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Optical diffusion tomography is a method for reconstructing three-dimensional optical properties from light
that passes through a highly scattering medium. Computing reconstructions from such data requires the so-
lution of a nonlinear inverse problem. The situation is further complicated by the fact that while reconstruc-
tion algorithms typically assume exact knowledge of the optical source and detector coupling coefficients, these
coupling coefficients are generally not available in practical measurement systems. A new method for esti-
mating these unknown coupling coefficients in the three-dimensional reconstruction process is described. The
joint problem of coefficient estimation and three-dimensional reconstruction is formulated in a Bayesian
framework, and the resulting estimates are computed by using a variation of iterative coordinate descent op-
timization that is adapted for this problem. Simulations show that this approach is an accurate and efficient
method for simultaneous reconstruction of absorption and diffusion coefficients as well as the coupling coeffi-
cients. A simple experimental result validates the approach. © 2002 Optical Society of America
OCIS codes: 100.3010, 100.3190, 100.6890, 170.5280.

1983

1. INTRODUCTION

Optical diffusion tomography is an imaging modality that
has potential in applications such as medical imaging, en-
vironmental sensing, and nondestructive testing.! In
this technique, measurements of the light that propa-
gates through a highly scattering medium are used to re-
construct the absorption and/or the scattering properties
of the medium as a function of position. In highly scat-
tering media such as tissue, the diffusion approximation
to the transport equation is sufficiently accurate and pro-
vides a computationally tractable forward model. How-
ever, the inverse problem of reconstructing the absorption
and/or the scattering coefficients from measurements of
the scattered light is highly nonlinear. This nonlinear
inverse problem can be very computationally expensive,
so methods that reduce the computational burden are of
critical importance.2~8

An important issue for practical optical diffusion imag-
ing that is addressed in this paper is accurate modeling of
the source and detector coupling coefficients.” These cou-
pling coefficients determine weights for sources and de-
tectors in a diffusion equation model for the scattering do-
main. The physical source of the source—detector
coupling variability is associated with the optical compo-
nents external to the scattering domain: the placement
of fibers, the variability in switches, etc. Variations in
the coupling coefficients can result in severe, systematic
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reconstruction distortions. In spite of its practical impor-
tance, this issue has received little attention.

Two preprocessing methods have been investigated to
correct for source—detector coupling errors before inver-
sion. Jiang et al.®® calibrated coupling coefficients and a
boundary coefficient by comparing prior measurements of
photon flux for a homogeneous medium with the corre-
sponding computed values. This scheme has been ap-
plied in clinical studies.'®*? This method of calibration
requires a set of reference measurements from a homoge-
neous sample, in addition to the measurements used to
reconstruct the inhomogeneous image. Iftimia and
Jiang!'® proposed a preprocessing scheme that involved
minimization of the mean square error between the mea-
surements for the given inhomogeneous phantom and the
computed values with an assumed homogeneous medium.
However, although this approach does not require prior
homogeneous reference measurements, it neglects the in-
fluence of an inhomogeneous domain in determining the
source and detector weights.

In order to reconstruct the image from a single set of
measurements from the domain to be imaged, it is neces-
sary to estimate the coupling coefficients as the image is
reconstructed. For example, Boas et al.” proposed a
scheme for estimating individual coupling coefficients as
part of the reconstruction process. They simultaneously
estimated both absorption and coupling coefficients by
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formulating a linear system that consisted of the pertur-
bations of the measurements in a Rytov approximation
and the logarithms of the source and detector coupling co-
efficients. To our knowledge, no results have been re-
ported for nonlinear reconstruction of both absorption and
diffusion images and the individual coupling coefficients.

In this paper we describe an efficient algorithm for es-
timating individual source and detector coupling coeffi-
cients as part of the reconstruction process for both ab-
sorption and diffusion images. This approach is based on
the formulation of our problem in a unified Bayesian
regularization framework containing terms for both the
unknown three-dimensional (3-D) optical properties and
the coupling coefficients. The resulting cost function is
then jointly minimized to both reconstruct the image and
estimate the needed coefficients. To perform this mini-
mization, we adapt our iterative coordinate decent optimi-
zation method? to include closed-form steps for the update
of the coupling coefficient estimates. This unified optimi-
zation approach results in an algorithm that can recon-
struct images and estimate the coupling coefficients with-
out the need for prior calibration. In a previous
experiment, we used the algorithm to effectively estimate
a single coefficient from a measured 3-D data set.!*
Simulation results show that our method can substan-
tially improve reconstruction quality even when there are
a large number of severely nonuniform coupling coeffi-
cients. Our approach is applied to a simple phantom ex-
periment.

