficients of the forward model for each
element of the detector array within this neighborhood.

Figure 1 illustrates the spatially varying nature of the
model in the native cone-beam geometry with a curved de-
tector for two different positions of the source. The DD ker-
nel can be considered as the convolution between the voxel
response and the detector response. Let € be the ray angle in
the (x,y) plane parallel to the detector channel axis, and ¢
the angle in the (y,z) plane parallel to the detector row axis
(see Fig. 2). Intuitively, our objective is to “flatten” the voxel
along the dimension most closely parallel to the detector
face. By flattening the voxel, we simplify the computation of

its projection. Define the angle 6 which results from select-
ing the 45° rotation of @ such that | 6| < 7/4:

~ s ar ar
0=(0+—)m0d———. (5)
4 4 4

Figure 2 shows how 6 measures the angle between a ray
passing through the voxel center, and a normal to the flat-
tened voxel surface. We use a separable expansion of the 2D
projection in the 3D case. The projection coefficient of A for
voxel i, view j, channel k, row [, is therefore:

Cijki=Aijx X Bijri (6)

where, for rectangular basis functions in the cone-beam ge-
ometry, as illustrated in Fig. 2,
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Fi1G. 1. Forward projection of a voxel V in 3D space using the native cone-
beam geometry of the detector. A separable kernel between the channel and
row directions is used to compute the coefficients. The resulting forward
model is spatially varying, as illustrated by the size of the kernel which
changes between source positions S; and S, as a function of the distance
between voxel and detector.

A, .
Apji=—"2V(8) *S8.8,), (7)
cos 6
1
Bijii=——VI(5)*S5.(5), (8)
cos ¢

where A is the voxel size, & is the distance between the
center of the projected voxel and the center of the detector,

Detector > .<_

D,

—> <

FiG. 2. Forward model computation by kernel-based magnification in mul-
tislice native cone-beam geometry. The model computes the projection of
rectangular basis functions onto the detector along the detector channel di-
mension (left) and detector row dimension (right). A convolution model
between voxel response and detector response is used to compute the
coefficients.
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V(-) is the voxel window, S(-) is the detector sensitivity func-
tion, and “*” denotes convolution. We use the subscripts ¢
and r to denote the channel and the row dimensions of the
multislice detector, respectively. With L as the length of the
voxel projection onto the detector by magnification, and D as
the size of the detector element, the DD kernel is

V() =rect(d/L), )

S(6) = %rect(ﬁ/L). (10)

Note that the inclusion of both the detector and the voxel
response is important for reconstructions with high spatial
sampling where is L <D is possible. The coefficients of Eq.
(6) are therefore

A, D.+L.
Ai,j,k=_)c}iCIiP{0, 62 L—|5c

,min(Lc,Dc)] , (11)
cos 0

D.+L,

_|6r

B;jgi= Lclip[O, ,min(L,,D,)} . (12)
cos @

The function clip[ ] is clip[a,b,c]=min(max(a,b),c). This

model also offers the possibility of easily including scanner-

specific characteristics such as focal spot size and detector

response nonuniformity, although, for the time-being, these

effects are not taken into account.

IV. STABILIZING THE OBJECTIVE

Without the regularization term U(x) in Eq. (4), it is well
known that the image estimates are excessively noisy and
unstable.”* Regularization enforces smoothness in the re-
constructed images by encouraging neighboring pixels to
have similar values, and the parameters of the regularizing
term are used to control the trade-off between noise and reso-
lution in the final reconstruction.

In accordance with Eq. (1), we choose U(x) as the nega-
tive log probability of a prior distribution. Typical choices
for the prior distribution are Markov random fields (MRFs)
because they result in a function U(x) with only local inter-
action terms. A commonly used general class of MRFs takes
the form of

1
U(X) :]@{LEEC\PU(XJ_XIC)’ (13)

where W(-) is the potential function, penalizing local differ-
ences, and f(-) is some monotone increasing function. The
parameter o is a scalar that is determined empirically and
controls the prior strength relative to the noise model over
the local neighborhood defined by the set C of all 26 pairs of
neighboring voxels in 3D. It is advantageous to regularize
over a 3D neighborhood for reconstruction from cone-beam
measurements.

The generalized Gaussian Markov random field
(GGMRF)" is a class of MRFs with desirable properties
which result in a regularization term of the form
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1
U(x) = ;F{%Ec bk plx; = xp), (14)
p(A)=[APp=1. (15)

The b;, are directional weighting coefficients, which we
choose as the inverse of the distance between the center
voxel and the elements in C, normalized such that
2 gec bjx=1. The exponent parameter p of the GGMRF in
Eq. (15) allows one to control the degree of edge preserva-
tion in the reconstruction. As long as p>1, the resulting
regularization term is strictly convex. Combined with Eq.
(4), the resulting objective function is strictly convex as well,
which guarantees a unique global minimum of the cost func-
tion and allows simpler optimization algorithms for the deri-
vation of the solution. Convexity is desirable since it ensures
that the reconstruction does not change discontinuously with
the sinogram data.*' When p=2, the regularization term is
quadratic, and the reconstructed image tends to have softer
edges. As p is reduced, the regularization term becomes non-
quadratic and edge sharpness tends to be enhanced. Other
choices of potential functions offer alternatives for varying
edge sensitivity.3 9448 general, regularization affects
noise and resolution, and may preserve high and low contrast
detail differently. Such flexibility is important to clinical im-
aging.

We next introduce a novel prior formulation, designed to
provide flexibility over the GGMRE. It is a family of convex
functions, which encompasses GGMRF and Huber-like
functions.”” This new potential function takes the form

AP

A= ————
A = A

(16)

The corresponding derivative is known as the influence func-
tion
AP

(_(p—q> AP~
LA \P 7\ erma ) 14 [Aselr

p'(A) = )sign(A).

