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Estimation of kinetic model parameters in
fluorescence optical diffusion tomography
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We present a technique for reconstructing the spatially dependent dynamics of a fluorescent contrast agent in
turbid media. The dynamic behavior is described by linear and nonlinear parameters of a compartmental
model or some other model with a deterministic functional form. The method extends our previous work in
fluorescence optical diffusion tomography by parametrically reconstructing the time-dependent fluorescent
yield. The reconstruction uses a Bayesian framework and parametric iterative coordinate descent optimiza-
tion, which is closely related to Gauss—Seidel methods. We demonstrate the method with a simulation study.
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1. INTRODUCTION

In optical imaging of diseased tissue, the use of fluores-
cent agents in imaging diseased tissue has attracted con-
siderable interest owing to the potential for high specific-
ity and contrast.! Injected fluorophores may accumulate
in diseased tissue as a result of the increased vascular
density” or by means of selective targeting.>® As in posi-
tron emission tomography (PET), the reconstruction of
optical contrast agent kinetics can provide useful physi-
ological information. Several groups of researchers have
measured the dynamic behavior of injected optical con-
trast agents in animal or human subjects.®'® Gurfinkel et
al.! used an intensified CCD camera to measure the
pharmacokinetics of fluorescent agents in a canine with
mammary tumors and fitted the image sequence to a biex-
ponential decay function that arises from a compartmen-
tal model. The study employed indocyanine green (ICG),
which is believed to act as a nonselective blood pool agent,
and carotene-conjugated 2-devinyl-2-(1-hexyloxyethyl)
pyropheophorbide (HPPH-car), a photosensitizer that is
believed to accumulate selectively in diseased tissue. A
model parameter related to the dye’s uptake rate showed
significant contrast between diseased and surrounding
tissue for HPPH-car but not for ICG. Cuccia et al.'® mea-
sured the dynamics of two light-absorbing dyes, ICG and
methylene blue in an adenocarcinoma rat tumor model by
use of an optical probe with magnetic resonance imaging
coregistration. Owing to its small molecular weight of
373.9 Da, the methylene blue temporal dynamics were
dominated by blood flow effects. From the methylene blue
measurements, the authors observed variations in perfu-
sion within the rat tumor. In contrast, ICG binds to albu-
min in the blood, with a resulting effective molecular
weight of 66 kDa. Hence ICG’s temporal dynamics are
dominated by the movement of albumin across the capil-
lary membrane between the plasma and the extravascu-
lar, extracellular space. Cuccia et al. used ICG dynamics
to compute a physiologic parameter related to capillary
permeability.
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In optical diffusion tomography (ODT), volume images
of the absorption coefficient, the scattering coefficient, or
the fluorescent yield and lifetime parameters are recon-
structed from several optical measurements made on the
surface.* Fluorescence optical diffusion tomography
(FODT) refers specifically to the reconstruction of the
fluorescence parameters.15 Laser or light-emitting-diode
sources inject light into the tissue at the fluorophore’s ex-
citation wavelength. The light is modulated with a short
pulse, modulated with an RF sinewave, or unmodulated.
The fluorophore absorbs the incident light and then de-
cays to its ground state with some characteristic time con-
stant, emitting some of the light at a longer wavelength.
The emitted photons are then measured by an array of de-
tection devices. From the data, one can reconstruct im-
ages of the fluorescent yield (a measure of the fluores-
cence efficiency) and the fluorescence lifetime (the
fluorescent decay parameter). Multiple photon scattering
in tissue must be properly accounted for in the
reconstruction.’®1” Diffusion or radiative transport mod-
els are used to describe the propagation of light through
the highly scattering domain.'® As a result of the multiple
scattering of light, FODT must be used to quantify drug
concentration accurately in issue regions that are not di-
rectly under the skin surface.

