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Frequency-domain diffusion imaging uses the magnitude and phase of modulated light propagating through a
highly scattering medium to reconstruct an image of the spatially dependent scattering or absorption coeffi-
cients in the medium. An inversion algorithm is formulated in a Bayesian framework and an efficient opti-
mization technique is presented for calculating the maximum a posteriori image. In this framework the data
are modeled as a complex Gaussian random vector with shot-noise statistics, and the unknown image is mod-
eled as a generalized Gaussian Markov random field. The shot-noise statistics provide correct weighting
for the measurement, and the generalized Gaussian Markov random field prior enhances the reconstruc-
tion quality and retains edges in the reconstruction. A localized relaxation algorithm, the iterative-
coordinate-descent algorithm, is employed as a computationally efficient optimization technique. Numerical
results for two-dimensional images show that the Bayesian framework with the new optimization scheme
outperforms conventional approaches in both speed and reconstruction quality. © 1999 Optical Society of
America [S0740-3232(99)01410-6]
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1. INTRODUCTION
Optical diffusion tomography has generated considerable
recent interest, and its potential for imaging, as an alter-
native to x-ray or ultrasonic tomography, in highly scat-
tering media such as tissue has been demonstrated.1–3

In this technique, with a red or near-infrared light source,
the detected transmitted light is used to reconstruct the
absorption or the scattering properties of the medium as a
function of position. The low-energy optical radiation
presents significantly lower health risks than x-ray radia-
tion. Also, suitable sources and detectors are relatively
inexpensive, making such an instrument considerably
less expensive than computed tomography (CT) and mag-
netic resonance imaging (MRI) systems. Furthermore,
in an optical imaging application a host of spectroscopic
techniques can be applied. Given these desirable fea-
tures, optical imaging has become a candidate for the
screening of soft-tissue tumors.

Two common approaches for optical diffusion tomogra-
phy are a frequency-domain method with an amplitude-
modulated optical source, in which a coherent measure-
ment is performed at the modulation frequency, and a
time-domain method with short optical pulses, in which
temporal gating methods are employed. We focus in this
paper on the frequency-domain method.

An accurate model for the propagation of photons
through tissue can be obtained from transport theory.4

This model ignores the optical phase, treating the photons
as particles. A solution can be obtained by means of
Monte Carlo methods,5 which would describe individual
0740-3232/99/102400-13$15.00 ©
photon paths, or by means of the diffusion
approximation.1 Although the Monte Carlo method can
model the photon path more accurately, the diffusion ap-
proximation is sufficiently accurate in highly scattering
media, such as tissue, and provides a computationally
tractable forward model. Therefore we use the diffusion
equation as our forward model.

The inverse problem of reconstructing the absorption or
scattering coefficients from measurements of scattered
light is highly nonlinear because of the nonlinear coupling
between the coefficients and the photon flux in the diffu-
sion equation. To facilitate the computation of the un-
known coefficients, several approaches have attempted to
locally linearize the inverse problem. For this class of
problems the Newton–Raphson method has been com-
monly used with the Levenberg–Marquardt procedure
based on a Taylor series expansion. A Levenberg–
Marquardt method based on a variational formulation of
the time-domain diffusion equation has been applied to
time-domain data.6 In this technique the moments of the
photon current at the detector locations are used as data
in the inversion algorithm. In frequency-domain meth-
ods, with sinusoidally modulated light, a similar algo-
rithm has been developed with the magnitude and phase
of the modulation envelope used as data.7 The forward
frequency-domain diffusion equation has been further ap-
proximated and formulated as an integral equation, and
the Born approximation has been used to derive a linear
integral equation.3 In this approach the equivalent wave
number, which is a nonlinear function of absorption and
1999 Optical Society of America
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scattering coefficients, is computed, and the unknown ab-
sorption and the scattering coefficients are recovered from
the reconstructed equivalent wave number. These ap-
proaches use heuristic linearization to obtain the gradient
necessary for the iterative solutions rather than rigorous
optimization. Recently we provided a detailed analysis
of previous approaches (especially the integral equation
approach) from a standard nonlinear optimization point
of view and showed that the conventional integral equa-
tion approach3 does not use the correct Fréchet differen-
tial for the absorption and the scattering parameters.8,9

A new integral equation approach was derived and shown
to have a performance superior to previous methods.8