(17)

We assume that p=¢g=1. The constants p and g determine
the powers near, and distant from the origin, respectively.
The constant ¢ determines the approximate threshold of tran-
sition between low and high contrast regions. We restrict
ourselves to convex functions, that is | <g<p=<2. The de-
tails of the convexity analysis can be found in the Appendix.
We refer to this family of convex priors as the g-generalized
Gaussian MRF (¢-GGMRF). It contains interesting special
cases for some values of p and ¢

e p=1=2: Gaussian prior

e p=2; g=1: Approximate Huber prior

e 1 <g=p=2: Generalized Gaussian MRF

* 1=g<p=2: g-generalized Gaussian MRF

Figure 3 compares the influence function of the Gaussian
and edge-preserving GGMRF priors to several ¢-GGMRF
priors. In the Gaussian case, the influence function is linear
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FiG. 3. Influence function for the g-GGMREF prior, plotted for different pa-
rameters p, ¢, and ¢, and across a range of local voxel differences. A rel-
evant in a range of Hounsfield units relevant to clinical imaging. Solid line:
q-GGMRF p=2, g=1.2, ¢=10. Asterisks: GGMRF p=1.3, ¢g=1.3; open
diamonds: Gaussian p=2, g=2. Open triangles: g-GGMRF p=2, ¢=1.2, ¢
=5. Crosses: ¢-GGMRF p=2, g=1.5, ¢=10.

around the origin, the region which controls textures in uni-
form regions. With p fixed, smaller values of ¢ retain better
edge-preserving characteristics, as the influence becomes
constant for larger values of A. The value of ¢ controls the
inflexion point: higher ¢ pushes the edge-preserving behavior
toward larger A. We will examine suitable values of the pa-
rameters p, g, and ¢ for CT imaging in Sec. VIL

V. COMPUTATION OF THE SOLUTION

With the choice of a strictly convex prior potential func-
tion, the cost function defined in Eq. (4) is strictly convex as
well, and therefore has a unique global minimum. For this
reason, any number of different optimization algorithms will
converge to the same reconstructed image corresponding to
the global minimum of Eq. (4).*’ Therefore, the choice of
optimization algorithm should be based on the computational
efficiency by which the algorithm reaches the unique solu-
tion.

Statistical methods have a great advantage in the multi-
slice helical case, in having little dependence in their imple-
mentation on the geometry of data collection. We attack the
estimation/optimization of Eq. (4) in the same manner re-
gardless of the scan pattern represented by A or the selected
prior U(x). We select an algorithm in the class of voxel-
based techniques for their ability to quickly converge high-
frequency components, provided a good initial condition, as
can be quickly obtained with FBP. We propose optimization
over the full 3D volume through a sequence of one-
dimensional updates where the image estimate X is
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1
& = arg min E(Y - Ax)'D(y - Ax)
Q

Xe

1
+ E V(r(-xj_-xk) > (18)

o) ilgec

and () is the convex set of non-negative reconstructions. The
optimization of a strictly convex functional over a convex set
yields a unique solution so the addition of this positivity
constraint is valid. For image regularization, we use in prac-
tice the g-GGMREF of Sec. IV, but to emphasize that this
method is independent of the particular choice of the prior
for implementation, we employ the general form of Eq. (13)
in Eq. (18). For implementation, our approach to the solution
is a sequence of one-dimensional optimization steps, where
all other image elements are fixed during a single element’s
update. Each one-dimensional optimization computes ele-
ment x; at iteration (n+1) from x at iteration (1) based on

N
ANl . di n 7
xj” =arg mir(} 2} E(yi - Ai*x( ) 4+ A,~_,»(x§’> —xj))2
xj= i=
1
+— > V(=) 1. (19)
f(U)kECj 7k

We perform single voxel updates in random order to mini-
mize the correlation between adjacent updates and maximize
convergence speed.50 At each step, the one-dimensional cost
function in Eq. (19) must be minimized by computing the
root of its derivative

1
(o) > Lx-x") =0, (20)
) kec; X:x;_m)

01 + (92()6 —X]('n>) -

where the first and second derivatives for the left-hand side
of Eq. (19) yield

N

0, = 2 diAij(yi - A[*x(”)), (21)
i=1
N

th =2 dA}. (22)
i=1

I,(-) is the influence function, i.e., the first derivative of the
prior potential, and its expression for the g-GGMRF is given
in Eq. (17). Because in general the nonquadratic shape of the
regularizer does not lead to a closed-form solution, a simple
half-interval search is performed, to some tolerance around
the root.”” The general framework of this iterative solution
can be summarized as:

(1) Initialize x'© from FBP images
(2) Perform initial forward projection to compute Ax”
(3) Perform single image-space iteration

(a) Select voxel xj(,") according to random schedule
(b) Calculate the elements of the forward model A.;
(c) Compute 6, and 6,
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(d) Perform half-interval search to find the root of Eq.
(20)

(e) Update xj."”)
(f) Update forward projection estimate
AX(”+1)=AX(")+A*I~(x(."+l)—x(,"))

(g) Repeat steps 3(a)¥3(f) untif all voxels have been

visited

(4) Repeat full iteration until convergence is achieved
Vje {1...M}|x_';-+1—xj.")| <1 HU

This approach, called iterative coordinate descent
(ICD),” guarantees global and monotonic convergence for
convex a posteriori log probability density functions,” and
has shown rapid convergence properties provided a good
choice of initial conditions. We use the standard FBP images
as initial conditions, offering a good estimate of the low
frequency components. While the cost of each iteration re-
mains relatively high as compared to FBP, a full 3D ICD
reconstruction typically converges in fewer than 10 itera-
tions, to the point where successive image differences are
smaller than the visible range of 1 HU.

We refer to the ICD approach to solving the MAP estima-
tion problem posed in Eq. (4) as “MAP-ICD” in the remain-
der of this paper, to emphasize that the global solution to the
reconstruction problem is in fact the combination of the
choice of a cost function and the choice of an optimization
algorithm, both of which may be made independently, within
the limits of the ability of the optimization technique to
handle the constraints of the statistical model.

VI. MATERIALS AND METHODS

We acquire data on the GE Lightspeed 16-slice third gen-
eration CT scanner to assess the performance of the algo-
rithm. The Lightspeed geometry corresponds to 541.0 mm
source-to-isocenter distance, and 949.075 mm source-to-
detector distance. The elements of the multislice detector are
formed on an arc concentric to the focal spot of the x-ray
source. All the scans used here contain 984 views per rota-
tion for a 1.0 s gantry period. In the following, we refer to
scan sets by describing the detector configuration and scan-
ning trajectories. The R X W notation represents a multislice
scan taken with R detector rows, and where each row thick-
ness is W mm at the isocenter of the CT gantry. Total detec-
tor aperture corresponds to the product R X W in millimeters.
The helical pitch of acquisition is described as P/R: 1, that is
the number of detector rows P traveled along the axis of the
gantry during one full rotation. The quantity P/R is often
referred to as the normalized pitch of helical acquisition. In
all images, the notation “WW” defines the window width in
Hounsfield units (HU) selected to display the images.

