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Estimation of kinetic model parameters in
fluorescence optical diffusion tomography
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We present a technique for reconstructing the spatially dependent dynamics of a fluorescent contrast agent in
turbid media. The dynamic behavior is described by linear and nonlinear parameters of a compartmental
model or some other model with a deterministic functional form. The method extends our previous work in
fluorescence optical diffusion tomography by parametrically reconstructing the time-dependent fluorescent
yield. The reconstruction uses a Bayesian framework and parametric iterative coordinate descent optimiza-
tion, which is closely related to Gauss–Seidel methods. We demonstrate the method with a simulation study.
© 2005 Optical Society of America
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. INTRODUCTION
n optical imaging of diseased tissue, the use of fluores-
ent agents in imaging diseased tissue has attracted con-
iderable interest owing to the potential for high specific-
ty and contrast.1 Injected fluorophores may accumulate
n diseased tissue as a result of the increased vascular
ensity2 or by means of selective targeting.3–6 As in posi-
ron emission tomography (PET), the reconstruction of
ptical contrast agent kinetics can provide useful physi-
logical information. Several groups of researchers have
easured the dynamic behavior of injected optical con-

rast agents in animal or human subjects.8–13 Gurfinkel et
l.11 used an intensified CCD camera to measure the
harmacokinetics of fluorescent agents in a canine with
ammary tumors and fitted the image sequence to a biex-

onential decay function that arises from a compartmen-
al model. The study employed indocyanine green (ICG),
hich is believed to act as a nonselective blood pool agent,
nd carotene-conjugated 2-devinyl-2-(1-hexyloxyethyl)
yropheophorbide (HPPH-car), a photosensitizer that is
elieved to accumulate selectively in diseased tissue. A
odel parameter related to the dye’s uptake rate showed

ignificant contrast between diseased and surrounding
issue for HPPH-car but not for ICG. Cuccia et al.13 mea-
ured the dynamics of two light-absorbing dyes, ICG and
ethylene blue in an adenocarcinoma rat tumor model by

se of an optical probe with magnetic resonance imaging
oregistration. Owing to its small molecular weight of
73.9 Da, the methylene blue temporal dynamics were
ominated by blood flow effects. From the methylene blue
easurements, the authors observed variations in perfu-

ion within the rat tumor. In contrast, ICG binds to albu-
in in the blood, with a resulting effective molecular
eight of 66 kDa. Hence ICG’s temporal dynamics are
ominated by the movement of albumin across the capil-
ary membrane between the plasma and the extravascu-
ar, extracellular space. Cuccia et al. used ICG dynamics
o compute a physiologic parameter related to capillary
ermeability.
1084-7529/05/071357-12/$15.00 © 2
In optical diffusion tomography (ODT), volume images
f the absorption coefficient, the scattering coefficient, or
he fluorescent yield and lifetime parameters are recon-
tructed from several optical measurements made on the
urface.14 Fluorescence optical diffusion tomography
FODT) refers specifically to the reconstruction of the
uorescence parameters.15 Laser or light-emitting-diode
ources inject light into the tissue at the fluorophore’s ex-
itation wavelength. The light is modulated with a short
ulse, modulated with an RF sinewave, or unmodulated.
he fluorophore absorbs the incident light and then de-
ays to its ground state with some characteristic time con-
tant, emitting some of the light at a longer wavelength.
he emitted photons are then measured by an array of de-
ection devices. From the data, one can reconstruct im-
ges of the fluorescent yield (a measure of the fluores-
ence efficiency) and the fluorescence lifetime (the
uorescent decay parameter). Multiple photon scattering

n tissue must be properly accounted for in the
econstruction.16,17 Diffusion or radiative transport mod-
ls are used to describe the propagation of light through
he highly scattering domain.18 As a result of the multiple
cattering of light, FODT must be used to quantify drug
oncentration accurately in issue regions that are not di-
ectly under the skin surface.

Previously, the time-varying absorption coefficient was
econstructed in a cylindrical phantom19 and in the hu-
an brain20 by solving the inverse problem separately for

ach image in a time sequence. However, in some cases,
he unknown image may not reasonably be considered
onstant over the instrument’s measurement time. In ad-
ition, independent reconstruction of each image in the
equence ignores correlations in the image over time.
olehmainen et al. presented a state-estimation approach

o the time-varying optical diffusion tomography problem
hat models the unknown image as a stochastic process
overned by a stochastic difference equation.21 This
ethod solves the inverse problem by using extended
alman filter and Kalman smoother techniques. The au-
005 Optical Society of America
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hors demonstrate their method with synthetic data from
two-dimensional phantom and, in a subsequent investi-