Previously, the time-varying absorption coefficient was
reconstructed in a cylindrical phantom'® and in the hu-
man brain?® by solving the inverse problem separately for
each image in a time sequence. However, in some cases,
the unknown image may not reasonably be considered
constant over the instrument’s measurement time. In ad-
dition, independent reconstruction of each image in the
sequence ignores correlations in the image over time.
Kolehmainen et al. presented a state-estimation approach
to the time-varying optical diffusion tomography problem
that models the unknown image as a stochastic process
governed by a stochastic difference equation.21 This
method solves the inverse problem by using extended
Kalman filter and Kalman smoother techniques. The au-
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thors demonstrate their method with synthetic data from
a two-dimensional phantom and, in a subsequent investi-
gation, on real hemodynamic data from the human motor
cortex.?? This approach has shown promise for dynamic
imaging problems where the time variation cannot be ac-
curately parameterized by a known, deterministic model
alone. However, in practical three-dimensional imaging
problems, reconstructing a time sequence of images and
updating large estimator covariance matrices may pose
some difficulty, owing to storage and computation require-
ments. Other dynamic imaging approaches have been in-
vestigated, including space—time regularization
operators,??® principal components analysis,”® and tem-
poral B-splines.27_29 In many tracer experiments, a com-
partmental model”*° can accurately describe tracer kinet-
ics by use of a system of first-order differential equations.
Previously, maximum-likelihood approaches for direct re-
construction of kinetic model parameter images from PET
data have been presented.31’32 Recently Kamasak et al.®®
presented a Bayesian approach for dynamic PET that di-
rectly reconstructs images of the compartmental model’s
parameter images by using all the data while imposing
spatial regularization. This approach results in substan-
tially improved accuracy compared with previous dy-
namic imaging methods that do not directly reconstruct
the kinetic parameter images.

Here we present a Bayesian, three-dimensional recon-
struction approach for time-varying FODT problems with
nonlinear parameterizations of some known functional
form. We demonstrate the method in a simulation study
for the important case of a double exponential model,
where the unknown parameters are the two amplitude co-
efficients and the two rate constants. This case can arise
from a compartmental model in some applications, and it
is similar to the behavior observed by Gurfinkel et allt
and Cuccia et al.'® The reconstruction approach is closely
related to the methods of Kamasak et al.% in that it uses
a statistical framework to directly reconstruct kinetic
model parameters and a similar optimization scheme. We
use all of the measured data to reconstruct the model pa-
rameter images directly rather than reconstructing and
storing a time sequence of fluorescence images. Our ap-
proach explicitly accounts for the fact that different
sources are illuminated at different times. We also draw
upon our recent work, in which we presented a nonlinear
Bayesian inversion approach for the ODT and FODT
problems and applied it to experimental data.'®3436 We
use parametric iterative coordinate descent (PICD)
optimization,33’34’37 which is efficient and convenient for
enforcing nonnegativity constraints, and we use the gen-
eralized Gaussian Markov random field prior model®® for
spatial regularization in the parameter images.

2. FORWARD PROBLEM

A. Diffusion Model

Here we briefly review the forward model for the FODT
problem, which we have presented before.>3* In applica-
tions where scattering dominates over absorption, the
transport of light modulated at an RF frequency o
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through a scattering medium can be modeled by using a
photon diffusion equation.lg’39 For exp(jwt) time varia-
tion, it is given by

V- [D(@)V ¢(r,w)] = [1a(r) +jolc]d(r,w) = = 8r - sp),
1)

where ¢(r,w) (W/cm?) is the complex modulation enve-
lope of the photon flux, s, is the location of a point source,
and &(r) is the Dirac function. The diffusion coefficient
D(r) (em) is inversely related to the scattering coefficient,
and u,(r) (cm™) is the absorption coefficient.

For the case where the scattering medium contains a
fluorophore, the fluorophore is excited with light at wave-
length \, and emits light at a longer wavelength \,,. We
use two coupled diffusion equations to describe a fluores-
cence measurement, with the first to represent \, excita-
tion and the second to represent the emitted A\,
pho‘cons:16’17’40

V- [Dx(r) \Y ¢x(r’w):| - [lu'ax(r) +jw/c]¢x(r7w) == (5(7' - Sk),

2)
V . [Dm(r) V d)m(r: w)] - [M’am(r) +j0)/C:|¢)m(7', w)
1-jor(r)
e L oy )

where the subscripts x and m denote excitation and emis-
sion wavelengths \, and \,,, respectively. The fluorescent
lifetime 7(r)(s) is the fluorophore’s characteristic exponen-
tial decay constant. The fluorescent yield 7u, f(r) (em™1)
incorporates the fluorophore’s quantum efficiency » and
its absorption coefficient u,. We will use the notation 7,
rather than 7u, o for brevity.