First, we assess the performance of the g-GGMRF prior
model and general image quality of the MAP-ICD algorithm.
For this purpose, we use the GE Performance Phantom
(GEPP).” It is formed of a Plexiglas™ insert with resolution
bars and tungsten wires in water, and supports quantitative
measurements of noise and resolution. The phantom was
scanned in 16 X 0.625 mm helical mode at pitch 15/16:1, and
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100 mA. Our objective is to select a set of parameters p, g,
and ¢ based on visual inspections of reconstructed images
with parameters varied systematically across the range of
convex prior behavior. We limit ourselves to convex priors in
this discussion so as to preserve the global convergence
properties of the algorithm. Our purpose is not to provide an
extensive comparison to prior art, but rather to show that this
prior is designed to perform well in the context of regular-
ized iterative reconstruction of clinical CT images. To obtain
comparable results for various shapes of the potential func-
tion, we match noise between the resulting images within a
fixed ROI to less than 1 HU. Matching noise ensures that the
strength of the prior relative to the noise model is similar in
all images. While keeping two of the parameters p, ¢, and ¢
fixed, we vary the other to study the impact on image quality.

With a proper choice of the prior model, our major con-
cern is then the comparison of the MAP-ICD algorithm
against conventional analytical reconstruction relative to
these image quality characteristics: in-plane resolution /
noise trade-off, cross-plane resolution, and helical artifacts.
For comparison, we will consider “FBP,” the 2D filtered
backprojection with adaptive view-weighting6’27 used as
baseline; “FDK,” a Feldkamp-based algorithm providing ex-
plicit modeling of the 3D cone-beam geometry during
backprojection,2 “conjugate FDK,” a Feldkamp-based algo-
rithm making use of conjugate samples during 3D back-
projection to achieve better slice-sensitivity proﬁle,52 and
“Katsevich,” Katsevich’s exact analytic inversion algorithm
for 3D reconstruction.'®

In the following experiments aimed at demonstrating
resolution performance, and later the presence or absence of
helical artifacts, we will use an anthropomorphic head phan-
tom. While all algorithms treat the cone-beam geometry with
different degrees of accuracy, the limited sampling of the fine
details in the bone structure due to discrete scanner charac-
teristics also generates artifacts, generally described as
“windmill” artifacts.” The cracks in the skull that vary rap-
idly from plane to plane in our head phantom are a particu-
larly strong source of artifacts, and also provide some visual
insights into in-plane and cross-plane resolution, with realis-
tic imaging for CT diagnosis.

An important goal of this study of iterative reconstruction
is understanding its effect on cross-plane resolution in CT
systems. In conventional linear, spatially invariant analysis,
samples are placed in a uniform pattern, yielding a band of
recoverable frequencies having an easily discernible shape
and size. In contrast, complete analysis of potential helical
CT resolution is necessarily a three-dimensional problem
without such simple sampling patterns. To our knowledge,
no such analysis has been published. However, it is known
that displacement of samples from a rectangular pattern in
other applications can improve the recovered bandwidth; one
common example is interlaced television scanning.53

In helical scan CT, each view of data corresponds to a
complete set of measurements for each channel and row lo-
cation in the detector array, with incremental displacements
of the patient between successive views even with high
pitch. Consequently, the minimum sample spacing along the
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z direction is typically much smaller than the size of the
detector row elements. This high sampling rate in z means
that, if the data include only extremely low-frequency in-
plane information, the Nyquist criteria may be satisfied even
for very high spatial cross-plane resolution. In practice, fre-
quency content will be more uniform in the three variables,
and therefore less dramatic improvement will be possible
than is indicated by minimum z-spacing. While the maxi-
mum sampling rate in z is high, the cross-plane resolution is
also limited by detector aperture and focal spot size.”” How-
ever, oversampling has been used to recover resolution from
spatially filtered data in other applications,54 so it is reason-
able to believe that it can be used in our problem to improve
over classical reconstruction resolution as well.

For simplicity, we will assume that the x-ray source is a
point, and that the object is imaged about the isocenter. We
denote the effective detector aperture at the isocenter by W.
This is the physical spacing of the detector rows multiplied
by the ratio (source-to-iso)/(source-to-detector). The z mea-
surements for the object are then approximately convolved
with the function h(z)=(1/W)rect(z/W), where h(z) is a
square pulse centered at z=0 with width 1 and area 1. The
frequency response in z is then given by the continuous time
Fourier transform of h(z), which is sinc(f/f.), where f,
=1/W. The first null of the sinc function is then at f=f,. For
frequencies below this first null given by f<f,, it is possible,
in principle, to recover the desired resolution because the
sinc function magnitude is greater than zero. For example,
for a detector aperture size at iso of W=1.25 mm, the first
null falls at f.=8 Ip/cm, so we might expect to be able to
recover resolutions up to 8 Ip/cm. Alternatively, for W
=0.625 mm, the first null falls at f.=16 Ip/cm, so we might
expect to be able to recover resolutions up to 16 Ip/cm.
However, direct reconstruction methods such as FBP typi-
cally fall far short of this resolution, as we will illustrate in
Sec. VII. Iterative reconstruction, which explicitly models
the extents of the detector cells and image voxels, has the
potential to improve on this.

In order to illustrate this potential benefit, we will com-
pute the frequency response of the reconstruction algorithm
using an empirical method. Using the head phantom scan
mentioned earlier, we will add to the sinogram the forward
projection of five synthetic points within a 10 cm diameter
from the isocenter in the center plane of the volume: one
point at the isocenter, and two others on the vertical and the
horizontal axis, respectively. The forward projection of these
synthetic points is computed using the DD kernel of Sec. III.
Adding the synthetic data to the original sinogram will allow
consideration of the real scan statistics in the experiment. We
will then reconstruct those impulses within the head data
with both MAP-ICD and FBP. For this experiment only, we
will use a Gaussian prior (p=¢=2). We use these parameters
so that the MAP reconstruction is linearly related to the data,
and our results are therefore independent of the contrast level
of the synthetic points. Varying the scale parameter, o, of the
a priori image model will produce varying resolution, with
smaller ¢ yielding smoother response and less spatial reso-
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lution. After taking the difference between the reconstruc-
tions with and without the added impulses for both MAP-
ICD and FBP, and averaging the reconstructed point spread
functions across the five locations, we then sample the re-
sponse in the frequency domain to form comparison plots.