ation, on real hemodynamic data from the human motor
ortex.22 This approach has shown promise for dynamic
maging problems where the time variation cannot be ac-
urately parameterized by a known, deterministic model
lone. However, in practical three-dimensional imaging
roblems, reconstructing a time sequence of images and
pdating large estimator covariance matrices may pose
ome difficulty, owing to storage and computation require-
ents. Other dynamic imaging approaches have been in-

estigated, including space–time regularization
perators,23–25 principal components analysis,26 and tem-
oral B-splines.27–29 In many tracer experiments, a com-
artmental model7,30 can accurately describe tracer kinet-
cs by use of a system of first-order differential equations.
reviously, maximum-likelihood approaches for direct re-
onstruction of kinetic model parameter images from PET
ata have been presented.31,32 Recently Kamasak et al.33

resented a Bayesian approach for dynamic PET that di-
ectly reconstructs images of the compartmental model’s
arameter images by using all the data while imposing
patial regularization. This approach results in substan-
ially improved accuracy compared with previous dy-
amic imaging methods that do not directly reconstruct
he kinetic parameter images.

Here we present a Bayesian, three-dimensional recon-
truction approach for time-varying FODT problems with
onlinear parameterizations of some known functional
orm. We demonstrate the method in a simulation study
or the important case of a double exponential model,
here the unknown parameters are the two amplitude co-

fficients and the two rate constants. This case can arise
rom a compartmental model in some applications, and it
s similar to the behavior observed by Gurfinkel et al.11

nd Cuccia et al.13 The reconstruction approach is closely
elated to the methods of Kamasak et al.33 in that it uses

statistical framework to directly reconstruct kinetic
odel parameters and a similar optimization scheme. We

se all of the measured data to reconstruct the model pa-
ameter images directly rather than reconstructing and
toring a time sequence of fluorescence images. Our ap-
roach explicitly accounts for the fact that different
ources are illuminated at different times. We also draw
pon our recent work, in which we presented a nonlinear
ayesian inversion approach for the ODT and FODT
roblems and applied it to experimental data.15,34–36 We
se parametric iterative coordinate descent (PICD)
ptimization,33,34,37 which is efficient and convenient for
nforcing nonnegativity constraints, and we use the gen-
ralized Gaussian Markov random field prior model38 for
patial regularization in the parameter images.

. FORWARD PROBLEM
. Diffusion Model
ere we briefly review the forward model for the FODT
roblem, which we have presented before.15,34 In applica-
ions where scattering dominates over absorption, the
ransport of light modulated at an RF frequency v
hrough a scattering medium can be modeled by using a
hoton diffusion equation.18,39 For expsjvtd time varia-
ion, it is given by

¹ · fDsrd ¹ fsr,vdg − fmasrd + jv/cgfsr,vd = − dsr − skd,

s1d

here fsr ,vd sW/cm2d is the complex modulation enve-
ope of the photon flux, sk is the location of a point source,
nd dsrd is the Dirac function. The diffusion coefficient
srd scmd is inversely related to the scattering coefficient,
nd masrd scm−1d is the absorption coefficient.
For the case where the scattering medium contains a

uorophore, the fluorophore is excited with light at wave-
ength lx and emits light at a longer wavelength lm. We
se two coupled diffusion equations to describe a fluores-
ence measurement, with the first to represent lx excita-
ion and the second to represent the emitted lm
hotons:16,17,40

¹ · fDxsrd ¹ fxsr,vdg − fmax
srd + jv/cgfxsr,vd = − dsr − skd,

s2d

· fDmsrd ¹ fmsr,vdg − fmam
srd + jv/cgfmsr,vd

= − fxsr,vdhmaf
srd

1 − jvtsrd

1 + fvtsrdg2 , s3d

here the subscripts x and m denote excitation and emis-
ion wavelengths lx and lm, respectively. The fluorescent
ifetime tsrdssd is the fluorophore’s characteristic exponen-
ial decay constant. The fluorescent yield hmaf

srd scm−1d
ncorporates the fluorophore’s quantum efficiency h and
ts absorption coefficient maf

. We will use the notation h,
ather than hmaf

, for brevity.