B. Time-Varying Fluorescence

Suppose the fluorescent yield #(r,¢) varies with time, on a
scale comparable to the total acquisition time of the to-
mography instrument. The time variation might be a re-
sult of drug kinetics, which may be of physiological inter-
est. Here we consider the case where #5(r,t) can be
expressed as a (possibly nonlinear) function of U param-
eters that do not vary in time:

ﬂ(r,t) = 77(’)’1(’»)7"'7’)/U(r‘)7t)7 (4)

where 7 is a known function.

One important case that follows this framework is the
compartmental model.?° In a compartmental model, the
body consists of a number of compartments, conceptual
regions where the drug’s concentration is assumed to be
uniform. A system of differential equations describes the
exchange of the drug among the different compartments.
Previously,n’13 the pharmacokinetics of ICG in animal
subjects has been described by wuse of a three-
compartment model, depicted in Fig. 1. The compart-
ments were the plasma, the tissue (the extracellular, ex-
travascular space), and the kidneys and liver, which tend
to clear the fluorophore out of the blood pool. Let c¢p(¢) and
cr(t) be the concentration of fluorophore in the plasma
and tissue compartments, respectively. Cuccia et al.'® ini-
tially assumed a biexponential decay model for cp(¢) but
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Fig. 1. Compartmental model describing the exchange of con-
trast agent between the tissue and the plasma.

ultimately observed only single exponential behavior in
their experiment owing to the relatively long elimination
time of ICG compared with their measurement duration.
Hence we will assume single exponential decay for cp(t),

cp=Aexp(- kst), (5)

where A is taken to be the initial fluorophore concentra-
tion in the plasma and «3 is the rate constant for fluoro-
phore elimination. We assume that the plasma input
function does not vary throughout the imaging domain,
i.e., that cp(t) is not large enough to effect the overall rate
of elimination significantly. A similar assumption was
made by Cuccia et al.'®> We also let «; and «y be the rate
constants for ICG entering and leaving the tissue. Then
the concentrations are obtained by solving a differential
equation for cp(¢):

dCT/dt= K1Cp — KoCT. (6)

To obtain a volumetric image, we solve Eq. (6) with initial
condition ¢7(0)=0 to obtain c4(¢) in each voxel:

KIA
cp= ( )[eXp(— Kgt) — exp(— Kyt)]. (@)

Ko — K3

The experimentally observed fluorescent yield is propor-
tional to the concentration of fluorophore in the imaging
domain. Within each voxel, the fluorophore concentration
is some weighted sum of the tissue and blood compart-
ments. Hence we may write 7(r,t) as

7(r,t) =wp(r)cp(t) + wr(rep(r,t). 8)

Substituting Eqgs. (5) and (7) into Eq. (8) yields the biex-
ponential solution,

7(r,t) = y1(r)exp[— y4(r)t] - yo(r)exp[- y3(r)t],  (9)

where
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WKy
n=Alwp+ , (10)
Ko — K3
WKy
Yo =A( ) (11)
Ko — K3
Y3 = Ka, (12)
Y4 = K3 (13)

From 7j,..., vy, it is possible to obtain the parameters «o,
k3, (Awp), and (Awrky). Hence, we directly reconstruct
images of the biexponential model parameters y;, s, vs,
and vy,. To enforce the spatial independence of cp(t), one
can constrain vy, to be the same everywhere. Alternatively,
one can reconstruct y,(r) to check the self-consistency of
the model.

Strictly speaking, the time dependence of 7(r,¢) should
correspond to a time-dependent perturbation in M- In
previous work, we have observed that perturbational
changes in u, do not have a strong effect on recon-
structed fluorescence.'® Hence, for simplicity, we will not
consider the reconstruction of time-varying u,_here.

C. Tomography Problem

Previously, for the stationary case, we have shown how to
reconstruct ,uax(r), ,u,am(r), D,(r), D,,(r), (r), and 1;(;“).15’34
Here we assume that ,u,ax(r), ;Lam(r), D,(r), and D,,(r) are
known in advance and do not vary with time, and we con-
sider the problem of reconstructing (r) and 7(r,¢) in the
time-varying case.

Suppose that measurements are recorded at C mea-
surement times, which we call ¢4,..., tc. At each measure-
ment time, measurements are recorded with one or more
sources at wavelength \, and detectors are filtered at \,,,.
Figure 2 schematically depicts the measurement, with a
source and an array of detectors arranged around the do-
main at each time. Note that the source and detector ge-
ometry may be different at different time indices. In par-
ticular, practical instruments often illuminate sources
sequentially one at a time, whereas all detectors are used
simultaneously at all times, and all are fixed in space.