Furthermore, the iterative method used in conventional
approaches,3,6,7 which imposes a penalty on the L2 norm
of the update at each iteration, tends to oversmooth edges
in the image or produce excessively noisy images, depend-
ing on the control parameter value. This is because the
L2 penalty term for the new update is not a regularization
in the Tikhonov sense,10 but a trust-region constraint for
a nonlinear least-squares problem.11,12

The artifacts that are due to poor regularization can be
reduced by incorporation of a priori information by use of
a Bayesian framework. In this framework the maximum
a posteriori (MAP) reconstruction is often computed by
maximization of the posterior distribution. This Baye-
sian approach has been applied in many image-
restoration and image-reconstruction problems.13,14

More recently, Bayesian (or other regularization) meth-
ods have been applied to nonlinear inverse problems such
as microwave imaging, impedance tomography, and opti-
cal imaging.7,15,16 The individual approaches have dif-
fered both in terms of the prior model (or stabilizing func-
tional) used and the optimization algorithms employed to
compute the MAP reconstruction. For example, Paulsen
and Jiang15 added a quadratic regularization term to
their previous formulation7 to stabilize the reconstruc-
tion. Each iteration of the optimization performed a lin-
earization (similar to the Born approximation), followed
by a full matrix inversion to solve the linearized problem.
The computational complexity of this method is very high
because O(N3) complex multiplications are required at
each iteration, where N is the number of image pixels.
Saquib et al.16 proposed a more computationally efficient
algorithm for the time-domain diffusion problem in which
each iteration alternates a linearization step with a single
step of a conjugate gradient algorithm. Arridge and
Schweiger17 adapted this method for the frequency-
domain diffusion tomography problem. However, their
method is computationally expensive because the line
search used for each conjugate gradient update requires
repeated evaluations of the forward model. Perhaps the
research of Carfantan et al.18 is most closely related to
ours, in that they used exact single-site updates for each
pixel. They observed that the single-site optimization
had rapid convergence in terms of the number of itera-
tions. However, each iteration of this method is compu-
tationally expensive, requiring O(N2) complex multipli-
cations. Finally, we note that previous Bayesian
approaches have not incorporated the physics of the mea-
surement noise into the Bayesian framework.

In this paper we formulate the frequency-domain opti-
cal diffusion inverse problem in a Bayesian framework
and derive the MAP estimate for the reconstruction. Al-
though the methodology we describe can in principle be
applied in the general case of unknown absorption and
scattering coefficients, for simplicity we focus on the esti-
mation of the absorption coefficient under the assumption
that the scattering coefficient is known.

As in the previous approach of Saquib et al.,16 we use
the generalized Gaussian Markov random field (GGMRF)
as the prior model of the unknown parameters. This re-
sults in stable and edge-preserving regularization for the
optical diffusion imaging problem. In addition, we incor-
porate a model for the detection statistics derived from
the physics of the measurement system. Since the dy-
namic range of the data is usually very large owing to the
source–detector geometry and strong attenuation in the
medium, large intensity measurements may be over-
weighted in the inversion procedure. Previously, heuris-
tic scaling based on the time average of the
measurements17 was used to ameliorate this problem.
We address the scaling problem by deriving a model for
the noise based on shot-noise detection statistics.19 This
model provides a natural scaling for the data, which is
based on the square root of the time average of the mea-
surements. We believe that our approach is superior be-
cause it is based on the accuracy of the actual measure-
ments and is extendible to a wide variety of physical
measurement systems.

Another contribution of this work is the introduction of
a new optimization technique that we call the iterative-
coordinate-descent–Born (ICD–Born) method. Each it-
eration of the ICD–Born method consists of a lineariza-
tion step using the Born approximation, followed by a
single pass of the ICD algorithm.20,21 Since the compu-
tational complexity of the ICD–Born method is O(N), it
requires much less computation per iteration than the ex-
act single-pixel update algorithm,18 the Gaussian elimi-
nation technique for total variation minimization,15 and
the conventional distorted Born iterative method22

(DBIM).
Our numerical results for a two-dimensional geometry

indicate that the ICD–Born method together with the
Bayesian framework yields accurate and fast reconstruc-
tions from synthetic data. The implications of the new
algorithm will be more dramatic for three-dimensional
imaging.