. Time-Varying Fluorescence
uppose the fluorescent yield hsr , td varies with time, on a
cale comparable to the total acquisition time of the to-
ography instrument. The time variation might be a re-

ult of drug kinetics, which may be of physiological inter-
st. Here we consider the case where hsr , td can be
xpressed as a (possibly nonlinear) function of U param-
ters that do not vary in time:

hsr,td = h̃sg1srd,…,gUsrd,td, s4d

here h̃ is a known function.
One important case that follows this framework is the

ompartmental model.30 In a compartmental model, the
ody consists of a number of compartments, conceptual
egions where the drug’s concentration is assumed to be
niform. A system of differential equations describes the
xchange of the drug among the different compartments.
reviously,11,13 the pharmacokinetics of ICG in animal
ubjects has been described by use of a three-
ompartment model, depicted in Fig. 1. The compart-
ents were the plasma, the tissue (the extracellular, ex-

ravascular space), and the kidneys and liver, which tend
o clear the fluorophore out of the blood pool. Let cPstd and
Tstd be the concentration of fluorophore in the plasma
nd tissue compartments, respectively. Cuccia et al.13 ini-
ially assumed a biexponential decay model for c std but
P
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ltimately observed only single exponential behavior in
heir experiment owing to the relatively long elimination
ime of ICG compared with their measurement duration.
ence we will assume single exponential decay for cPstd,

cP = A exps− k3td, s5d

here A is taken to be the initial fluorophore concentra-
ion in the plasma and k3 is the rate constant for fluoro-
hore elimination. We assume that the plasma input
unction does not vary throughout the imaging domain,
.e., that cTstd is not large enough to effect the overall rate
f elimination significantly. A similar assumption was
ade by Cuccia et al.13 We also let k1 and k2 be the rate

onstants for ICG entering and leaving the tissue. Then
he concentrations are obtained by solving a differential
quation for cTstd:

dcT/dt = k1cP − k2cT. s6d

o obtain a volumetric image, we solve Eq. (6) with initial
ondition cTs0d=0 to obtain cTstd in each voxel:

cT = S k1A

k2 − k3
Dfexps− k3td − exps− k2tdg. s7d

he experimentally observed fluorescent yield is propor-
ional to the concentration of fluorophore in the imaging
omain. Within each voxel, the fluorophore concentration
s some weighted sum of the tissue and blood compart-

ents. Hence we may write hsr , td as

hsr,td = wPsrdcPstd + wTsrdcTsr,td. s8d

ubstituting Eqs. (5) and (7) into Eq. (8) yields the biex-
onential solution,

hsr,td = g1srdexpf− g4srdtg − g2srdexpf− g3srdtg, s9d

here

ig. 1. Compartmental model describing the exchange of con-
rast agent between the tissue and the plasma.
g1 = ASwP +
wTk1

k2 − k3
D , s10d

g2 = AS wTk1

k2 − k3
D , s11d

g3 = k2, s12d

g4 = k3. s13d

rom g1,…, g4, it is possible to obtain the parameters k2,
3, sAwPd, and sAwTk1d. Hence, we directly reconstruct
mages of the biexponential model parameters g1, g2, g3,
nd g4. To enforce the spatial independence of cPstd, one
an constrain g4 to be the same everywhere. Alternatively,
ne can reconstruct g4srd to check the self-consistency of
he model.

Strictly speaking, the time dependence of hsr , td should
orrespond to a time-dependent perturbation in max

. In
revious work, we have observed that perturbational
hanges in max

do not have a strong effect on recon-
tructed fluorescence.15 Hence, for simplicity, we will not
onsider the reconstruction of time-varying max

here.

. Tomography Problem
reviously, for the stationary case, we have shown how to
econstruct max

srd, mam
srd, Dxsrd, Dmsrd, tsrd, and hsrd.15,34

ere we assume that max
srd, mam

srd, Dxsrd, and Dmsrd are
nown in advance and do not vary with time, and we con-
ider the problem of reconstructing tsrd and hsr , td in the
ime-varying case.

Suppose that measurements are recorded at C mea-
urement times, which we call t1,…, tC. At each measure-
ent time, measurements are recorded with one or more

ources at wavelength lx and detectors are filtered at lm.
igure 2 schematically depicts the measurement, with a
ource and an array of detectors arranged around the do-
ain at each time. Note that the source and detector ge-

metry may be different at different time indices. In par-
icular, practical instruments often illuminate sources
equentially one at a time, whereas all detectors are used
imultaneously at all times, and all are fixed in space.

Consider a domain discretized into N volume elements,
r voxels. Let ri denote the position of the ith-voxel cen-
roid. Assuming that hsr , td can be expressed with Eq. (4),
e define the image vector x,

x = fxs0d
T xs1d

T
¯ xsUd

T gT, s14d

here

ig. 2. Measurement approach for reconstructing hstd and t.
ote that the measurement geometry may differ at each time.
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xsud
T = fxsud,1 ¯ xsud,NgT, s15d

xs0d
T = ftsr1d ¯ tsrNdgT, s16d

nd, for 1øuøU,

xsud
T = fgusr1d ¯ gusrNdgT, s17d

ith the superscript T denoting the transpose operation.
ote that x is of size sU+1d3N, consisting of U+1 con-

atenated parameter vectors of size N. In the parameter-
zation of Eq. (9), U=4.