Consider a domain discretized into N volume elements,
or voxels. Let r; denote the position of the ith-voxel cen-
troid. Assuming that #(r,#) can be expressed with Eq. (4),
we define the image vector x,

T T T T
X = [X(O) .X(l) s X(U)] N (14)
where
detectors detectors detectors
source og source g source 0.8
9 9
e \® o
o n eee o
] ] o
2] & Z)
% %
56 56 58
time t; time t, time tc

Fig. 2. Measurement approach for reconstructing 7(¢) and 7.
Note that the measurement geometry may differ at each time.
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x(Tu)=[x(u),1 x(u),N]T, (15)
iy =[rry) -+ drp]”, (16)

and, for Isu<U,
2y =[vrD) - v’ 17)

with the superscript 7' denoting the transpose operation.
Note that x is of size (U+1) XN, consisting of U+1 con-
catenated parameter vectors of size N. In the parameter-
ization of Eq. (9), U=4.

3. INVERSE PROBLEM

A. Bayesian Framework

Let y denote the measurement vector whose ordering will
be precisely specified in Subsection 3.B. Similarly, let f(x)
denote the forward model. As previously,l‘r”%’36 we ad-
dress the ill-posed problem of estimating x from y in a
Bayesian framework. The maximum a posteriori (MAP)
estimate can be computed as

&yiap = argmax{log pyix(y[x) + log px(x)}, (18)
x=0

where pyx(y|x) is the data likelihood and px(x) is the
prior density for the image. We impose positivity con-
straints for x and also require that 7(r;,¢)=0 for all r; and
t. For pyix(y|x), we use an 1ndependent Gauss1an distri-
bution derived from a shot-noise model:*!

1 lly — fx)I%
TV I R

Pyix(ylx) =

where « is a scalar parameter that scales the noise vari-
ance, P is the number of measurements, |lw|%=w"Aw
(where H denotes Hermitian transpose), and aA~! is the
covariance matrix given by

aA™ = adiaglly|,lyal, ... lypl]. (20)

The prior model px(x) is the generalized Gaussian Mar-
kov random field model.?**! We use upper case to repre-
sent the corresponding random variables, and we assume

that X(g),... X(¢;) are independent:
(x)= H )= H : (21)
pxlx pXu () 21
W10 o)

1
Xexp| — E bi_jl% )i = Xw 1@ |, (22)
P T i

JreN

where the u subscripts correspond to Eq. (15), N consists
of all pairs of neighboring (adjacent) nodes in a 26-
neighbor system, and b;_; is the weighting coefficient cor-
responding to the ith and Jjth nodes. The coefficients b;_;
are assigned to be inversely proportional to the node sepa-
ration in a cube-shaped node layout, where X6, ;=1. The
parameters p and o control the shape and scale of the dis-
tribution, and {(p) is a normalization term.
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We incorporate « into the inverse problem as an un-
known instrument parameter, as we have found that this
tends to improve the robustness and speed of
convergence:*?

i=arg max {pyylaly,a)}. (23)

x=0,a=0

We form the log posterior probability / (x),22

1(x) = - P logly - flx)[%
U
> (

and implement its maximization by alternating closed-
form updates of @ with updates of x:

> b—j|x<u>,i—x<uu’|”<”’>, (24)
POy YN

1
& ;|tv -f@x (25)

i — arg update{log pyx(y[x, &) +log px(x)}, ~ (26)
x=0

where < denotes assignment and arg update denotes an
iteration of some optimizer.

The update in relation (26) is equivalent to reducing a
cost function

1
e, =1y - )3

+2< > bz—j|x(u),i_x(u),j|p(u))~ 27

P T it N

B. Definitions

Define s; j, as the location of the kth source at time ¢., and
d; m' as the location of the m'th detector at time ¢, and
let g.(s; k,ds m; @) and gy (s 1,d; m;w) be the diffusion
equation Green’s functions for wavelength A\, and \,,, re-
spectively. Also, let ¢ds; ,d; m';0,t.,x) be the fluores-
cence observed at observation position d; ,,+ for an excita-
tion source at ¢ k> where