For a more complete analysis, we will also provide further
visual and quantitative evidence of superior cross-plane reso-
lution performance with MAP-ICD. We will compare the
reconstructions of the head phantom scanned in 16
X 1.25 mm at helical pitch 9/16:1 to 16X 0.625 mm at both
helical pitch 15/16:1 and 9/16:1, where higher sampling re-
sulting from W=0.625 mm will yield results closer to ground
truth, with pitch 15/16:1 approaching the original scan tra-
jectory of 16X 1.25 mm at 9/16:1, and pitch 9/16:1 provid-
ing even finer sampling. For another quantitative measure,
we will use a wire-in-air phantom, containing six wires in-
side a 20 cm circular phantom, with each wire sloped with a
ratio of 4:1 relative to the z axis. Using partial volume effect
in the reconstructed axial images, the profile through the
wires will be computed and averaged over all wire locations
to yield the measured slice sensitivity profile (SSP), compar-
ing MAP-ICD to FBP for all three scan trajectories consid-
ered earlier. Finally, for a more systematic visual evaluation
of cross-plane resolution, a suitable grid pattern aligned per-
pendicular to the z axis will be used. We will provide recon-
structions of the high-resolution insert of the AAPM CT per-
formance phantom (described in a report by the AAPM Task
Force on CT Scanner Phantoms, approved by the American
Association of Physicists in Medicine™), which is generally
accepted as a challenging case in visual resolution studies. It
features low-contrast holes ranging from 0.4 to 1.1 mm at
intervals of 0.1 mm. We will repeat scans for all protocols
considered above after placing the AAPM phantom upright
on the CT table, and perform reconstructions followed by
multiplanar reformats.

While improved cross-plane resolution performance with
MAP-ICD is one of the major results we present in this pa-
per, it is also important to confirm that helical “windmill”
artifacts are controlled as well. To further emphasize the ef-
fect of limited sampling, we scan the head phantom with a
wide detector pitch, using 16X 1.25 mm at helical pitch 15/
16:1. We will compare the results of MAP-ICD with each of
FBP, FDK, Conjugate FDK and Katsevich to study robust-
ness against helical artifacts. We will also consider a helical
rib phantom scanned in 8 X 1.25 mm and helical pitch 13.4/
8:1. The Teflon ribs oriented to change very rapidly from
plane to plane, as well as the tapered hole in the center of the
phantom, typically increase the level of helical artifacts, es-
pecially at high helical pitch.

Before getting to the results, we define the filter kernels
used in the FBP images as “standard” or “bone” with the
following characteristics demonstrated on the 0.05 mm tung-
sten wire submerged in water of the GEPP and scanned axi-
ally at 120 kV, 200 mA, and reconstructed at 5 mm thick-
ness. Resolution is measured in line pairs per centimeter (Ip/
cm). The bone kernel is a high-frequency emphasis filter,
designed as explained in Ref. 27, with a 50% MTF of
8.6 Ip/cm and 10% MTF of 11.9 Ip/cm for a corresponding
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FiG. 4. Influence of the exponent parameter p of the g-GGMRF on image quality at matched noise with MAP-ICD on a GE Performance Phantom: 16
X 0.0625 mm, helical pitch 15/16:1, 100 mA, 1 s/rotation, WW=350; Ax=Ay=0.488 mm, Az=0.625 mm; Top left panel: g-GGMRF p=2.0, g=1.2, ¢
=10. Top right panel: g-GGMRF p=1.6, g=1.2, ¢=10. Bottom left panel: GGMRF p=1.2, g=1.2, ¢=10. Bottom right panel: GGMRF p=1.1, g=1.1, ¢
=10. For ¢ and c fixed panel, smaller p favors plateauing and salt-and-pepper noise in homogeneous regions.

FiG. 5. Influence of the exponent parameter ¢ of the g-GGMRF on image quality at matched noise with MAP-ICD on a GE Performance Phantom: 16
X 0.625 mm, helical pitch 15/16:1, 100 mA, 1 s/rotation, WW=350; Ax=Ay=0.488 mm, Az=0.625 mm. Top left panel: Gaussian p=2.0, ¢=2.0, ¢c=10. Top
right panel: g-GGMRF p=2.0, g=1.4, ¢c=10. Bottom left panel: ¢-GGMRF p=2.0, g=1.2, ¢=10. Bottom right panel: -GGMRF p=2.0, ¢=1.0, ¢=10. For
p=2.0 and ¢=10 fixed, smaller g leads to higher resolution.

Medical Physics, Vol. 34, No. 11, November 2007



4535 Thibault et al.: Improved statistical reconstruction for multislice helical CT

4535

FiG. 6. Influence of the threshold parameter ¢ of the g-GGMRF on image quality at matched noise with MAP-ICD on a GE Performance Phantom: 16
X 0.625 mm, helical pitch 15/16:1, 100 mA, 1 s/rotation, WW=350; Ax=Ay=0.488 mm, Az=0.625 mm. Top left panel: g-GGMRF p=2.0, ¢g=1.2, ¢

=1000. Top right panel: g-GGMRF p=2.0, g=1.2, ¢=100. Bottom left panel: ¢-GGMRF p=2.0, g=1.2, ¢=10. Bottom right panel: ¢-GGMRF p=2.0, ¢
=1.2, c=1. For p and ¢ fixed, large values of ¢ result in excessive smoothing.

FiG. 7. Assessment of g-GGMRF image quality with MAP-ICD on a GE Performance Phantom: 16 X 0.625 mm, helical pitch 15/16:1, 100 mA, 1 s/rotation,

WW=350; Ax=Ay=0.488 mm, Az=0.625 mm. Left panel: Gaussian prior p=2.0, ¢=2.0, =10. Center panel: ¢-GGMRF prior p=2.0, g=1.2, ¢=10, o
=8. Right panel: GGMREF prior p=1.1, g=1.1, 0=0.1.

TaBLE I. Noise and in-plane resolution performance of the g-GGMREF prior for the image results in Fig. 7. With
p=2.0, g=1.2, and ¢=10, the g-GGMRF presents a good compromise between edge preservation for high
contrast and low contrast imaging free of plateauing, compared to either the Gaussian or the GGMREF priors.

Prior p q c o Std. Dev. (HU) 50% MTF (Ip/cm)
Gaussian 2.0 2.0 n/a 10 11.15 4.24
q-GGMRF 2.0 1.2 10 8 10.88 7.23
GGMRF 1.1 1.1 n/a 0.1 10.78 8.16
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FiG. 8. Comparison of FBP vs MAP-ICD performance on the GE Performance Phantom: 16X 0.625 mm, helical pitch 15/16:1, 100 mA, 1 s/rotation,
WW=400. Left panel: FBP “standard” kernel. Center panel: FBP “bone” kernel. Right panel: MAP-ICD. MAP-ICD parameters: Ax=Ay=0.24 mm, Az

=0.625 mm, p=2.0, g=1.2, c=10, o=16.

standard deviation of noise of 11.7 HU at 200 mA, while the
standard kernel offers a different compromise between image
noise and resolution with 50% MTF of 4.3 Ip/cm and a 10%
MTF of 6.9 Ip/cm for a standard deviation of noise of
3.2 HU also at 200 mA. These measurements are for in-
plane resolution, and are taken with the GEPP scanned at
1.0 s/rotation and imaged with 2D FBP at 0.625 mm slice
thickness.