Notation: The following notation is used in this paper:

K, number of sources;
M, number of detectors;
P(5KM), number of measurements;
N, number of image pixels;
V; ] V, image domain; boundary of V;
dm , position vector of the mth detector;
sk , position vector of the kth point source;
r;ri , position vector in V; position of the ith voxel

or pixel in V;
ykm , complex measurement at the mth detector

due to the kth source;
y, measurement vector,

y 5 @ y11 , y12 ,..., y1M , y21 ,..., yKM]T;



2402 J. Opt. Soc. Am. A/Vol. 16, No. 10 /October 1999 Ye et al.
x, vector of unknown absorption coefficients,
x 5 @ma(r1),..., ma(rN)#T;

ck(r, t), time-domain solution of diffusion equation
(photon flux) at r due to the kth source;

fk(r, v), frequency domain solution of diffusion equa-
tion at r due to the kth source.

2. OPTICAL DIFFUSION TOMOGRAPHY
PROBLEM
In a highly scattering medium with low absorption, such
as soft tissue in the 650–1300-nm wavelength range, the
photon flux density is accurately modeled by the diffusion
equation.1,23,24 More specifically, let ck(r, t) be the pho-
ton rate per unit area generated at time t and position
r P V originating from a modulated point source of light
at position sk P V. Then ck(r, t) is given by the time-
domain diffusion equation as

1

c

]

]t
ck~r, t ! 2 ¹ • D~r !¹ck~r, t ! 1 ma~r !ck~r, t !

5 S~t !d ~r 2 sk!, (1)

where c is the speed of light in the medium, S(t) is the
time varying photon source density, and D(r) is the dif-
fusion constant given by

D~r ! 5
1

3@ma~r ! 1 ms8~r !#
; (2)

where ma(r) is the absorption coefficient, and ms8(r) is the
reduced scattering coefficient. The reduced scattering
coefficient is defined by ms8(r) 5 (1 2 g)ms(r), where
ms(r) is the scattering coefficient and g is the mean cosine
of the scattering angle. Although alternative definitions
for D have been proposed,25 we use the the classical defi-
nition in Eq. (2). Note that ck(r, t) takes on real positive
values, since it corresponds to the number of photons that
pass through a unit surface area per unit time.

Practical systems based on time-domain measurements
have been implemented,1,26 but these systems tend to be
expensive and noise sensitive. To circumvent these prob-
lems, we adopt a frequency-domain approach to the opti-
cal diffusion problem.7,27 To do this, we assume that the
light source is amplitude modulated at a fixed angular
frequency v (Þ0), so that S(t) 5 Re@1 1 b exp(2jvt)#,
where b is the modulation depth. At the detector the
complex modulation envelope is then measured by de-
modulating the in-phase and quadrature components of
the measured sinusoidal signal ck(r, t). This technique
allows low-noise narrow-band heterodyne detection.19

When the Fourier transform of Eq. (1) is taken, the par-
tial differential equation that governs the complex modu-
lation envelope fk(r, v) becomes

¹ • D~r !¹fk~r, v! 1 @2ma~r ! 1 jv/c#fk~r, v!

5 2bd ~r 2 sk!. (3)

In the frequency-domain imaging approach, Eq. (3) is
used as a forward model.

Throughout this paper a two-dimensional domain is
considered, but the approach can be generalized to three
dimensions. Figure 1 illustrates the typical experimen-
tal scheme that we consider. The region to be imaged
is denoted by V and is surrounded by K point sources, dis-
tributed around the two-dimensional boundary at posi-
tions sk P V, and M detectors, at positions dm
P V. The reduced scattering coefficient ms8(r) is as-
sumed to be known for all points r P V, but the absorp-
tion coefficient ma(r) in V is unknown. Our objective is
then to determine the values of ma(r) from the measured
values of fk(dm , v). Note that the complex measure-
ments of fk(dm , v) must be made for each source and de-
tector combination. The specific relationship between
fk(r, v) and the physical measurements is described in
Appendix A.

The domain V is discretized into N pixels, where the
position of the ith pixel is denoted ri for 1 < i < N. The
set of unknown absorption coefficients is denoted by the
vector x, where

x 5 @ma~r1!,..., ma~rN!#T. (4)

Using this notation, we may express the forward model as
a vector-valued function f(x). The function f(x) takes on
the values of a P 5 KM dimensional column vector with
elements given by

f~x! 5 @f1~x!, f2~x!,..., fP~x!#T

5 @f1~d1 , v!, f1~d2 , v!,..., f1~dM , v!,

f2~d1 , v!,..., fK~dM , v!]T. (5)

The elements of f(x) then represent the exact values of
the flux density for the assumed values of the absorption
coefficient x.