1-jor(r)
1+ [or(r)]?
ng(stc,lwr;w)gm(r dt m' 7w)d3

¢f(stc,ka t. m’rw tcax) fﬂ(’” t)

(28)

Suppose that at time ¢, we have K, sources and M, de-
tectors at a modulation frequency of w. (Typically, K,=1
for most systems that illuminate sources sequentially.)
Let f,,; (x) be the forward model for the data taken at ¢,
with exp(jwt)-modulated light. Then
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d)f(sta,l’dtc,l > @, tc,x)
¢f(stc,l?dtc,2 > W, tc’x)

¢f(stc,17dtc,Mc;wrtcax) . (29)
¢f(stc,2,dtc,l;w7tcvx)

fw,tc(xf) =

¢/<sthc’dtc,Mc; wytc’x)

Let @ be the number of modulation frequencies used and
C be the number of measurement times. Then

ftc(x) = I:fml,tc(x)Tyfwz,tc(x)T- . 'wa,tc(x)T]T’ (30)

£ = [, @ fo @ fi " (31)

Similarly, we define the measurement vector y as
Ve, = Yoo Yopt Vo] (32)
y=[vive-vi]" (33)

corresponding to the same order used in Eq. (31). Note
that g(s,,d,, ,w)=g(d,, ,sy,w) at \, and at \,,, owing to
reciprocity.

We may use matrices to approximate the integration of
Eq. (28). For consistency, we assume a regular rectangu-
lar mesh in the following formulation, although we note
that more generic finite-element formulations of similar
problems have been presented previously.44 We define

_gx<stc,1’r1;w) . gx(stc,ler;w)
G (w,t,) = : : , (34)

gx(StC,IGrl;w) N gx(stE,K’rN;w)

gm(dtc,brl;w) gm(dtc,l,rN;w)

G"(w,t,) =

gm(dtC,M’rl;w) : gm(dtC,M’rN;w)

(35)

We also define J o, 88

Gg{,l(w’ tC)Grlrfl(wy tc)

GJ{,I(“)JC)G;{I{J(“’JC)
G;,l(w’tC)GTgl(watc)

Gi 1(0,t)Gyp 1 (w,t,)

?,N(w’ tc)qu,N(w’ t)

GJ{,N((‘)’ tc)GTl,N(w5 tc)
GJZC’N(w,tC)Gr{fN(w,tC) ’

xK,N(w9 tc)GIrlr},N(w5 tc)
(36)

where V is the volume of a voxel. Let

1-jor(r;)

h(x () w,t) = n(ri,t)m,

(37)
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By (@) =R ot o hwyot)],  (38)
where x(+ ,=[(r,) y1(r,)) *** yy(r,)]". Then
fw,tc(x) = Jw,tchw,tc(x) (39)

if we ignore discretization error. Therefore Eq. (27) is
equivalent to

18 &
¢(6,8) = =2 2 Wt = Tyt 1|

X =1 g=1

2
Awq,tc

1

U
+ - > bl — X, ©.  (40)
u=0 P(u)O'fu) {iteN

The cost function in Eq. (40) is used in our image recon-
struction.

C. Parametric Iterative Coordinate Descent

To optimize Eq. (40), we use an algorithm that we call
parametric iterative coordinate descent (PICD). It is
based on earlier Work,41 and it is modified to allow for
computationally efficient updates of the kinetic model pa-
rameters. The voxels are individually updated in random
order by optimizing the cost function with respect to the
parameters at each voxel position. The updates enforce
the constraints x=0, and also y;= vy, and y3=7y,, which
are necessary and sufficient to ensure that each param-
eter is nonnegative and that 7(¢)=0 for all time.

In one update scan for %, all of the unknowns x,), ©
=0, ...4 are updated at all N voxel positions. Let the sca-
lar x(,); denote the ith element of x(,). With all other im-
age elements fixed, the PICD update for the estimate %, ;
is given by

%(y),; < arg min

18 8
72 E Hqu,tc

%), =0 | Xe=1g=1
- . 2
[J“’q’tc]w)h(x(*%““’q’tc) Ay o
7lc
1 A
PN 2 bi—j‘x(u),i - X(u)J|p(u) , (41

PO " jeN;

where N is the set of nodes neighboring node i and py,
and oy, are the prior model parameters for X,). In rela-
tion (41), [qu,tc]*(i) denotes the ith column of qu,tc- Sup-
pose we have an initial guess X, and let z, , =y, ;
- fmq,tc(f)' Then Eq. (41) is equivalent to rer
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%(y),; < arg min E E sz 1,

X(u),i =0 Q- 1¢=1

~ 2
- [qu,tc]*(i)[h(x(*),i; wg,te) = h(X 4, wq5tc)]||Aw .