. INVERSE PROBLEM
. Bayesian Framework
et y denote the measurement vector whose ordering will
e precisely specified in Subsection 3.B. Similarly, let fsxd
enote the forward model. As previously,15,35,36 we ad-
ress the ill-posed problem of estimating x from y in a
ayesian framework. The maximum a posteriori (MAP)
stimate can be computed as

x̂MAP = argmax
xù0

hlog pYuXsyuxd + log pXsxdj, s18d

here pYuXsy uxd is the data likelihood and pXsxd is the
rior density for the image. We impose positivity con-
traints for x and also require that hsri , tdù0 for all ri and
. For pYuXsy uxd, we use an independent Gaussian distri-
ution derived from a shot-noise model:41

pYuXsyuxd =
1

spadPuLu−1expF−
iy − fsxdi

L
2

a
G , s19d

here a is a scalar parameter that scales the noise vari-
nce, P is the number of measurements, iwiL

2 =wHLw
where H denotes Hermitian transpose), and aL−1 is the
ovariance matrix given by

aL−1 = a diagfuy1u, uy2u,…uyPug. s20d

he prior model pXsxd is the generalized Gaussian Mar-
ov random field model.38,41 We use upper case to repre-
ent the corresponding random variables, and we assume
hat Xs0d,… XsUd are independent:

Xsxd = p
u=0

U

pXsud
sxsudd=p

u=0

U 1

ssud
N zsrsudd

s21d

3expS−
1

rsudssud
rsud o

hi,jjPN
bi−juxsud,i − xsud,jursudD , s22d

here the u subscripts correspond to Eq. (15), N consists
f all pairs of neighboring (adjacent) nodes in a 26-
eighbor system, and bi−j is the weighting coefficient cor-
esponding to the ith and jth nodes. The coefficients bi−j
re assigned to be inversely proportional to the node sepa-
ation in a cube-shaped node layout, where ojbi−j=1. The
arameters r and s control the shape and scale of the dis-
ribution, and zsrd is a normalization term.
We incorporate a into the inverse problem as an un-
nown instrument parameter, as we have found that this
ends to improve the robustness and speed of
onvergence:42

x̂ = arg max
xù0,aù0

hpXuYsxuy,adj. s23d

We form the log posterior probability lsxd,42

lsxd = − P logiy − fsxdiL
2

− o
u=0

U S 1

rsudssud
rsud o

hi,jjPN
bi−juxsud,i − xsud,jursudD , s24d

nd implement its maximization by alternating closed-
orm updates of â with updates of x̂:

â ←
1

P
iy − fsx̂diL

2 s25d

x̂ ← arg update
xù0

hlog pYuXsyux,âd + log pXsxdj, s26d

here ← denotes assignment and arg update denotes an
teration of some optimizer.

The update in relation (26) is equivalent to reducing a
ost function

csx,âd =
1

â
iy − fsxdiL

2

+ o
u=0

U S 1

rsudssud
rsud o

hi,jjPN
bi−juxsud,i − xsud,jursudD . s27d

. Definitions
efine stc,k

as the location of the kth source at time tc, and
tc,m8 as the location of the m8th detector at time tc, and

et gxsstc,k
,dtc,m8 ;vd and gmsstc,k

,dtc,m8 ;vd be the diffusion
quation Green’s functions for wavelength lx and lm, re-
pectively. Also, let ffsstc,k

,dtc,m8 ;v , tc ,xd be the fluores-
ence observed at observation position dtc,m8 for an excita-
ion source at stc,k

, where

ffsstc,k
,dtc,m8;v,tc,xd =E hsr,tcd

1 − jvtsrd

1 + fvtsrdg2

3gxsstc,k
,r;vdgmsr,dtc,m8;vdd3r.

s28d

Suppose that at time tc we have Kc sources and Mc de-
ectors at a modulation frequency of v. (Typically, Kc=1
or most systems that illuminate sources sequentially.)
et fv,tc

sxd be the forward model for the data taken at tc
ith expsjvtd-modulated light. Then
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fv,tc
sxfd = 3

ffsstc,1
,dtc,1

;v,tc,xd
ffsstc,1

,dtc,2
;v,tc,xd

]

ffsstc,1
,dtc,Mc

;v,tc,xd
ffsstc,2

,dtc,1
;v,tc,xd

]

ffsstcKc
,dtc,Mc

;v,tc,xd
4 . s29d

et Q be the number of modulation frequencies used and
be the number of measurement times. Then

ftc
sxd = ffv1,tc

sxdT,fv2,tc
sxdT…fvQ,tc

sxdTgT, s30d

fsxd = fft1
sxdT,ft2

sxdT…ftC
sxdTgT. s31d

imilarly, we define the measurement vector y as

ytc
= fyv1,tc

T ,yv2,tc

T …yvQ,tc

T gT, s32d

y = fyt1

T ,yt2

T …ytC

T gT, s33d

orresponding to the same order used in Eq. (31). Note
hat gssk ,dm8 ,vd=gsdm8 ,sk ,vd at lx and at lm, owing to
eciprocity.43