VIil. RESULTS

VIL.A. Performance of g-GGMRF for in-plane
resolution/noise trade-offs

The form of the ¢g-GGMREF prior introduced in Sec. IV
depends on three parameters: p and g control the degree of
curvature in the potential function in two regions and ¢ de-
termines the boundary between the two. Here we demon-
strate the trade-offs in selecting those parameters and arrive
at what appears to be a useful compromise.

Iteratively reconstructed CT images will appear different
from the FBP images to which radiologists have become
accustomed, depending on the parameter choices of the
a priori image model. These images will gain clinical accep-
tance only if they avoid characteristics which are disturbing
to those reading them. In order to arrive at a sensible choice
for the g-GGMREF parameters, we qualitatively compare im-
agery in Figs. 4—6. The first of these shows several values
for p, under the assumption that ¢ assumes an edge-
preserving, small value. The choice of p=2 shows good edge
preservation but also preservation of low contrast informa-
tion. As the value of p descends from 2, high contrast detail
is increasing sharply rendered, but low contrast areas begin
to show plateauing and sharp spikes to an objectionable de-
gree. This is due to the strong character of the influence
function of the GGMRF with small p near the origin, as
shown in Fig. 3. In practice, we prefer the quadratic prior
behavior in regions of soft tissue where the presence of le-
sions may be detected, and the higher resolution of the non-
quadratic prior in other regions requiring more detail.
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In Fig. 5, we vary the parameter g. It appears that any
value for g above 1.4 in this case causes unacceptable levels
of smoothing for our attempts at higher resolution recon-
structions. At the other extreme, with p=2.0 and ¢=1.0,
which corresponds to the Huber-Markov model, the degree
of salt-and-pepper noise allowed by the strong edge-
preserving property becomes objectionable. Again we see
that the strongest forms of edge preservation have problem-
atic side effects in other aspects of image quality.

Having evidence that differing exponents in the
q-GGMREF for the low and high-contrast regions are desir-
able, we consider in Fig. 6 the dependence on the threshold
between the regions, ¢, measured in Hounsfield units. Clearly
values of 100 and above place large edges into the quadratic
penalty range, causing the sort of smoothing witnessed in the
Gaussian case earlier. As ¢ approaches zero, the model ap-
proaches the GGMREF, with the attendant plateauing found
earlier.

Figure 7 and Table I more quantitatively compare three
forms of the g-GGMRF. Noise powers are again approxi-
mately matched to allow comparison of resolution as mea-
sured by the 50% level of the modulation transfer function
(MTF). Notice that the GGMREF has the highest spatial reso-
lution, but that the g-GGMRF achieves comparable resolu-
tion performance, much greater than with the Gaussian prior.
Based on these results, it appears that the values p=2, ¢
=1.2, and ¢=10 represent a good compromise between reso-
lution, low contrast sensitivity, and high contrast edge pres-
ervation at a fixed noise level. Figure 3 also illustrates how

TaBLE II. Comparison of FBP and IR for measurement of in-plane MTF and
noise, for the images in Fig. 8.

FBP standard FBP bone MAP-ICD
50% MTF (lp/cm) 4.39 8.53 8.66
10% MTF (Ip/cm) 7.04 11.90 13.20
Water Std. Dev. (HU) 20.76 85.09 12.76
Plexiglas Std. Dev. (HU) 24.99 90.94 13.01
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FIG. 9. Cross-plane frequency response comparing FBP to MAP-ICD, cor-
responding to the images in Fig. 10. For each case, the frequency response
is computed by projecting into the sinogram five synthetic points placed in
a 10 cm diameter around the isocenter area, and sampling the average of the
reconstructed point spread functions in the frequency domain. For MAP-
ICD, the calculation is done with a Gaussian prior to matching the analytic
model and studying the contrast-independent response. The result shows that
MAP-ICD can dramatically improve cross-plane resolution by approaching
the theoretical limit more than FBP.

deviations from our preferred selection push the behavior of
the prior model toward one of the extreme behaviors of ei-
ther the Gaussian case or the edge-preserving GGMREF. This
choice of parameters achieves visually pleasing image qual-
ity. Therefore, we will focus on these prior parameters in our
future experiments.

For a comparison at equal resolution between FBP and
MAP-ICD reconstruction, we apply the high-frequency
“bone” kernel as well as the “standard” kernel in FBP to the
wire section of the GEPP. It provides a means to accurately
measure the in-plane MTF, while the standard deviation of
noise can be measured in the homogeneous regions of the
phantom (water and Plexiglas)™. The voxel size is de-
creased in the reconstructions to properly compute the MTF

4537

curves. Results are shown in Fig. 8 and Table II. The mea-
sured MTF for the MAP-ICD image is comparable to that of
the FBP image reconstructed with the bone kernel, while
noise attenuation is close to 50% better in the MAP-ICD
image than in the FBP image with the standard kernel.

VII.B. Improvements in cross-plane resolution

Figure 9 shows the frequency response plots resulting
from adding synthetic point sources to the head phantom
data set with W=1.25 mm and a helical pitch of 9/16:1, us-
ing the methodology described in Sec. VI. Reconstructions
were done with a voxel size of A,=0.625 mm so that the
maximum discrete-time frequency of m corresponds to
8 Ip/cm. Figure 10 shows the reconstructions associated
with each of the three curves. Notice that the frequency re-
sponse corresponding to MAP-ICD with o0=32 has much
wider MTF than that of FBP, but with comparable levels of
noise. In fact, the MAP-ICD can recover frequencies much
closer to 1/W or 8 Ip/cm for this case. On the other hand,
the reconstruction with 0=8 has comparable resolution to
FBP, but much lower noise.