7'

2 b; —j|x(u)z u),/'|p(u) »
P(u)%) “jeN;

=arg min _E E (01 [O3 [h(x(* wwq,tc)

(u)l>0 =1 q=1

02,0
~ qc
- h(X 0t ]+ 9 [ () 1> 05 tc)

- h(f(*),iv wq’tc)]z)

1
+ ) - E b; —j|x(u) i _x(u),]|p(u) 5 (42)
P(u)O'(u) JeN;
where
0l,wq,tc =-2 Re{[qu,tc]gAwq,tczwq,tc}7 (43)

02,00, = 20 o 1 ViN ey 1 [ o 1 D (44)
In relation (42), 6, ,, , and 6, , , are not functions of x,);
q"c qc . .

and thus do not need to be recomputed during the nonlin-
ear, one-dimensional line search over x, ;. This property
enables significant computational savings, as repeated
computations of 6; , ‘ and 6y, 1, would require numer-
ous complex multlphcatlons We | perform the m1n1m1za-
tion over x(,); by use of a Golden Section search.®

To enforce the constraints y; =y, we initially perform
minimizations over x(), and over x); and observe
whether the inequality constraint is satisfied. If X(y);
>%1);, we perform a new line search enforcing x();

=JC(2)’L'Z

Q| =

X(1),i»X(2),; < arg min
X(1),i=%(2),i=0

c @
2 2 01,wq,tc|:h(x(*),i7wq7tc)
=1 g=1

02,(1)[1,tC
9 [h(x(*),i’wq5tc)

- h(E(*),iawq’tc)] +

2 b; —j|x(1) i

P(1>CT(1> JEN

- h(f(*),i’wq’tc)]2>

2 b~ Ee) 7

_5(1)J|P(1)+ .
P@)T(2) " jeN;

(45)

A similar procedure is used to enforce the y3= 7y, condi-
tion.

We implement the joint estimation of « and x itera-
tively. One iteration consists of a closed-form update of &
by use of Eq. (25), followed by a PICD scan to update x.
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Fig. 3. Source and detector locations used in the simulations.
The sources were on the bottom face of the phantom, and the de-
tectors were on the top. The sources were illuminated in the or-
der shown, with one source used for each measurement time.

Appendix A provides pseudocode for a more detailed
specification of the PICD algorithm.

4. SIMULATION

To validate the method, we performed a simulation study.
A synthetic time series of data was generated from a
cube-shaped phantom containing two heterogeneities.
The background properties were u, =p, =0.047 cm™
and D,=D,,=0.027 cm. The heterogeneltles had the same
7but different y;, vo, and y3. The parameter y, was 0 and
was not reconstructed. This corresponds to an assumption
that the elimination time of fluorophore from the plasma
is long compared with the measurement time, which is
reasonable in cases where we are most interested in the
initial drug uptake behavior. The parameter values were
selected to result in uptake behavior on the order of sec-
onds, which may be reasonable for a small-animal imag-
ing experiment.l?’

The phantom was 8 cm X8 cm X 5.7 cm in size, and it
was discretized into 33X 33X 17 voxels of size 0.26 cm
X 0.26 cm X 0.38 cm. To generate the synthetic measure-
ments, we solved the diffusion equation numerically by
using multigrid finite differences*® and extrapolated zero-
flux boundary conditions with interpolated source posi-
tions, as we have described previously.®® The simulation
used a modulation frequency of 78.4 MHz. Figure 3 shows
the locations of the sources that were placed on the bot-
tom face of the domain. The same positions were used as
detector positions on the top face of the domain, simulat-
ing a parallel-plate transmission geometry similar to that
which has been used for optical mammography previ-
ously. The sources were illuminated one at a time at dif-
ferent times, in the order shown in Fig. 3, and the data
consisted of one complete pass through all of the sources,
with 441 measurements in all. Simulated shot noise was
added, giving an average signal to-noise ratio of 28 dB for
all the data. The true phantom is shown in Fig. 4, with
cross-section images through each of the heterogeneities.