The measurements of the complex envelope fk(dm , v)
for source k and detector m are denoted ykm . We also or-
ganize the measurements as a single column vector of
length P 5 KM,

y 5 @ y11 , y12 ,..., y1M , y21 ,..., yKM#T. (6)

Note that there is a measurement corresponding to each
source–detector pair.

The estimation of x from the measurement vector y is a
classic example of an ill-posed inverse problem in which
the solution is often underdetermined, nonunique, and
noise sensitive. To address this problem, we formulate
the solution in a Bayesian framework by computing the
MAP estimate for x given y. The MAP estimate, x̂MAP , is
given by

Fig. 1. Simulation geometry with the locations of sources and
detectors for inversion of synthetic data. The sources and detec-
tors are uniformly spaced along the edges.
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x̂MAP 5 arg max
x

log p~xuy! (7)

5 arg max
x

@log p~yux! 1 log p~x!#, (8)

where p(xuy) is the posterior density of x given y, p(yux)
is the conditional probability density of y given x, and
p(x) is the prior density for the image. The density
p(yux) models the physical properties of the measure-
ment system, while the prior density p(x) models image
characteristics such as smoothness that one would expect
in the solution. In the following sections we derive an ex-
pression p(yux) based on our modeling assumptions, and
we adopt a prior model p(x) that enforces smoothness
while allowing for abrupt changes in the estimate of x.

3. MEASUREMENT MODEL
In this section we derive an expression for the distribu-
tion p(yux) in terms of the photon flux density fk(dm , v).
The details of the model are derived in Appendix A and
are based on a shot-noise model for the detected signal.
In this model the measurements are normally distributed
with a mean equal to the exact (noiseless) measurement
and a variance proportional to the exact measurement at
a modulation frequency of zero (dc). The density function
for a single datum is given by (see Appendix A)

p~ ykmux! 5
1

2paufk~dm , v!u
expF2

uykm 2 fk~dm , v!u2

2aufk~dm , v!u G ,

(9)
where a is a constant determined by the modulation
depth and the physical characteristics of the detector.
We assume that the noise signals are independent for all
source–detector pairs, so that the covariance matrix C for
the data vector y is diagonal and given by

Cii 5 aufk~dm , v!u . auykmu,

where i 5 M~k 2 1 ! 1 m. (10)

To simplify notation, we define the diagonal matrix L as

L 5 1/2C21. (11)

The data likelihood is then given by

p~yux! 5
1

pNuLu21 exp@2iy 2 f~x!iL
2#, (12)

where iziL
2 5 zHLz and H denotes the Hermitian trans-

pose.

4. GENERALIZED GAUSSIAN MARKOV
RANDOM-FIELD PRIOR MODEL
In this section, we describe the prior model p(x) that we
use for the absorption image x. In many image-
reconstruction problems, the Markov random field
model28 has proved useful in describing spatial correla-
tions between neighboring pixels. Markov random fields
have the property that the conditional distribution of a
pixel, given all other pixels, is a function only of the pix-
el’s neighbors, i.e.,
p~xiuxj , i Þ j ! 5 p~xiux]i!, (13)

where ]i denotes the pixel’s neighboring pixel i. If the
density function is constrained to be strictly positive, then
a random field is a Markov random field if and only if its
density function has the form of a Gibbs distribution
(Hammersley–Clifford theorem28). A Gibbs distribution
is any distribution with a density function that can be put
in the form

p~x! 5
1

s Nz~ p !
expF2

1

p
uS x

s
, p D G , (14)

where s and p are constants representing scale and shape
parameters for the distribution and z( p) is a normalizing
constant.