We may use matrices to approximate the integration of
q. (28). For consistency, we assume a regular rectangu-

ar mesh in the following formulation, although we note
hat more generic finite-element formulations of similar
roblems have been presented previously.44 We define

Gxsv,tcd = 3
gxsstc,1

,r1;vd ¯ gxsstc,1
,rN;vd

] � ]

gxsstc,K
,r1;vd ¯ gxsstc,K

,rN;vd4 , s34d

Gmsv,tcd = 3
gmsdtc,1

,r1;vd ¯ gmsdtc,1
,rN;vd

] � ]

gmsdtc,M
,r1;vd ¯ gmsdtc,M

,rN;vd4 .

s35d

e also define Jv,tc
as

Jv,tc
= V3

G1,1
x sv,tcdG1,1

m sv,tcd ¯ G1,N
x sv,tcdG1,N

m sv,tcd

] � ]

G1,1
x sv,tcdGM,1

m sv,tcd ¯ G1,N
x sv,tcdGM,N

m sv,tcd

G2,1
x sv,tcdG1,1

m sv,tcd ¯ G2,N
x sv,tcdG1,N

m sv,tcd

] � ]

GK,1
x sv,tcdGM,1

m sv,tcd ¯ GK,N
x sv,tcdGM,N

m sv,tcd
4 ,

s36d

here V is the volume of a voxel. Let

hsxspd,i,v,td = hsri,td
1 − jvtsrid

1 + fvtsridg2 , s37d
hv,tc
sxd = fhsxspd,1,v,tcd ¯ hsxspd,N,v,tcdgT, s38d

here xs*d,n= ftsrnd g1srnd ¯ gUsrndgT. Then

fv,tc
sxd = Jv,tc

hv,tc
sxd s39d

f we ignore discretization error. Therefore Eq. (27) is
quivalent to

csx,âd =
1

â
o
c=1

C

o
q=1

Q

iyvq,tc
− Jvq,tc

hvq,tc
sxdiLvq,tc

2

+ o
u=0

U 1

rsudssud
rsud o

hi,jjPN
bi−juxsud,i − xsud,jursud. s40d

he cost function in Eq. (40) is used in our image recon-
truction.

. Parametric Iterative Coordinate Descent
o optimize Eq. (40), we use an algorithm that we call
arametric iterative coordinate descent (PICD). It is
ased on earlier work,41 and it is modified to allow for
omputationally efficient updates of the kinetic model pa-
ameters. The voxels are individually updated in random
rder by optimizing the cost function with respect to the
arameters at each voxel position. The updates enforce
he constraints xù0, and also g1ùg2 and g3ùg4, which
re necessary and sufficient to ensure that each param-
ter is nonnegative and that hstdù0 for all time.

In one update scan for x̂, all of the unknowns xsud, u
0, …4 are updated at all N voxel positions. Let the sca-

ar xsud,i denote the ith element of xsud. With all other im-
ge elements fixed, the PICD update for the estimate x̂sud,i
s given by

x̂sud,i ← arg min
xsud,iù0

H 1

â
o
c=1

C

o
q=1

Q

iyvq,tc

− fJvq,tcgpsid
hsxspd,i,vq,tcdi

Lvq,tc

2

+
1

rsudssud
rsud o

jPNi

bi−juxsud,i − x̂sud,jursudJ , s41d

here Ni is the set of nodes neighboring node i and rsud
nd ssud are the prior model parameters for Xsud. In rela-
ion (41), fJvq,tc

gpsid denotes the ith column of Jvq,tc
. Sup-

ose we have an initial guess x̃, and let zvq,tc
=yvq,tc

f sx̃d. Then Eq. (41) is equivalent to
vq,tc
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x̂sud,i ← arg min
xsud,iù0