2. PROBLEM FORMULATION

In a highly scattering medium with low absorption, such
as soft tissue in the 650—1300 nm wavelength range, the
photon flux is accurately modeled by the diffusion
equation.’®'® In frequency-domain optical diffusion im-
aging, the light source is amplitude modulated at angular
frequency w, and the complex modulation envelope of the
photon flux is measured at the detectors. The complex
amplitude ¢,(r) of the modulation envelope due to a point
source at position a; satisfies the frequency-domain diffu-
sion equation

V- [D(r)Vp(r)] + [—palr) — jolc]dp(r)
= —48(r —ay), (1)

where r is position, ¢ is the speed of light in the medium,
D(r) is the diffusion coefficient, and u,(r) is the absorp-
tion coefficient. We consider a region to be imaged that is
surrounded by K point sources at positions a,, for
1 < k < K, and M detectors at positions b,,, for 1 < m
< M. The 3-D domain is discretized into N grid points,
denoted by ry,...,ry. The unknown image is then
represented by a 2N-dimensional column vector x con-
taining the absorption and diffusion coefficients at each
discrete grid point:

LDyt (@)

x:[lua(rl)7"'7Ma(rN)}D(rl)7-‘

We use the notation ¢,(r; x) in place of ¢,(r) to empha-
size the dependence of the solution to Eq. (1) on the un-
known material properties x.
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Let y,, be the complex measurement at detector loca-
tion b,, and using a source at location a; . This measure-
ment is a sample of a random variable Y}, , which we will
model as a sum of the true signal and Gaussian noise.
The datum mean value of Yy, is given by

E[Yynlx, sk, dpl = s3dpdp(by; x), (3)

where ¢,(b,,; x) is the solution of Eq. (1) evaluated
at position b,,; s, and d,, are complex constants repre-
senting the unknown source and detector coupling
coefficients; and E[ - |x, s;, d,,] denotes the conditional
expectation given x, s, and d,,. (We assume that the
physical sources and detectors provide an adequate mea-
sure of ¢, that they do not perturb the diffusion equation
solution, and that they have an equivalent point repre-
sentation.)

Our objective is to simultaneously estimate the un-
known image x together with the unknown source and de-
tector coupling coefficient vectors s = [sq, Sg, ...,8k]”
and d = [dy, dg, ...,ds]T. The coupling coefficients
are different for different sources and detectors and are
not known a priori. In general, the values of s, and d,,
will vary in both amplitude and phase for real physical
systems. Typically, amplitude variations can be caused
by different excitation intensities for the sources and dif-
ferent collection efficiencies for the detectors, and phase
variation can be caused by the different effective positions
of the sources and detectors. Without these parameter
vectors, accurate reconstruction of x is not possible.

The measurement vector y is formed by raster ordering
the measurements y,,, in the form

Syrul’. (@)
L) YlM’ Y21 >

y=1[yu,---

The conditional expectation of Y = [Y 4, ..
., YT is then given by

sYiMs> Y215 -+ -5YaM s - -

ey, Y2M7 ..
E[Y|x, s, d] = diag(s ® d)®(x), (5)

where s ® d is the Kronecker product of s and d, diag(w)
is a diagonal matrix whose (i, i)th element is equal to the
ith element of the vector w, and ®(x) is the corresponding
raster order of the values ¢,(b,,; x) given by

D(x) = [ ¢p1(b1; x), p1(bg; x), ..., d1(by; x),
ba(br; ), ..., by )17 (6)

To simplify notation, we define the forward model vector
f(x, s, d) as

f(x, s, d) = diag(s ® d)P(x). (7

We use a shot-noise model for the detector noise.>!”

The shot-noise model assumes independent noise mea-
surements that are Gaussian with variance proportional
to the signal amplitude. This results in the following ex-
pression for the conditional density of Y,

1 Ny - fa s, DI
(ma AT a ’
(8)

where P = KM is the number of measurements, « is
an unknown parameter that scales the noise variance,

A = diag(Uyul, ..., Wy, Wyal, ..., Vygul1D),
and [lw]? = wAw.

p(ylx, s, d, a) =
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We determine x, s, d, and « from the measurements y.
Because this is an ill-posed inverse problem, we employ a
Bayesian framework to incorporate a prior model for x,
the image.? We then maximize the posterior probability
of x jointly with respect to y, s, d, and a. This yields the
estimators

(:)EMAP? §7 a? &)

=arg max {logp(x|y, s, d, )}

(x=0,s, d, a)

=arg max {logp(ylx,s, d, @) + logp(x)}, (9)