We further assume that the function u(x/s, p) has the
form29

u~x/s, p ! 5 (
$i, j%PN

bi2jrS xi 2 xj

s
, p D , (15)

where N is the set of all neighboring pixel pairs and r(•, •)
is a potential function that assigns a cost to differences
between neighboring pixel values. A wide variety of
functions for r(•, •) have been used.13,14,30,31 However,
here we use the GGMRF model because it is both convex
and scale invariant.31 The convexity of the potential
function of the GGMRF model leads to continuous or
stable MAP estimates, and the scale invariant property of
the GGMRF potential functions eliminates the necessity
of choosing an edge threshold, which is often required for
non-Gaussian potential functions.31 For the GGMRF
model the density function for x is given by

p~x! 5
1

s Nz~ p !
expS 2

1

ps p (
$i, j%PN

bi2juxi 2 xjupD ,

1 < p < 2. (16)

Furthermore, since the absorption must be positive, we
also impose the constraint

xi > 0, i 5 1 ,..., N. (17)

5. ITERATIVE-COORDINATE-DESCENT–
BORN OPTIMIZATION TECHNIQUE
Referring to Eqs. (8), (12), and (16) and conditions (17),
the MAP estimate for x is given by

x̂MAP 5 arg min
x>0

F iy 2 f~x!iL
2

1
1

ps p (
$i, j%PN

bi2juxi 2 xjupG . (18)

To compute the MAP reconstruction, we must perform op-
timization (18). We choose to use the ICD algorithm21

for a number of reasons. First, it has been shown that
ICD updates work well with non-Gaussian prior models.21
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Second, the ICD algorithm is easily implemented with a
positivity constraint. In contrast, a drawback of the con-
jugate gradient method is the difficulty of incorporating
positivity constraints.21

The ICD algorithm is implemented by sequentially up-
dating each pixel of the image. After every pixel has
been updated, the procedure is repeated, starting from
the first pixel again. We refer to a single update of every
pixel in the image as a scan. The ICD algorithm there-
fore consists of a number of scans performed until some
convergence criterion is satisfied. Each scan consists of
N pixel updates. Each pixel update is chosen to mini-
mize the MAP cost function, so that the update x̂ i of the
absorption value of the ith pixel is given by

x̂ i 5 arg min
x̃ i>0

F iy 2 f~ x̃i!iL
2 1

1

ps p (
jPNi

bi2jux̃ i 2 xjupG ,

(19)

where x̃i 5 @x1 , x2 ,..., xi21 , x̃ i , xi11 ,..., xN#T and Ni is
the set of pixels neighboring pixel i. Note that xi is re-
placed by x̂ i before the next pixel update. However, a di-
rect approach18 to the update equation (19) is computa-
tionally very expensive owing to the highly nonlinear
nature of the forward model f(x). Furthermore, each
evaluation of the function f(x) requires the solution of the
full partial differential equation (3) for each source.

The computational inefficiency is overcome by use of
the Born approximation at the beginning of each scan,
and we call this approach the ICD–Born algorithm. We
use the integer n to index the scans of the algorithm, and
xn denotes the image after the nth scan. At the begin-
ning of the (n 1 1)th scan, the approximation

iy 2 f~x!iL
2 . iy 2 f~xn! 2 f8~xn!DxiL

2 (20)

is used, where Dx 5 x 2 xn and f8(x) represents the Fré-
chet derivative of f(x), which for the discretized problem
is the P 3 N complex matrix
tector associated with the kth source can be approximated
by

lim
N→`

(
i51

N
]fk~dm , v!

]xi
Dxi

5 E
V

dr g~dm , r, v!fk~r, v!

3 F21 1
ma

n~r ! 1 jv/c
ma

n~r ! 1 ms~r !GDma~r !, (22)

where Dma(r) 5 ma(r) 2 ma
n(r) denotes the change in

ma , and g(dm , r, v) is the Green’s function for the fre-
quency domain diffusion equation (3). For the dis-
cretized domain, Dxi 5 ma(ri) 2 ma

n(ri) and the ele-
ments of the matrix f8(x) in Eq. (21) are given by

]fk~dm , v!

]xi
5 g~dm , ri , v!fk~ri , v!

3 F21 1
ma

n~ri! 1 jv/c

ma
n~ri! 1 ms~ri!

GA, (23)

where A is the pixel area. After the nth scan, f(xn) and
f8(xn) are calculated by computation of g(dm , ri , v) and
fk(ri , v) of Eq. (23) with a linear partial-differential
equation solver for the diffusion equation (3) with the nth
estimate of the absorption coefficient, xn.