H 1

â
o
c=1

C

o
q=1

Q

izvq,tc

− fJvq,tc
gpsidfhsxspd,i,vq,tcd − hsx̃spd,i,vq,tcdgiLvq,tc

2

+
1

rsudssud
rsud o

jPNi

bi−juxsud,i − x̂sud,jursudJ,

= arg min
xsud,iù0

H 1

â
o
c=1

C

o
q=1

Q Su1,vq,tc
fhsxspd,i,vq,tcd

− hsx̃spd,i,vq,tcdg +
u2,vq,tc

2
fhsxspd,i,vq,tcd

− hsx̃spd,i,vq,tcdg2D
+

1

rsudssud
rsud o

jPNi

bi−juxsud,i − x̃sud,jursudJ , s42d

here

u1,vq,tc
= − 2 RehfJvq,tc

gpi
HLvq,tc

zvq,tc
j, s43d

u2,vr,tc
= 2fJvq,tc

gpi
HLvq,tc

fJvq,tc
gpi. s44d

n relation (42), u1,vq,tc
and u2,vq,tc

are not functions of xsud,i
nd thus do not need to be recomputed during the nonlin-
ar, one-dimensional line search over xsud,i. This property
nables significant computational savings, as repeated
omputations of u1,vq,tc

and u2,vq,tc
would require numer-

us complex multiplications. We perform the minimiza-
ion over xsud,i by use of a Golden Section search.45

To enforce the constraints g1ùg2, we initially perform
inimizations over xs1d,i and over xs2d,i and observe
hether the inequality constraint is satisfied. If x̂s2d,i
x̂s1d,i, we perform a new line search enforcing xs1d,i
xs2d,i:

x̂s1d,i, x̂s2d,i ← arg min
xs1d,i=xs2d,iù0

H 1

â
o
c=1

C

o
q=1

Q Su1,vq,tc
fhsxspd,i,vq,tcd

− hsx̃spd,i,vq,tcdg +
u2,vq,tc

2
fhsxspd,i,vq,tcd

− hsx̃spd,i,vq,tcdg2D +
1

rs1dss1d
rs1d o

jPNi

bi−juxs1d,i

− x̃s1d,jurs1d +
1

rs2dss2d
rs2d o

jPNi

bi−juxs2d,i − x̃s2d,jurs2dJ .

s45d

similar procedure is used to enforce the g3ùg4 condi-
ion.

We implement the joint estimation of a and x itera-
ively. One iteration consists of a closed-form update of â
y use of Eq. (25), followed by a PICD scan to update x̂.
ppendix A provides pseudocode for a more detailed
pecification of the PICD algorithm.

. SIMULATION
o validate the method, we performed a simulation study.

synthetic time series of data was generated from a
ube-shaped phantom containing two heterogeneities.
he background properties were max

=mam
=0.047 cm−1

nd Dx=Dm=0.027 cm. The heterogeneities had the same
but different g1, g2, and g3. The parameter g4 was 0 and
as not reconstructed. This corresponds to an assumption

hat the elimination time of fluorophore from the plasma
s long compared with the measurement time, which is
easonable in cases where we are most interested in the
nitial drug uptake behavior. The parameter values were
elected to result in uptake behavior on the order of sec-
nds, which may be reasonable for a small-animal imag-
ng experiment.13

The phantom was 8 cm38 cm35.7 cm in size, and it
as discretized into 33333317 voxels of size 0.26 cm
0.26 cm30.38 cm. To generate the synthetic measure-
ents, we solved the diffusion equation numerically by
sing multigrid finite differences46 and extrapolated zero-
ux boundary conditions with interpolated source posi-
ions, as we have described previously.36 The simulation
sed a modulation frequency of 78.4 MHz. Figure 3 shows
he locations of the sources that were placed on the bot-
om face of the domain. The same positions were used as
etector positions on the top face of the domain, simulat-
ng a parallel-plate transmission geometry similar to that
hich has been used for optical mammography previ-

usly. The sources were illuminated one at a time at dif-
erent times, in the order shown in Fig. 3, and the data
onsisted of one complete pass through all of the sources,
ith 441 measurements in all. Simulated shot noise was
dded, giving an average signal to-noise ratio of 28 dB for
ll the data. The true phantom is shown in Fig. 4, with
ross-section images through each of the heterogeneities.