The above-noted results are generated with a Gaussian
prior to linearly relate the reconstructed images to the data,
so that the results are independent of the contrast level. It is
possible to achieve even better results with the g-GGMRF
and the parameters selected in Sec. VII A thanks to its edge-
preserving behavior. In the next results, we apply the
q-GGMRF to the three head scans introduced in Sec. VI,
comparing results from wide and small detector apertures.
Figure 11 compares FDK reconstructions using the bone ker-
nel to the MAP-ICD images. In the MAP-ICD reconstruc-
tions, the voxel size is decreased to take advantage of the
high sampling rate of the helical scan along the z axis, while
conventional analytic approaches cannot easily reduce the
slice sensitivity profile without kernel adjustments and en-
during a noise penalty. The results demonstrate that the IR
images made from the scan with W=1.25 mm achieve close
to the cross-plane resolution of the FDK images with W

FiG. 10. Head phantom illustrating cross-plane resolution performance and comparing FBP to MAP-ICD, corresponding to the frequency response plots in
Fig. 9. The scan is 16X 1.25 mm, helical pitch 9/16:1, 100 mA, WW=400. Left panel: 2D FBP “bone” kernel. Center panel: MAP-ICD with o=8. Right
panel: MAP-ICD with o=32. MAP-ICD parameters: Ax=Ay=0.244 mm, Az=0.625 mm, p=2.0, ¢=2.0, ¢=10. The result shows that MAP-ICD can further
improve cross-plane resolution relative to 2D FBP, even with a Gaussian a priori model.
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FiG. 11. Qualitative example of improved cross-plane resolution with MAP-
ICD. Head phantom, 320 mA, 1 s/rotation, bone kernel, WW=400, Ax
=Ay=0.488 mm. Top left panel: 16 X 1.25 mm pitch 9/16:1 conjugate FDK
Az=1.25 mm. Top right panel: 16X 1.25 mm pitch 9/16:1 MAP-ICD Az
=0.625 mm, p=2.0, g=1.2, ¢c=10. Bottom left panel: 16X 0.625 mm pitch
9/16:1 conjugate FDK Az=0.625 mm. Bottom right panel: 16 X 0.625 mm
pitch 15/16:1 FDK Az=0.625 mm.

=0.625 mm, while reducing artifacts and image noise at the
same time. Details of the fissure in the bone creating an air
gap inside the phantom are clearly visible in the MAP-ICD
image while even the presence of the gap is not obvious in
the FDK image obtained from the same scan. On the other
hand, the details of the crack match very well those of FDK
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FIG. 13. Normalized slice sensitivity profiles (SSP) plots based on the wire
phantom reconstructions in Fig. 14 providing another measure of cross-
plane resolution. Horizontal axis represents millimeters; Ax=Ay
=0.488 mm. Asterisks: 16X 1.25 mm pitch 9/16:1 conjugate FDK Az
=1.25 mm. Crosses: 16X0.625 mm pitch 9/16:1 conjugate FDK Az
=0.625 mm. Open triangles: 16X0.625 mm pitch 15/16:1 FDK Az
=0.625 mm. Solid line: 16X 1.25 mm pitch 9/16:1 MAP-ICD Az
=0.625 mm, p=2.0, g=1.2, c=10.

reconstructions from the scans with higher sampling, thus
validating the MAP-ICD results. These results can also be
visualized through multiplanar reformat (MPR) and maxi-
mum intensity projection (MIP) renderings of the reconstruc-
tion volume focused on the gap in the bone viewed in the
sagittal direction, as presented in Fig. 12. Again, the defini-
tion of the crack along the z axis with MAP-ICD roughly
matches the results from FDK reconstruction of data ob-
tained at twice the sampling rate, while concurrently reduc-
ing image noise and artifacts.

FiG. 12. Qualitative example of improved cross-plane resolution with MAP-ICD (sagittal view). Head phantom. Top panel: Multiplanar reformat (MPR)
images. Bottom panel: Maximum intensity projections (MIP) images. With, in each image, from top to bottom: 16X 1.25 mm pitch 9/16:1 conjugate FDK;
16X 0.625 mm pitch 9/16:1 conjugate FDK; 16X 1.25 mm pitch 9/16:1 MAP-ICD. Image spacing is 0.625 mm in the z direction for all images in the

reconstructed volume.
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FiG. 14. Wire-in-air phantom used for quantitative measurements of slice
sensitivity profile (SSP) based on a 4:1 slope relative to the z axis, with the
“bone” kernel, WW=400, Ax=Ay=0.488 mm. Top left panel: 16
X'1.25 mm pitch 9/16:1 conjugate FDK Az=1.25 mm. Top right panel: 16
X 1.25 mm pitch 9/16:1 MAP-ICD Az=0.625 mm, p=2.0, ¢g=1.2, c=10,
Bottom left panel: 16X0.0625 mm pitch 9/16:1 conjugate FDK Az

=0.625 mm, Bottom right panel: 16X0.625 mm pitch 15/16:1 FDK Az
=0.625 mm.

For quantitative results corroborating the above-noted vi-
sual study, SSP measurements obtained from the wire-in-air
phantom presented in Sec. VI are shown in Fig. 13 for the
same scan protocols as used earlier. Figure 14 shows a zoom
over the profile of one of the wires in the axial plane for each
of the considered cases. The quantitative measurements
taken at 50% and 10% of the maximum SSP intensity
(FWHM and FWTM, respectively) shown in Table III con-
firm the visual results: An improvement of 40% in SSP is
achieved with MAP-ICD relative to FDK. Thanks to the
edge-preserving behavior of the g-GGMRF model, the SSP
curve also falls off to zero more rapidly than in the case of
FDK applied to the same scan, and avoids overshoots or
undershoots, thus reconstructing clean, well-defined edges.

For a more systematic visual evaluation of z-axis resolu-
tion and general image quality, reformats of the AAPM grid
phantom referenced in Sec. VI for each of the protocols
above appear in Fig. 15. The z direction corresponds to the

TABLE III. SSP measurements at 50% (FWHM) and 10% (FWTM) of the
normalized SSP magnitude, obtained from the plots in Fig. 14.

Algorithm FWHM (mm) FWTM (mm)

16X 1.25 mm P9/16:1  FDK Conj 1.45 3.12
16X 1.25 mm P9/16:1  MAP-ICD 0.89 1.32
16X0.625 mm P9/16:1 FDK Conj 0.63 1.09
16X0.625 mm P15/16:1 FDK Conv 0.72 1.52
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FiG. 15. Visual comparison of cross-plane resolution using reformatted im-
ages of the AAPM grid phantom placed upright onto the CT table. FDK uses
the “bone” kernel, WW =400, Ax=Ay=Az=0.2 mm. From top to bottom:
16X 1.25 mm pitch 9/16:1 conjugate FDK; 16X 0.625 mm pitch 9/16:1
conjugate FDK; 16X 0.625 mm pitch 15/16:1 FDK; 16X 1.25 mm pitch
9/16:1 MAP-ICD, p=2.0, g=1.2, c=10.

vertical axis in the reformats. In the MAP-ICD images with
W=1.25 mm (at the bottom), the smaller 0.4 and 0.5 mm
holes on the left-hand side of the phantom are clearly visible,
while only the 0.9 mm holes appear clearly separated from
FDK-based reconstructions using conjugate backprojection
of the same scan (at the top). Interestingly, the 0.6 mm bar
pattern (third from the left) is not well resolved in the MAP-
ICD reconstruction. This matches very well the prediction
based on our model for the frequency response, since
0.6 mm is very close to 0.625 mm, which corresponds to
8 Ip/cm, that is the first null in the frequency response for
W=1.25 mm. Therefore, while the frequencies at the nulls of
the frequency response cannot be recovered, the results in
Fig. 15 demonstrate resolution recovery beyond the classical
resolution of 8 Ip/cm with MAP-ICD. The IR technique
achieves only slightly lower resolution than that of FDK-
based reconstructions with half the detector aperture at W
=0.625 mm (middle images from Fig. 15) and higher sam-
pling rate than the above-presented case, consistent with the
observations in Fig. 13 and Table III.