(x=0,s, d, a)

where p(y|x, s, d, @) is the data likelihood and p(x) is
the prior model for the image. The estimate &pap is es-
sentially the maximum a posteriori (MAP) estimate of the
image, but it is computed by simultaneously optimizing
with respect to the unknown parameters s, d, and «.
Quantities such as s, d, and « are sometimes known as
nuisance parameters, because they are not of direct inter-
est but are required for accurate estimation of the desired
quantity x. A variety of methods have been proposed for
estimating such parameters. These methods range from
true maximum-likelihood estimation with Monte Carlo
Markov chain techniques,'®2° to joint MAP estimation of
the unknown image and parameters.2?2 Our method is
a form of joint MAP estimation, but with a uniform (.e.,
improper) prior distribution for s, d, and «. It is worth
noting that such estimators can behave poorly in certain
cases.?> However, when the number of measurements is
large compared with the dimensionality of the unknowns,
as in our case for s, d, and «, these estimators generally
work well.

We use the generalized Gaussian Markov random field
prior model?* for the image x,

 a(ry)17)

S Drp)1"

p(x) = pua(r1), me(ra), ...
Xp([D(r1)7 D(r2)7 ..
1

ex bO’A7.|x, — x,|p0
ooVz(po) ( Pooe i Gren

1

X exp bijlane — xN+‘|p1)
o1™z(p1) p1oPig e ' /

f[ 1 1

= exp

u=0 ‘TuNZ(pu) puUupu

X 2 b jlxunsi — xuN+j|pu) ) (10)
{i, jteN

where o and o; are normalization parameters for u, and
D, respectively, and 1 < p, <2 and 1 < p; < 2 control
the degree of edge smoothness for u, and D, respectively.
The set A consists of all pairs of adjacent grid points,
2(py) and z(p;) are normalization constants, and b,,_;
and b,;_; represent the coefficients assigned to neighbors
i and j for u, and D, respectively. This prior model en-
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forces smoothness in the solution while preserving sharp
edge transitions, and its effectiveness for this kind of
problem has been shown previously.?

3. OPTIMIZATION

Letc(x, s, d, a) denote the cost function to be minimized
in Eq. (9). Then using the models of Eqgs. (8) and (10) and
removing constant terms results in

c(x, s, d, a

1
= —ly — flx, s, D)3 + Ploga

|

+

buijlXunsi = XunilPe. (1D

u=0 puo-upu {i, jleN

The objective is then to compute

(Rmap, §, d, &) = arg min  c(x, s, d, ). (12)
(x=0,s, d, a)

To solve this problem, we adapt the iterative coordinate
decent (ICD) method.? The ICD method works by se-
quentially updating parameters of the optimization, so
that each update monotonically reduces the cost function.
Previous implementations of ICD sequentially updated
pixels in the vector x. Here we generalize the ICD
method so that the parameters s, d, and « are also in-
cluded in the sequence of updates. More specifically, in
each iteration of the ICD algorithm, s, d, a, and x are up-
dated sequentially through the relations

& «— argminc(®, §, d, @), (13)

§ — argminc(&, s, d, &), (14)
S

d — argminc(®, §, d, &), (15)
d

% — ICD_update,{c(x, 8, d, &), £}, (16)

where the ICD_update, operation performs one iteration
of ICD optimization to reduce the cost function
c( -, 8,d, &) starting at the initial value £. The result
of ICD_update, is then used to update the value of £. It-
erative application of these update equations produces a
convergent sequence of deceasing costs.

The updates of Egs. (13), (14), and (15) can be calcu-
lated in closed form by setting the partial derivative with
respect to each variable to zero and solving the resulting
equations to yield

1
@ = ly - fi& s, a3, amn

[diag(d) Dy (2) 1Ay
|diag(d)®§ )3

«—

k=1,2,...,K, (18)
[diag(8)D V(%) 17ALy
Idiag(8)® @)% w

m=12,...,M, (19)
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where H denotes the Hermitian transpose, A}
= diag(V|ypl, Uysel, - Viye])  and A
= diag( |y 1), U Yoml s - - -» U ykml|1T) are the inverse

diagonal covariance matrices associated with source %
and detector m, respectively, and <I)§f)(fc) = [ ¢p(by; 2),

$r(by; %), ..., dp(bys D17 and ©(2) = [ h1(by, 5 2),
Db, &), ..., dx(b,,; )T are the complex amplitude
vectors associated with source £ and detector m, respec-
tively.