For the reconstructions, the hyperparameter r was set
o 2, corresponding to the Gaussian Markov random field
odel. Although automatic estimation of the hyperpa-

ameters is possible in principle,47 we chose s to give the
est empirical results, as we have done previously.34 For
his problem the best results were given by ss0d=2.75
10−10, s =0.5, s =0.5, and s =0.0125 (where the

ig. 3. Source and detector locations used in the simulations.
he sources were on the bottom face of the phantom, and the de-
ectors were on the top. The sources were illuminated in the or-
er shown, with one source used for each measurement time.
s1d s2d s3d
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nits of lifetime are seconds and the units of fluorescence
re cm−1). The PICD algorithm was run to 50 iterations,
hich required approximately 2 hours on a 2 GHz Ameri-

an Micro Devices Athlon workstation.

ig. 4. True parameter images describing the time-varying fluo-
escence in the simulation study. Cross sections are shown
hrough the top heterogeneity and the bottom heterogeneity.
ote that the parameter g3 indicates different uptake rates in

he two heterogeneities. In (e), an isosurface of the g1 reconstruc-
ion is shown, contoured at 1/3 of the maximum value.
The reconstructed parametric images are shown in Fig.
. The results are accurate, although shadowing effects
re apparent in the images. In particular, g3, which is re-
ated to a dye’s uptake rate, was reconstructed accurately,
nabling a clear distinction between the two objects. Fig-

ig. 5. Reconstructed parameter images describing the time-
arying fluorescence in the simulation study. In (e), an isosurface
f the g1 reconstruction is shown, contoured at 1/3 of the maxi-
um value.
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res 6(a)–6(d) show the true images of hsr , td for the two
bjects, at four different times, and Fig. 6(e) shows plots
f hstd for a single point near the center of each object.
he reconstructed time variation is also accurate, without
hadowing artifacts.

ig. 6. (a)–(d) True fluorescence versus time hstd. (e) hstd for a
ample point within each heterogeneity.
The reconstruction ĥsr , td was obtained by substituting
ˆ 1srd, ĝ2srd, and ĝ3srd into Eq. (9). The results shown in
ig. 7 indicate that all features are nicely captured. Fig-
re 8 is a convergence plot showing monotonic decrease of
he cost function versus iteration number. For compari-

ig. 7. (a)–(d) Fluorescence versus time, reconstructed by para-
etric ICD method. (e) ĥstd for a sample point within each
eterogeneity.



s
s
p
s
w
u
(
r
t
a
t
f
s
d
w
a
t
m

5
W
t
t
t
i
c
r
p
m
r
m
o

t
c
a
m
c
t
t
a

d
t
r
a
i

i
U
r
t

F
s

F
d
p
e

Milstein et al. Vol. 22, No. 7 /July 2005 /J. Opt. Soc. Am. A 1365
on, we also reconstructed hsr , td by independently recon-
tructing hsr , tid at each measurement time ti, using our
revious FODT reconstruction algorithm.34 For the first
imulation, we used the same 441 measurements that
ere used for the results in Fig. 9. The reconstructions all
sed r=2, with s=0.5 for h and s=2.75310−10 for t

which gave the best empirical results). We performed 21
econstructions of hsr , tid, using a single source and 21 de-
ectors for each. The results, shown in Fig. 9, have poor
ccuracy. For the second simulation, we greatly increased
he number of data, using all 21 sources and 21 detectors
or each of the reconstructions of hsr , tid (i.e., 9261 mea-
urements, with 441 measurements used at each time in-
ex). The reconstructions in this simulation used r=2,
ith s=0.375 for h and s=2.75310−10 for t. The results
re shown in Fig. 10. With this 21-fold increase in data,
he reconstructions accuracy approaches that of the para-
etric imaging method.

. CONCLUSIONS
e have presented a method for parametric reconstruc-

ion of fluorescent drug kinetics by use of fluorescence op-
ical diffusion tomography. The simulation showed that
wo heterogeneities with different time-dependent behav-
or could be reconstructed simultaneously and could be
learly distinguished on the basis of uptake-related pa-
ameters. In principle, receptor-targeted fluorescent
robes may have a significantly faster uptake rate in tu-
ors than in the surrounding tissue. Hence the ability to

econstruct the drug uptake kinetics could facilitate tu-
or imaging with high contrast in comparison with meth-

ds that do not make full use of the drug dynamics.
The presented approach is flexible and may be applied

o more sophisticated compartmental models. In prin-
iple, more complicated kinetic models that incorporate
dditional compartments or nonlinear saturation effects
ay be used in the same framework, as they simply in-

rease the complexity of the single-site updates. In addi-
ion, the PICD algorithm may be incorporated into a mul-
igrid framework48 to improve convergence properties for
wide variety of images.
Experimental demonstration of the approach should be

eveloped in future work. One possibility is that con-
rolled FODT Intralipid phantom experiments using fluo-
escent contrast agents34 could be modified for kinetic im-
ging work. For example, fluorescent dye could be
ntroduced into the phantom over time while the FODT

ig. 8. Convergence for the PICD algorithm in the simulation
tudy.
nstrument’s sources and detectors record measurements.
ltimately, validation on living animal subjects would be

equired, extending previous kinetic modeling work to full
hree-dimensional imaging geometries. Recent work with

ig. 9. (a)–(d) Fluorescence versus time, reconstructed indepen-
ently at each measurement time, with the same data as in the
arametric reconstructions. (e) ĥstd for a sample point within
ach heterogeneity.
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hree-dimensional fluorophore localization and molecular
maging with animal tissues’49,50 could be applied to the
inetic imaging problem.