VII.C. Reduction of helical artifacts

With the model parameters selected in Sec. VII A and the
z-axis resolution performance demonstrated in Sec. VII B, it
is important to show that helical artifacts remain under con-
trol. In fact, because these artifacts are caused in part by
limited sampling rates in the cross-plane direction, the reso-
lution gains discussed in Sec. VII B should help ameliorate
them as well.

In Fig. 16, knowledge of the cross section of the head
phantom without windmill artifacts is provided in the top left
with an axial scan. Significant artifacts remain in the FDK
reconstruction, as well as in the Katsevich image. The latter
indicates that even though the exact inversion formula treats
the exact 3D geometry of data acquisition with a high degree
of accuracy, limited sampling dominates image quality. In
this case, MAP-ICD can once again take advantage of
smaller image voxels and improved resolution to signifi-
cantly reduce the artifact. This result is further confirmed
with reconstructions of the rib phantom in Fig. 17. In the
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FiG. 16. Comparison of various analytical reconstruction algorithms and
MAP-ICD relative to helical artifacts due to limited sampling on a head
phantom, 16X 1.25 mm, helical pitch 15/16:1, 320 mA, 1 s/rotation, WW
=400. Top left panel: Reference axial FBP. Bottom left panel: Feldkamp-
based. Top right panel: Katsevich-based; and bottom right panel: MAP-ICD.
MAP-ICD parameters: Ax=Ay=0.488 mm, Az=0.625 mm, p=2.0, g=1.2,
¢=10. MAP-ICD can reduce helical artifacts as well or better than approxi-
mate or even exact analytical inversion approaches.

FBP image, blurring of the ribs as well as adjacent shading
are apparent due to the orientation of the ribs in three dimen-
sions and the high helical pitch of the scan, which reduces
sampling coverage. Windmill artifacts also surround the ta-
pered hole. MAP-ICD removes nearly all these artifacts.

VII.D. Clinical results

Finally, the results of this study would not hold without
successful application to real clinical data. For this, we re-
construct a human head scan, in order to observe both brain

FIG. 17. Tlustration of the reduction in helical artifacts for MAP-ICD (right)
vs 2D FBP (left) on a Rib Phantom scanned in 8 X 1.25 mm helical mode,
pitch 13.4/8:1, 320 mA, 0.5 s/rotation, WW=400. FBP parameters: Ax
=Ay=0.488 mm, Az=1.25 mm, “standard” kernel; MAP-ICD parameters:
Ax=Ay=0.488 mm, Az=0.625 mm, p=2.0, g=1.2, c=10.
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Fic. 18. Qualitative clinical results on a human head: standard FBP (left) vs
MAP-ICD (right) 32X0.625 mm helical scan, pitch 17/32:1, 140 kV,
280 mA, WW=300. Reconstruction parameters: Ax=Ay=0.586 mm, Az
=1.2 mm, p=2.0, ¢g=1.2, c=10. The MAP-ICD image is not fully corrected
for beam hardening artifacts.

soft tissue and bone. Figure 18 confirms that on clinical data
as well, MAP-ICD demonstrates significantly improved im-
age quality, most dramatically achieved by reducing the level
of noise. Small vessels and other structures present in the fat
and soft tissue around the skull or near the orbits appear
clearly in the IR image while they remain mostly hidden by
noise in the FBP image. The improvement in resolution is
particularly visible around the sinus area, where the thin
walls between the sinus cavities are more clearly visible in
the IR image, and in the detail of the air cells in the inner ear
region. The reduction of noise in the posterior fossa and the
temporal lobes allows better examination of the brain tissue,
improving the low contrast differentiation between the cer-
ebellum and the fourth ventricle, visible as a darker region in
the center of the posterior fossa. Meanwhile, the helical arti-
facts that distort the brain tissue near the inner ear in the FBP
image are quite satisfactorily removed from the MAP-ICD
image. We note that beam hardening artifacts are still present
in the brain stem region as well as at the base of the skull,
which is not surprising since our model does not explicitly
account for beam hardening beyond a simple precorrection at
this time. Nonetheless, one could argue that the novel texture
of the image, although significantly different from conven-
tional FBP, may provide better diagnostic value overall.

VIil. DISCUSSION

The general results presented earlier illustrate several ma-
jor aspects of our iterative algorithm. First, good balance
between carefully designed statistical noise and image regu-
larization models needs to be achieved to provide an accept-
able solution to the CT reconstruction problem. The
q-GGMREF analytical prior we introduced in this paper pro-
vides necessary flexibility in its parameters to control the
behavior both around the origin and at the tails of the distri-
bution, and appears better suited to clinical CT imaging than
the conventional Gaussian or GGMREF priors. Its parametri-
zation through p, ¢, and c is understood well enough to pro-
duce promising preliminary results. The last remaining pa-
rameter is o, which controls the prior strength over the noise
model, and currently remains empirically adjusted for best
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image quality, when the prior strength is sufficient to control
noise without leading to oversmoothing. A more systematic
way of setting o is needed. A consequence of the constant
nature of this parameter on the reconstruction may be non-
uniform resolution as the trade-off between varying confi-
dence weighting in ray projections and nonlinear image
smoothing is not actively managed. With constant o, the re-
sult of a spatially variant noise model is also spatially variant
resolution,”® which can lead to directional blurring of edges.
Fessler recently proposed a framework to help with this issue
in the quadratic case,”’ relying on the global interaction
among image model, noise model, and system forward
model.