The update of the variable x in Eq. (16) is of course
more difficult since x is a high-dimensional vector, par-
ticularly in the 3-D case. To update the image, we use
one scan of the ICD algorithm as an ICD_update, opera-
tion. One ICD scan involves sequentially updating each
element of x with random ordering, and incorporation of
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1
:)%uNJri(iarg min THy _f(")e’ §7 a)
xuN+i=0
. . 2
—[F'(&, 8 D)lyneo@unsi — Zanvd)ll3

1

+ [Put, (28)

puaupquENi bu,i—j|xuN+i
where [ f'(%,5,d)], N+ is the (uN + i)th column of the
Fréchet derivative matrix and N is the set of grid points
neighboring grid point ;. To compute the solution to Eq.
(23), we express the first term as a quadratic function of
x,n+i; and then perform a one-dimensional minimization
that is solved by a half-interval search for the root of the
analytical derivative.?

— XuN+j

the updated elements as the scan progresses.
this scan each element of x is updated only once.

During
At the

afn(#, 81, dy)

Ifn(&, 81, dy)

If (%, 81, dy)

||
If1a(#, 81, dy)

(9,u,a(r1) &/,La(rN) 8D(r1) BD(T'N)
If1(#, 81, dg) If1a(&, 81, ds) If1a(&, 81, ds) If1a(, 81, dy)

a#(l(rl)

Ifiu(®, 81, dy)

alu“a(rN)

(£, 81, dy)

D (ry)

Ifiu(®, 81, dy)

dD(ry)

Ifiu(®, 81, dy)

The Fréchet derivative f'(%, §, d) is a P X 2N com-
plex matrix given by

£z, 8 Q) = » (24
ﬁ#a(rl) (?/ia(rN) 8D(r1) &D(rN)
Ifn(, 82, dy) Ifar(®, 89, d7) Ifn(&, 32, dy) Ifar(%, 32, dy)

é’:""a(rl)

Ifkm(®, 8, dap)

aﬂa(rN)

Ifxm(®, 85, dar)

(?D(r'l)

Ifxm(®, 8k, dar)

8D(7'N)

Ifkm(®, 85, dap)

(}Ma(rl)

élu'a(rN)

D (ry)

(9D(7"N)

beginning of an ICD scan, the nonlinear functional
f(x, s, d) is first expressed by use of a Taylor expansion
as

ly = fx, 8, DI =y — A&, 8, d) ~ £(&, 3, DA,
(20)
where Ax = x — £ and f'(%, §, d) represents the Fréchet

derivative of f(x, &, d) with respect to x at x = £. With
relation (20), an approximate cost function for the original
problem is

c(x, 8, d, &)

- xuN+j|pu7 (21)

where
2=y~ f(& 8, 4d) + & 3 d)s. (22)

Then, with the other image elements fixed, the ICD up-
date for &, .; is given by

where the first N columns correspond to the w, compo-
nents of x and the remaining N columns correspond to the
D components. In a similar manner to the Fréchet de-
rivative commonly used for unity coupling coefficients,?
it can be shown that each element of the matrix is given
by

afkm(oe’ §k ’ am)

= —83,dg(b,,, ri; R)bi(ri; £)A,  (25)
aMa(ri)
afkm(g?:’ '§k, am) oA X )
~ (ry) 5k dmVE (b, i3 ) - Voby(ri; DA,

(26)

where A is the voxel volume, the Green’s function
g(b,,, r;; &) is the solution of Eq. (1) for a point source
located at b,, [i.e., by setting a;, < b,, in Eq. (1), with use
of reciprocity to reduce computation'’] and a given image
%, V is the spatial gradient operator with respect to r;,
and domain discretization errors are ignored. Note that
the Fréchet derivative is proportional to the product
4,d,,, so that if the coupling coefficients are not accu-
rately estimated, formulas (25) and (26) do not yield accu-
rate Fréchet derivatives, and thus the computed gradient
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main {
1. Initialize £ with a background absorption and diffusion coefficient estimate.
2. Repeat until converged: {
o1 S
(@) & 5 lly-f(#354d) I3 Eq.(17)
cac(d) ) (3) THAW®
(b) 8 [dlagf(d) "k ((:)E)} Az’“ y k=1,2,... K Eq.(18)
|| diag(d) &, (£) ”A§;>
X () @ ) TH A
(©) d « [dla%(s) fp"‘ (gf)} A;" y =1,2,...,.M Eq.(19)
| diag(s) 2 (2) [
(d) # + ICD_update, {c(z,g,d”, a),@} Eq.(16)
}
}
(a)
ICD_update, {c(z, 3,d, a),gr {
1. Compute ¢p(-;%), k =1,2,---, K and g(bm, -;2), m=1,2,---, M.
2. Foru=0,1,
For i =1,..., N (in random order), {

ZyN+i ¢ arg min
TuN4+i20

{3

}

3. Return £.

(a) Compute [f'(#,3,d)].(un+y with (24)-(26).
(b) Update z,n.:, as described by Ye, et al.?

y— f(2,5,d) - [F'(&, 8, D)]aqun+i) @unti — Bunti) N

+p—u(1,pu 2 ien: bui—jlTunsi = iuN+j|p“}

2

Eq.(23)

Fig. 1.

direction of the cost function in Eq. (12) is not accurate.
Therefore, estimation of the coupling coefficients is essen-
tial for accurate image reconstruction.