In an ICD scan each pixel is updated in turn, and the
new value x̂ i is given by

x̂ i 5 arg min
x̃ i>0

H iy 2 f~xn! 2 @f8~xn!#* i~ x̃ i 2 xi
n!iL

2

1
1

ps p (
jPNi

bi2jux̃ i 2 xjupJ , (24)

where @f8(xn)#* i is the ith column of the Fréchet deriva-
and f8(xn) denotes the Fréchet derivative computed for
the absorption parameter estimate xn. We showed
previously8 that the Fréchet differential for the mth de-
tive matrix. To compute the solution to Eq. (24), we ex-
press the first term as a quadratic function of x̃ i to obtain
the expression
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Fig. 2. Pseudo-code specification of the ICD–Born algorithm.
x̂ i 5 arg min
x̃ i>0

Fu1~ x̃ i 2 xi
n! 1

u2

2
~ x̃ i 2 xi

n!2

1
1

ps p (
jPNi

bi2jux̃ i 2 xjupG , (25)

where u1 and u2 are given by

u1 5 22 Re$@f8~xn!* i#
HLe~i !%,

u2 5 2@f8~xn!* i#
HLf8~xn!* i , (26)

and the error vector e(•) for the first pixel is

e~1 ! 5 y 2 f~xn!, (27)

and for subsequent pixels is updated as

e~i 1 1 ! 5 e~i ! 2 @f8~xn!#* i~ x̂ i 2 xi
n!. (28)

Solution of Eq. (25) requires minimization of a one-
dimensional function. We achieve this by solving for the
root of the derivative of the expression in the square
brackets in Eq. (25), i.e.,

u1 1 u2~ x̃ i 2 xi
n! 1

1

s p (
jPNi

bi2jux̃ i 2 xjup21 sgn~ x̃ i 2 xj!

5 0. (29)

This root-finding procedure is performed with a half-
interval search32 because the function in Eq. (29) is mono-
tonically decreasing.21 The lower and the upper bounds
of update x̂ i in Eq. (25) are first computed from the obser-
vation that21
minS xi
n 2

u1

u2
, xj P NiD < x̂ i

< maxS xi
n 2

u1

u2
, xj P NiD .

(30)

Then these bounds are used as end points for initiating a
half-interval search. Since the half-interval search has
guaranteed exponential convergence, one can choose to
terminate either after a fixed number of iterations or af-
ter a fixed tolerance is reached.32 Figure 2 summarizes
the complete procedure used to implement the ICD–Born
algorithm.

6. COMPUTATIONAL COMPLEXITY
In this section we compare the computational cost of our
ICD–Born method with the conventional DBIM. This is
done by counting the number of complex multiplications
(referred to as cflops in the tables) required for one update
of the whole image. Recall that one complete iteration or
scan of the ICD–Born method implies a single update of
each pixel in the image formed by the unknown absorp-
tion coefficients. Table 1 summarizes the computational
complexity analysis, and Table 2 gives comparisons in the
number of complex multiplications for two typical cases.

We first analyze the ICD–Born algorithm. The com-
putational cost for evaluating an element of the Fréchet
derivative f8(xn) in Eq. (21) consists of calculating the
Green’s function of Eq. (3) and the flux fk(ri , v) and
evaluating Eq. (23). Evaluation of fk(ri , v) requires K
forward solutions of Eq. (3), one solution for each source
location. The evaluation of the Green’s function in Eq.
(23) implicitly involves placing a source at each grid point
ri and computing the flux at each detector point dm ,
which requires N forward solutions. This computational
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cost can be dramatically reduced by use of the
reciprocity33 of fk(ri , v) in Eq. (3) so that

g~dm , ri , v! 5 g~ri , dm , v!. (31)

Hence we can place a source at each detector point,
thereby requiring only M ! N forward solutions. Fur-
thermore, to compute the Green’s function and flux for
the new parameter xn11, we can use the corresponding
values from the previous iteration as initial guesses in an
iterative solver. Since the ICD–Born algorithm typically
produces a small change (xn11 2 xn), this approach gives
rapid convergence by reducing the number of iterations
required for the forward solver. Using a standard five-
point Laplacian discrete approximation, each forward it-
eration of Eq. (3) by an iterative linear solver (e.g., SOR34)
requires 5N complex multiplications. Therefore the total
multiplications required for the Green’s function and flux
update is 5(K 1 M)LN, where L is the number of itera-
tions required for the linear solver. In addition, (2MK
1 2)N multiplications are necessary to fill the Fréchet
derivative matrix in Eq. (21).