Another major differentiating aspect of IR relative to con-
ventional analytical algorithms is precisely the quality of the
description of the interaction between image and detector
elements. Detector and voxel responses are explicitly in-
cluded in the forward model. Nearly all analytical recon-
struction techniques assume the presence of continuous sam-
pling. In the discrete implementation, therefore, either
projection domain or image domain interpolations have to be
performed. Because the interpolation techniques often fail to
preserve high-frequency contents, a loss of spatial resolution
in the reconstructed images often results. In a FDK-type re-
construction algorithm with linear interpolation, for example,
it has been shown that nearly 30% reduction in z resolution
may occur.”® Higher order interpolations incur a significant
penalty in image noise.”’ In other cases, to reduce aliasing
artifacts, z-smoothing algorithms are often employed and
further reduce the spatial resolution in z. By contrast, the
geometric model used in statistical methods is intrinsically
spatially variant and makes better use of the sinogram infor-
mation. While analytical methods must use advanced tech-
niques such as focal spot wobble®  or conjugate-ray
backprojection52 to achieve greater resolution, IR methods
may already recover frequencies closer to the maximum sys-
tem resolution without this extra information. In the view of
iterative reconstruction, conjugate samples do not provide
additional information, contrary to the case of analytical
backprojection, where they can help reduce interpolation er-
rors due to discrete detector sampling. In addition, forward
modeling may also include such second-order effects as focal
spot size, physical detector response, and nonidealities in
scanning trajectory introduced by the CT tube or table, all of
which may result in better resolution.

The above-presented results emphasize cross-plane reso-
lution in the multislice helical geometry. Because of the con-
tinuous motion of the CT table and high DAS trigger fre-
quencies, helical scanning implies a very high sampling rate
in the z dimension. A quick calculation of the total number of
available samples relative to the number of unknown image
elements under a simplified view of the linear problem as
y~Ax may show easily that reconstruction does not suffer
from underdetermination. In fact, to recover frequencies less
than 1/W that corresponds to the first null of the sine func-
tion we discussed in Sec. VI, Nyquist dictates that the sam-
pling frequency should be 2/W, which is sample period
W/2. Therefore, IR techniques should theoretically recon-
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struct images at half the detector width to recover the highest
frequency. This is consistent with all the reconstruction ex-
periments in Sec. VII where MAP-ICD typically uses A,
=0.625 mm for W=1.25 mm. With these parameters, it ap-
pears that we may even be able to recover frequencies that
lie beyond the first null in the frequency response, as illus-
trated in Fig. 15.

Finally, we cannot compare iterative reconstruction to
analytical methods without commenting on computation
speed. High model accuracy leads to complexity in the cal-
culations, and multiple passes over the data are needed to
reach convergence. For a 16-slice high resolution case such
as those considered in Sec. VII, current serial implementa-
tion still requires in excess of 12 h for reconstruction of the
portion of the volume covered by the scanning trajectory
over a handful of gantry rotations. We have proposed some
acceleration methods for the algorithm, for instance, improv-
ing the order of the ICD updates,61 or replacing the half-
interval search with a one-step axpproach.62 But overall re-
construction time remains a significant challenge, short of
possible hardware optimization.

IX. CONCLUSION

We have presented a Bayesian framework for iterative CT
image reconstruction that produces significant improvements
over direct analytical methods in terms of noise, resolution,
and helical artifacts. As the reconstruction technique remains
independent from the exact form of the forward model, this
method is applicable to any geometry and is particularly well
suited to the multislice helical problem. We introduced a
novel model for image statistics providing further control
over image quality for clinical application. We also presented
an analysis of cross-plane resolution performance to support
the superior results of our iterative algorithm relative to con-
ventional analytical reconstruction. Computational speed re-
mains a particular challenge for the practical application of
IR methods with high accuracy in clinical CT, because spa-
tially varying geometric models do not easily lend them-
selves to the kind of hardware optimizations which have al-
lowed reconstruction performance of multiple frames per
second for analytical algorithms on current commercial scan-
ners. In addition, the nonlinear problem formulation gener-
ates novel image appearance which may be disturbing at first
for clinicians who are accustomed to the well-understood
properties of linear reconstruction techniques. Ultimately, the
success of IR methods in clinical applications will depend on
the demonstration of potential improvement in diagnostic
readability, or modified scanning protocols to the benefit of
the patient.

APPENDIX: PROOF OF CONVEXITY OF PRIOR
MODEL

This appendix presents the analytic proof of convexity of
the g-GGMREF prior regularization term, thus guaranteeing
global convergence properties of the ICD algorithm over the
MAP functional in Eq. (4). The potential function of the
q-GGMREF has been defined in Sec. IV, and takes the form:
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In this paragraph, we demonstrate the convexity of this prior
function under the following assumption: the g-GGMRF
function defined in Eq. (16) is convex for 1 <g<p<2.

First, define r=p—gq. If 1 <g<p=<2, then we know that
Isp<2and 0<r<p-1.1f r=0 and p=1, then p(A) de-
faults to the GGMREF, and the function is clearly convex.
Without loss of generality for this analysis, consider also ¢
=1. Then, define the function:

Jxcl”

1+ x|

glx,p,r) =

The first derivative of p(A) has been calculated in Eq. (17).
Noticing that the equation can be factorized and rewritten as
a function of g(-), we obtain for the first derivative of g:

g'(x.p,r)=g(x,p = 1,r)[p - rg(x,r,r)Isign(x).
The second derivative is then given by
g"(x.p.r)=g"(x.p = L.r)[p — rg(x,r,r)Jsign(x) — rg(x.p
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Note that
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So
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The function g(x,p,r) is convex if and only if g"(x,p,r)
=(), which therefore translates to

(1%1 —g(x,r,r))(é —g(x,r,r))

_g(-xsr»r)(l _g(xJ’,r)) = 0.

This is true if and only if for all x, we have
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((p = Dir=g(x,r.n))(plr = g(x.,r.r)) _
crn(—gorm) (Al

Some properties of g(x,r,r) are
(1) g(0,r,r)=0
(3) Vx=0, g(x,r,r) is a monotonically increasing function

of x
4) {g(x,r,r):xeR}=[0,1)

Using property 4 and criterion (A1), we have the necessary
and sufficient criterion that for all p e [0,1)

((p=1/r=p)(plr—p) _
p(1-p)

1. (A2)

Remember that 1<p=<2 and O<r=<p-1. Using this con-
straint, we have that

p-l_p-1_,
r p-1

Similarly, we have that

r p-1
So therefore
(p=Dir=p)plr=p) _2-p)1-p) 2-p
p(1-p) p(1-p) p

1.

(A3)
This concludes the proof that the g-GGMREF is convex for

Isgsp=2.
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e Equation (5): The correct equation should be

§:(9+%>modg—£

Figure 2: The coordinate system in the right figure is radial and z, not y and z.

Equation (10): The correct equation should be

5(6) = rect (%)

Equation (11): The correct equation should be

D.+ L.
2

A
A= Y __ clip |0, — |0.|, min(L.., D.
o ] o min(, D)

Equation (12): The correct equation should be
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