ig. 10. (a)–(d) Fluorescence versus time, reconstructed inde-
endently at each measurement time, with a 21-fold increase in
ata over those used in the parametric reconstructions. (e) ĥstd
or a sample point within each heterogeneity.
PPENDIX A: PSEUDOCODE FOR THE
NVERSION ALGORITHM

ain {

1. Form Gx
ssd and Gm

sdd

2. Repeat until converged: {
(a) âf← 1 /Pf iyf− ffsx̂f , x̂x , x̂mdiLf

2

(b) x̂f←ICD_updatesx̂f , âf ,Gx
ssd ,Gm

sddd
}

}
ˆ ←ICD_updatesx̂ , â ,Gssd ,Gsdd ;xd {

1. For c=1,…,C {
(a) For q=1,…,Q {

i. zvq,tc
←yvq,tc

− fvq,tc
sx̂d

}
}

2. For i=1,…,N (in random order), {
(a) x̃i← x̂i

(b) For c=1,…,C {
i. For q=1,…,Q {

A. Compute fJvq,tc
gpsid, by taking the ith col-

umn in Eq. (36)
B. u1,vq,tc

←−2RehfJvq,tc
gpi
HLvq,tc

zvq,tc
j

C. u2,vq,tc
←2fJvq,tc

gpi
HLvq,tc

fJvq,tc
gpi

}
}

(c) t̂←arg minxs0d,iù0 {

1
â

oc=1
C oq=1

Q su1,vq,tc
fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg

+
u2,vq,tc

2 fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg2d

+ 1

rs0dss0d
rs0d ojPNi

bi−juxs0d,i− x̃s0d,jurs0d }

(d)ĝ1←arg minxs1d,iù0 {

1
â

oc=1
C oq=1

Q su1,vq,tc
fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg

+
u2,vq,tc

2 fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg2d

+ 1

rs1dss1d
rs1d ojPNi

bi−juxs1d,i− x̃s1d,jurs1d }

(e) ĝ2←arg minxs2d,iù0 {

1
â

oc=1
C oq=1

Q su1,vq,tc
fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg

+
u2,vq,tc

2 fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg2d

+ 1

rs2dss2d
rs2d ojPNi

bi−juxs2d,i− x̃s2d,jurs2d }

(f) if sĝ2.ĝ1d h

ĝ1 , ĝ2←arg minxs1d,i=xs2d,iù0d {

1
â

oc=1
C oq=1

Q su1,vq,tc
fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg

+
u2,vq,tc

2 fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg2d

+ 1

rs1dss1d
rs1d ojPNi

bi−juxs1d,i− x̃s1d,jurs1d

+ 1

r s
rs2d ojPNi

bi−juxs2d,i− x̃s2d,jurs2d }

s2d s2d
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}

(g) ĝ3←arg minxs3d,iù0 {

1
â

oc=1
C oq=1

Q su1,vq,tc
fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg

+
u2,vq,tc

2 fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg2d

+ 1

rs3dss3d
rs3d ojPNi

bi−juxs3d,i− x̃s3d,jurs3d }

(h) ĝ4←arg minxs4d,iù0 {

1
â

oc=1
C oq=1

Q su1,vq,tc
fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg

+
u2,vq,tc

2 fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg2d

+ 1

rs4dss4d
rs4d ojPNi

bi−juxs4d,i− x̃s4d,jurs4d }

(i) if sĝ4.ĝ3d {

ĝ3 , ĝ4←arg minxs3d,i=xs4d,iù0 {

1
â

oc=1
C oq=1

Q su1,vq,tc
fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg

+
u2,vq,tc

2 fhsxspd,i ,vq , tcd−hsx̃spd,i ,vq , tcdg2d

+ 1

rs3dss3d
rs3d ojPNi

bi−juxs3d,i− x̃s3d,jurs3d

+ 1

rs4dss4d
rs4d ojPNi

bi−juxs4d,i− x̃s4d,jurs4d }
}

(j) fx̂s0d,i , x̂s2d,i , x̂s3d,i , x̂s4d,ig← ft̂ , ĝ1 , ĝ2 , ĝ3g
(k) For c=1,…, C {

i. For q=1,…, Q {
A. zvq,tc

←zvq,tc
+ fJvq,tc

gpifhsx̂spd,i ,vq , tcd
−hsx̃spd,i ,vq , tcdg

}
}

}
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