The dimensions of the Fréchet derivative matrix are
very large for practical 3-D imaging. For example,
(KM X 2N X 8) = 790 Mbytes of memory are needed to
store the Fréchet derivative matrix for 30 sources, 48 de-
tectors, and a 33 X 33 X 33 grid point image if 4 bytes
are used for a real number. However, the storage can be
reduced by exploiting two facts. First, only the (ulN
+ i)th column of the Fréchet derivative matrix is needed
to update x,y.;, as seen in Eq. (23). Second, the Fréchet
derivative in Eqgs. (25) and (26) is separable into the
¢p(r;; £) term and the g(b,,, r;; £) term. Thus we com-
pute only ¢,( - ; &) fork = 1,2, ...,K and g(b,,, - ; %)
form = 1,2, ..., M before the ICD update of the whole
image; and then when «x; is updated, the ith column of the
Fréchet derivative is computed with these vectors. This
method, which involves storing the forward solutions for
all sources, the Green’s function for all detectors, and only
one column of the Fréchet derivative matrix, reduces the
required memory to (KN + MN + KM) X 8 bytes with-
out requiring additional computation. In the above ex-
ample, the required memory is then only 22 Mbytes.

(b)

Pseudocode specification for (a) the overall optimization procedure and (b) the image update by one ICD scan.

Note that this implementation differs from the work of Ye
et al.,>® where they did not need to consider this storage
issue because they dealt with a two-dimensional problem.
The whole optimization procedure is summarized in the
pseudocode of Fig. 1.

4. RESULTS
A. Simulation

The performance of the algorithm described above was in-
vestigated by simulation with cubic tissue phantoms of di-
mension 8 X 8 X 8 cm on an edge and with background
D = 0.03cm and p, = 0.02cm '. Two phantoms were
used. Phantom A has two spherical u, inhomogeneities
with diameters of 2.25 cm and 2.75 cm and central values
of 0.070 cm ™! that decay smoothly as a fourth-order poly-
nomial to the background value, and two spherical D in-
homogeneities with diameters of 2.25 cm and a central
value of 0.01 cm that increase smoothly to the background
value as a fourth-order polynomial. Phantom A is shown
as an isosurface plot in Figs. 2(a) and 2(b) and as gray-
scale plots of cross sections in Figs. 3(a) and 3(b). Phan-
tom B has a high absorption inhomogeneity with a peak
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Fig. 2. Isosurface plots at 0.04 cm ! and 0.02 cm, respectively,
for w, (left column) and D (right column) for Phantom A: (a), (b)
original tissue phantom; (c), (d) reconstructions with source—
detector calibration; (e), (f) reconstructions using the correct
weights; (g), (h) reconstructions without calibration.

value of u, = 0.07 cm™! near one face of the cube and a
low diffusion inhomogeneity near the center with a diam-
eter of 2.75 cm and a central value of 0.01 cm that in-
creases smoothly as a fourth-order polynomial to the
background value, as shown in Figs. 4(a) and 4(b) and
Figs. 5(a) and 5(b). Phantom B was used to assess
whether an absorber close to a set of sources and detec-
tors is difficult to reconstruct, since its effect might be
compensated for by reduced source and detector coupling
coefficients.

Five sources, with a modulation frequency of 100 MHz,
and eight detectors are located on each face [Fig. 6(a)],
yielding K = 30 and M = 48. Shot noise was added to
the data, and the average signal-to-noise ratio for sources
and detectors on opposite faces was 33 dB. The complex
source—detector coupling coefficients (a total of 78 param-
eters) were generated with a Gaussian distribution cen-
tered at 1 + ;0 and having a standard deviation of
(Ooett/N2)(1 + j), With ey = 0.5 [Fig. 7(a)l. The do-
main was discretized onto 33 X 33 X 33 grid points, and
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the forward model [Eq. (1)] was solved by using finite dif-
ferences. Referring to Fig. 6(b), a zero-flux (¢ = 0)
boundary condition on the outer boundary provides the
approximate boundary condition on the physical
boundary.>!” The sources and detectors were placed 0.6
times the grid point spacing in from the zero-flux bound-
ary, achieved through appropriate weighting of the near-
est grid points. Only nodes within the imaging boundary
were updated, which excludes the three outermost layers
of grid points, to avoid singularities near the sources and
detectors. The optimization was initialized by using the
homogeneous values D = 0.03 cm and u, = 0.02 cm™ L.
The image prior model used p, = 2.0, 0y = 0.0l cm™ !,
p1 = 2.0, and o7 = 0.004 cm.