For the reconstructions, the hyperparameter p was set
to 2, corresponding to the Gaussian Markov random field
model. Although automatic estimation of the hyperpa-
rameters is possible in principle,47 we chose o to give the
best empirical results, as we have done previously.** For
this problem the best results were given by o0()=2.75
X 10719 ¢1)=0.5, 0(2=0.5, and 0(3=0.0125 (where the
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Fig. 4. True parameter images describing the time-varying fluo-
rescence in the simulation study. Cross sections are shown
through the top heterogeneity and the bottom heterogeneity.
Note that the parameter y; indicates different uptake rates in
the two heterogeneities. In (e), an isosurface of the y; reconstruc-
tion is shown, contoured at 1/3 of the maximum value.

units of lifetime are seconds and the units of fluorescence
are cm™!). The PICD algorithm was run to 50 iterations,
which required approximately 2 hours on a 2 GHz Ameri-
can Micro Devices Athlon workstation.

Top Heterogeneity
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Fig. 5. Reconstructed parameter images describing the time-
varying fluorescence in the simulation study. In (e), an isosurface
of the y; reconstruction is shown, contoured at 1/3 of the maxi-
mum value.

The reconstructed parametric images are shown in Fig.
5. The results are accurate, although shadowing effects
are apparent in the images. In particular, y3, which is re-
lated to a dye’s uptake rate, was reconstructed accurately,
enabling a clear distinction between the two objects. Fig-
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Fig. 6. (a)—~(d) True fluorescence versus time 7(¢). (e) 5(¢) for a

sample point within each heterogeneity.

ures 6(a)-6(d) show the true images of #7(r,¢) for the two
objects, at four different times, and Fig. 6(e) shows plots
of 7(t) for a single point near the center of each object.
The reconstructed time variation is also accurate, without
shadowing artifacts.
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Fig. 7. (a)-(d) Fluorescence versus time, reconstructed by para-

metric ICD method. (e) 7(¢) for a sample point within each
heterogeneity.

The reconstruction 7(r,#) was obtained by substituting
y1(r), ¥o(r), and y3(r) into Eq. (9). The results shown in
Fig. 7 indicate that all features are nicely captured. Fig-
ure 8 is a convergence plot showing monotonic decrease of
the cost function versus iteration number. For compari-
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Fig. 8. Convergence for the PICD algorithm in the simulation
study.

son, we also reconstructed #(r,¢) by independently recon-
structing 7(r,¢;) at each measurement time ¢;, using our
previous FODT reconstruction algorithm.?* For the first
simulation, we used the same 441 measurements that
were used for the results in Fig. 9. The reconstructions all
used p=2, with ¢=0.5 for 7 and 0=2.75x10"1° for =
(which gave the best empirical results). We performed 21
reconstructions of 7(r,t;), using a single source and 21 de-
tectors for each. The results, shown in Fig. 9, have poor
accuracy. For the second simulation, we greatly increased
the number of data, using all 21 sources and 21 detectors
for each of the reconstructions of 7(r,¢;) (i.e., 9261 mea-
surements, with 441 measurements used at each time in-
dex). The reconstructions in this simulation used p=2,
with ¢=0.375 for 7 and 0=2.75x1071? for 7. The results
are shown in Fig. 10. With this 21-fold increase in data,
the reconstructions accuracy approaches that of the para-
metric imaging method.

5. CONCLUSIONS

We have presented a method for parametric reconstruc-
tion of fluorescent drug kinetics by use of fluorescence op-
tical diffusion tomography. The simulation showed that
two heterogeneities with different time-dependent behav-
ior could be reconstructed simultaneously and could be
clearly distinguished on the basis of uptake-related pa-
rameters. In principle, receptor-targeted fluorescent
probes may have a significantly faster uptake rate in tu-
mors than in the surrounding tissue. Hence the ability to
reconstruct the drug uptake kinetics could facilitate tu-
mor imaging with high contrast in comparison with meth-
ods that do not make full use of the drug dynamics.

The presented approach is flexible and may be applied
to more sophisticated compartmental models. In prin-
ciple, more complicated kinetic models that incorporate
additional compartments or nonlinear saturation effects
may be used in the same framework, as they simply in-
crease the complexity of the single-site updates. In addi-
tion, the PICD algorithm may be incorporated into a mul-
tigrid framework?® to improve convergence properties for
a wide variety of images.