Reconstructions of u, and D after 30 iterations are
shown in Figs. 2(c) and 2(d) and Figs. 3(c) and 3(d) for
Phantom A, and in Figs. 4(c) and 4(d) and Figs. 5(c) and
5(d) for Phantom B. The corresponding images recon-
structed with the correct values of coupling coefficients
are shown for comparison in Figs. 2(e) and 2(f), Figs. 3(e)
and 3(f), Figs. 4(e) and 4(f), and Figs. 5(e) and 5(f). Our
algorithm reconstructs images quite similar to those re-
constructed when the true values of the coupling coeffi-
cients are used. The corresponding images reconstructed

4 0.08 4 0.04
2 0.06 2 0.03
0 0.04 0 0.02
-2 - 002 -2 0.01
2 0 2 4 0 =/ 0 2 4 0
(a) (b)
4 0.08 0.04
2 0.06 0.03
0 e 0.04 0.02
-2 l 0.02 0.01
4 0 2 4 9 2 4 i
(c) (d)
4 0.08 0.04
2 0.06 0.03
0 0.04 0.02
-2 ‘ 0.02 0.01
% 2 o 2 4 0 2 4 0

© )
4 0.08

2 0.06
0 0.04
-2 0.02

-4 0

(©)]

Fig. 3. Cross sections through the centers of the inhomogene-
ities at z = 0.5 cm and z = 1.5 cm, respectively, for u, (left col-
umn) and D (right column) of Phantom A: (a), (b) original tissue
phantom; (c), (d) reconstructions with source—detector calibra-
tion; (e), (f) reconstructions using the correct weights, (g), (h) re-
constructions without calibration.
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(h)

Fig. 4. Isosurface plots at 0.04 cm ! and 0.02 cm, respectively,
for u, (left column) and D (right column) for Phantom B: (a), (b)
original tissue phantom; (c), (d) reconstructions with source—
detector calibration; (e), (f) reconstructions using the correct
weights; (g), (h) reconstructions without calibration.

with all coupling coefficients set to 1 + jO are shown in
Figs. 2(g) and 2(h), Figs. 3(g) and 3(h), Figs. 4(g) and 4(h),
and Figs. 5(g) and 5(h). These show that poor recon-
structions are obtained if the source—detector coupling is
not accounted for in the reconstruction process. This is
due to the effectively incorrect forward model and hence
incorrect Fréchet derivatives. In fact, for the large range
of source and detector coupling coefficients used in these
examples, the images reconstructed without calibration
differ little from the initial starting point of the optimiza-
tion, when the coupling coefficients are fixed at 1 + jO.
The convergence of the normalized root mean square er-
ror (NRMSE) between the phantoms and the recon-
structed images is shown in Fig. 8. The NRMSE is de-
fined by
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1 E |5‘\:uN+i -

rie

NRMSE = | — >, , @D
0 2 |xuN+i|2

rieR

xuN+i|2

where R is the set of the updated grid points within the
imaging boundary [shown in Fig. 6(b)], £, ; is the recon-
structed value of the (N + i)th image element, and
x,n+i 18 the correct value. The NRMSE obtained with
the reconstruction incorporating calibration is similar to
that obtained when the correct coupling coefficients are
used. However, if calibration is not used, there is little
decrease in the NRMSE from the starting value.