Experimental demonstration of the approach should be
developed in future work. One possibility is that con-
trolled FODT Intralipid phantom experiments using fluo-
rescent contrast agents34 could be modified for kinetic im-
aging work. For example, fluorescent dye could be
introduced into the phantom over time while the FODT

Vol. 22, No. 7/July 2005/J. Opt. Soc. Am. A 1365

instrument’s sources and detectors record measurements.
Ultimately, validation on living animal subjects would be
required, extending previous kinetic modeling work to full
three-dimensional imaging geometries. Recent work with
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APPENDIX A: PSEUDOCODE FOR THE
INVERSION ALGORITHM

main {
1. Form Gis) and Gg)
2. Repeat until converged: {
(2) dp— 1/ Pllyp~fildp. e, 3,
(b) £ ICD_update(y, ér, G ,G\V)
}
}
% —ICD_update(®, &, G®,GD;x) {
1. For c=1,...,.C {
(a) For ¢g=1,...,Q {

i qu,tc Hywq,tc_qu,tc(-’%)

}
}
2. For i=1,...,N (in random order), {
(a) %ﬂ—ﬁei

(b) For ¢=1,...,C {
i. For ¢=1,...,Q {
A. Compute [J,, ; ].(;), by taking the ith col-
umn in Eq. (36)
B. 01, s, ——2Re{lJ,, 1 ko 120, 1)

qrc

C. 62,wq,tc(;2[Ja)q,tc]fiAwq,tc[qu,tc]*i
}
}
(c) T—arg minx(o) =0 {

1 ~
T2 EE (01,0, 0 [0 15 0g 1) = hE ) 15 0y )]

2,001,

2
+ 2 c[h(x(*),i’wqrtc)_h(x(*),i,wq,tc)]2)

1 -
— S b o i—F o) PO )
00,010/ jeN;Vi J| 0), (0),1‘

(d)y; < arg minxu) =0 {

1gC x
15C 39 ( 01,0, LA (X0, 0,0 = A (F ) 1, 0, )]
. 02,0, .tt[h(x Cwn t )_h(‘f - w, . b )]2)
o (X i, 0, (:),i> P> te
) -
b N i~ Ea 1)

(e) o —argmin, , o (

éggzlgt?:l( Hl,a)q,tc[h(x(*),i ) wq ) tc) - h(£($),t ) wq ) tc)]

2,00t

2 [h(x(*),i ) wq ) tc) - h(i(*),i ) wq ) tc)]2)

+

1 ~
. _b._.xz i—X(9 .P(2)}
roar® SNt @ T

@ if (32> %) {
3/1 > 3/2 «arg minx(l)’izx(z)’i>o) {

1 _
?,,Eccﬂz,?:l( el,wq,tc[h(x(*),i s 0q,t) —h(X (s i, 0g,t,)]

05,0, .t

+ _zu[h(x(*),L » Wq tc) _h(i(*),i, Wy ,tc)]Z)

1 -
+——3. b _ixy =% PO
pow® jeN; lj| (1),i (1),1|

1 ~
3. b dxioy =X PP}
rararendizr @, =@
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}
(g) y3—arg min, . =g {

1 ~
T2 EE 1O, 0 [R&) 13 0g,t) =R F i 45 0, 8)]

V2,00t -
+ 2 [h(x(*),iywq7tc)_h(x(*),i7wq7tc)]2)

1 -
p(3)0(3)p(3)EJEMbl—J|x(3),l Xg)," )

020

ézg}:lzgzl(gl,mq,tc[h (x(><),l ) wq ) tc) - h(gé(*),l ) wq ) tc)]

(h) y,<—argmin,

02,0,

+ =5 [ () 4, 0g )~ (Fay 5, 0g, ) 1)
mﬁjeﬂcbi—ﬂxw,i-97(4),f|”<‘“ )

@) if (34> %) |
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TS (01,0, 4 [P o) 15 0g ) =R E ) 50 )]
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+—p - p(4)2j5/\/’ibi_j‘x(4),i—x(4)J‘V(4) }
} (4)9(4)
() [X0),i5%2),i%3),i>%@4),:]] [T, 1, Y2, ¥3]
(k) For c=1,..., C {
i. For g=1,..., @ {
A. 2w ,tc(izwq,tc"'[qu,tc]*i[h(ge(*),hwq,tc)
~h i(*),i,(‘)qal/‘c)]
}
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