The accuracy of the estimated coupling coefficients is
shown in Figs. 7(b) and 7(c), where the differences be-
tween the true coupling coefficients and those estimated
after 30 iterations is given. The root-mean-square (RMS)
error of the coupling coefficients after 30 iterations is
0.011 for Phantom A and 0.017 for Phantom B, which are
only 2% and 3% of the standard deviation of the coupling
coefficients, respectively, indicating accurate recovery.
Figure 9(a) shows the variation of the RMS error between
the estimated and the true coupling coefficients versus it-
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Fig. 5. Cross sections through the centers of the inhomogene-
ities at z = 0.0 cm and z = 0.25 cm, respectively, for u, (left col-
umn) and D (right column) of Phantom B: (a), (b) original tissue
phantom; (c), (d) reconstructions with source—detector calibra-
tion; (e), (f) reconstructions using the correct weights; (g), (h) re-
constructions without calibration.
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eration, showing good convergence in only a few itera-
tions. The results therefore indicate that our algorithm
reconstructs accurate images without prior calibration by
the estimation of the coupling coefficients in an efficient
optimization scheme.

zero-flux boundary
physical boundary
source-detector boundary
(a) imaging boundary

® : source
O : detector

Fig. 6. (a) Locations of sources and detectors, (b) several levels
of boundaries: from outer boundary, zero-flux boundary, physi-
cal boundary, source—detector boundary, and imaging boundary.
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simulations. Estimation error of coupling coefficients for (b)
Phantom A and (¢) Phantom B after 30 iterations. Note that the
scale of (b) and (c¢) is 10 times of that of (a).
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Fig. 8. NRMSE between the phantom and the reconstructed im-
ages for (a) Phantom A and (b) Phantom B.

For Phantom B, the absorber close to one source—
detector plane is reconstructed quite accurately and is not
distorted by the variable coupling coefficients of the
sources and detectors. Some small spikes of low u, ap-
pear in the neighborhood of some of the sources and de-
tectors [Fig. 5(c)], but the effect is quite small. However,
the final NRMSE is somewhat larger for Phantom B than
for Phantom A (Fig. 8), and the real part of some of the
coupling coefficients is underestimated [Fig. 7(c)]. We
categorize the sources and detectors on the side nearest
the absorber as Group 1, and the remainder as Group 2.
Most of the underestimated coefficients are those for
sources and detectors on the face close to the absorber.
The estimation error for these coupling coefficients
(Group 1) is larger than the remaining sources and detec-
tors [Fig. 9(b)]l. Therefore, because the light transmitted
through the absorber is highly attenuated, it is partially
compensated for by reduced estimated coupling coeffi-
cients. As noted above, however, the effect is quite small.

To study the effect of the variability of the coupling co-
efficients, reconstructions were performed (30 iterations)
for Phantom A for different standard deviations of (real
and imaginary parts of) the coupling coefficients o gesr-
The coupling coefficients were generated with a Gaussian
distribution centered at 1 + jO and having (0 e/ V2)(1
+ j). The image NRMSE is compared for various stan-
dard derivations in Fig. 10. Estimating the calibration
coefficients reduces the NRMSE, as expected. The error
without calibration did not increase beyond ~0.28 with
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increasing o...fr, as this value for the image NRMSE cor-
responds to the initial value with the correct background
parameters and indicates that a useful image is not recov-
ered. Figures 10 and 11 show that the quality of the un-
calibrated reconstruction degrades rapidly as o, is in-
creased for values of o, < 0.1. This result indicates
that accurate estimation of the coupling coefficients is
crucial for determining accurate images. The value of
O eoeft Will obviously be a function of the specific experi-
mental arrangement. Figure 10 illustrates the effect of
variations in the source—detector coupling. While some
experimental arrangements may have (approximately) a
single, scalar source—detector weight,'* it is still impor-
tant to determine this value.

We have previously established that multiresolution
techniques such as multigrid achieve more reliable con-
vergence of the cost function while dramatically reducing
the computation time in two-dimensional optical diffusion
tomography.® The approach presented for extracting the
source—detector weights as part of the image reconstruc-
tion in a Bayesian framework could be extended to mul-
tiresolution approaches. We investigated a simple mul-
tiresolution approach by using a coarse-grid solution
(17 X 17 X 17) to initialize a fine-grid solution (33 X 33
X 33). Better convergence was achieved by using this
simple two-grid approach with various initial conditions
consisting of uniform D and u, differing from the true
background by as much as a factor of 3. This perfor-
mance improvement occurs both with known and esti-
mated source—detector weights. Also, we noticed that in
some cases with a fixed, fine grid, the cost function with
variable source—detector weights was slightly larger than
that with the true weights. Although the images in these
cases were still excellent, the additional degrees of free-
dom should have resulted in a smaller value of the cost
function. With the multiresolution approach this was in-
deed the case, providing further evidence of the robust-
ness of our approach. We emphasize that the algorithm
that we present for extraction of the source—detector
weights in a Bayesian framework was consistently effec-
tive, regardless of the particular iterative reconstruction
approach.

B. Experiment

The effectiveness of our source—detector calibration ap-
proach was evaluated for measurements made on an op-
tically clear culture flask containing a black plastic cylin-
der embedded in a turbid Intralipid suspension [Fig.
12(a)]l. The plastic cylinder was embedded in a 0.5% con-
centration of Intralipid. The data were collected with an
inexpensive apparatus comprised of an infrared LED op-
erating at 890 nm and a silicon p-i-n photodiode, as sche-
matically depicted in Fig. 12(b). With the source cen-
trally located, as shown in Fig. 12(b), the detector located
on the other side of the flask was mechanically scanned in
the same plane as the source, and data were taken at 25
symmetrical locations (referring to the abscissa of Fig.
13, —2.4 to 2.4 cm in steps of 0.2 cm). The flask was ro-
tated so that the relative positions of source and detector
were reversed, and another set of data was taken. This
resulted in a total of two source positions with 25 detector
measurements each. The sources were modulated at 50
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Fig. 9. (a) RMS error in the estimated coupling coefficients ver-

sus iteration, (b) convergence of coupling coefficients for Group 1
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Fig. 10. Image NRMSE comparison between the reconstruction
with coupling coefficient calibration and the reconstruction with
coupling coefficients fixed to 1 + jO, for various standard devia-
tions of coupling coefficients. Images were obtained after 30 it-
erations.

MHz. The measured data were normalized to a free-
space calibration measurement. This experimental ar-
rangement is similar to one we used previously,'*?® but
with two sources instead of one.

Each set of 25 measurements used a single detector
that was translated, so only one detector calibration pa-
rameter was associated with these measurements. Be-
cause the detector was associated with only one source,



1992 J. Opt. Soc. Am. A/Vol. 19, No. 10/October 2002

the source calibration parameter can be included in the
detector calibration parameter. As the position of the
flask relative to the source and detector may not be ex-
actly the same after it is rotated, a different detector cali-
bration coefficient was used for the second set of 25 mea-
surements. Therefore, a total of two complex coupling
coefficients were used for this experiment.

Inversions were performed for the absorption coeffi-
cients and coupling coefficients, assuming D known. The
domain was discretized into 65 X 33 X 65 grid points.
For computational efficiency, we used a simple multireso-
lution technique in which 200 coarse-grid (33 X 17
X 33) iterations were followed by 30 fine-grid iterations.
We used 0y = 1.0 cm ™! and p, = 2.0 for the image prior
model.

Figure 13 shows reconstructed images of the absorption
coefficient in the measurement plane. Figure 13(a)
shows the reconstruction obtained with two complex-
valued calibration coefficients; Fig. 13(b) shows the re-
construction obtained when only a single complex-
calibration coefficient was used (i.e., the two coefficients
were assumed equal); Fig. 13(c) shows the reconstruc-
tion obtained with a single real-valued calibration coeffi-
cient; and, finally, Fig. 13(d) assumed all calibration coef-
ficients to be 1. The reconstruction of Fig. 13(a) used the
most accurate model and also produced a reconstruction
that appears to be most accurate in shape. The esti-
mated values of the calibration coefficients at the final it-
eration were 4.49+;0.43 and 4.42+;0.43, respectively.
The difference between them was small, suggesting that
rotation of the flask did not significantly alter the calibra-
tion parameters. Therefore Fig. 13(b) shows almost the
same reconstruction quality as Fig. 13(a), but with
slightly more artifacts in the neighborhood of the detector
locations. Generally, the elliptical shape of the recon-
struction in Fig. 13(c) appears to be the least accurate.
Figure 13(d) shows that reconstruction without accurate
estimation of the calibration coefficients was not possible.
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Fig. 11. Cross sections of the reconstructed images of Phantom
A without calibration through the centers of the inhomogeneities
at z = 0.5cm for u, and z = 1.5 cm for D for oy.q = 0.02 for
(a) u, and (b) D and for oy = 0.04 for (¢) u, and (d) D.
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Fig. 12. (a) Culture flask with the absorbing cylinder embedded
in a scattering Intralipid solution, (b) schematic diagram of the
apparatus used to collect data.
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Fig. 13. Cross sections for reconstructed images of an absorbing
cylinder with (a) two complex-valued calibration coefficients,
(b) a single complex calibration coefficient, (c) a single real
calibration coefficient, and (d) all calibration coefficients assumed
to be 1.

5. CONCLUSIONS

We have formulated the Bayesian optical diffusion tomog-
raphy with the source—detector parameter-estimation
problem and proposed an efficient optimization scheme.
Our algorithm does not require any prior calibration, and
it estimates coupling coefficients successfully with only a
small amount of additional computation. Simulation and
experimental results show that images can be recon-
structed along with the accurate estimation of the cou-
pling coefficients.
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