The solution of Eq. (29) is usually computationally in-
expensive, since the neighborhood Ni typically contains
only a few pixels. Therefore the computation is domi-
nated by the calculation of u1 and u2 in Eqs. (26). Since
the number of columns of f8(xn) is MK and L is diagonal,
the number of multiplications necessary to compute an
individual value of u1 is 2MK. Similarly, the update of
u2 is also 2MK. In addition, the update of the projected
error vector e(i 1 1) requires MK multiplications.
Therefore the total number of multiplications required for
the pixel update is 5MKN. This results in a total com-
putational cost for the ICD–Born method of 5(M
1 K)LN 1 (7MK 1 2)N complex multiplications per it-
eration.

To compare this result with the computational cost for
the DBIM, let us first briefly explain the DBIM algorithm.
In the DBIM, a new parameter estimate is computed from
the perturbation equation with a trust-region constraint,
where the Fréchet derivative f8(xn) is again defined as in
Eqs. (21) and (23). Each iteration of the DBIM also re-
quires the computation of the Fréchet derivative and a
regularized inverse. If we use the same linear solver for
the computation of the Green’s function and flux, and if
we also use the reciprocity relation (31), the number of
multiplications required for the Fréchet derivative update
is again 5(M 1 K)LN, where the iteration number L
must typically be chosen to be larger owing to the greater
change in x for each DBIM iteration. To fill in the Fré-
chet derivative (21), a total of (2MK 1 2)N multiplica-
tions is again required. The computational cost for the
regularized inverse by QR decomposition is at least
2(MK)2N 2 (MK)3/3 (Ref. 34). Therefore the total
number of multiplications for a complete update of the
DBIM is 5(M 1 K)LN 1 2@(MK)2 1 MK 1 1#N
2 (MK)3/3.

Table 1 summarizes the computational complexity re-
sults. The bottom row of the table lists the dominant
(i.e., highest-order) terms for each method. Notice that
the essential difference is that the DBIM contains a
(MK)2N term, whereas ICD contains only a MKN term.
This difference is particularly significant as the number
of sources and detectors grows.

The computational advantage of the ICD–Born algo-
rithm over the DBIM becomes clear when we use actual
numbers. Table 2 shows the number of complex multi-
plications required when we use M 5 12 detectors,
K 5 12 sources, and N 5 1089 pixels (e.g., a 33 3 33 dis-
cretization domain). As discussed above, the number of
forward linear solver iterations for the two algorithms
will vary. We used the MUDPACK (multigrid software for
elliptic partial differential equations) libraries35 as our
forward solver and controlled the number of iterations by
setting the relative error tolerance in MUDPACK.35 There-
fore the number of forward solver iterations varies dy-
namically with respect to x. For the results shown in
Table 2, we picked typical iteration numbers LDBIM and
Table 1. Computational Complexity of the DBIM and the ICD–Born Method:
Number of Complex Multiplications (cflops) per Iterationa

Calculation DBIM (cflops) ICD–Born (cflops)

Green’s function and fk update 5(M 1 K)LN 5(M 1 K)LN
Fréchet derivative (2MK 1 2)N (2MK 1 2)N
Pixel update 2(MK)2N 2 (MK)3/3 5MKN
Total order of computation 2(MK)2N 1 5(M 1 K)LN 7MKN 1 5(M 1 K)LN

a M, number of detectors; K, number of sources; L, number of relaxations for the forward partial-differential equation solver; N, number of image pixels.

Table 2. Comparison of the Computation Required (Complex Multiplications, cflops)
for One Iteration of the DBIM and the ICD–Born Methoda

Parameters
DBIM
(cflops)

ICD–Born
(cflops)

Speed
Ratio

LDBIM 5 10, LICD 5 10, K 5 12, M 5 12, N 5 332 45,790,290 2,406,690 19:1
LDBIM 5 30, LICD 5 20, K 5 12, M 5 12, N 5 332 48,403,890 3,713,490 13:1
LDBIM 5 30, LICD 5 30, K 5 54, M 5 54, N 5 333 6.034 3 1011 1.316 3 109 459:1

a M, number of detectors; K, number of sources; L, number of relaxations for the forward partial-differential equation solver; N, number of image pixels.
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LICD that we believe to be reasonable. These choices are
justified by the results presented in Table 3, which shows
the actual CPU times per iteration.

Two cases are considered, one that uses the same num-
ber of forward iterations for both methods and one that
uses different numbers of forward iterations. The results
listed in Table 2 show that for these two cases the com-
putation by the ICD–Born method is reduced by factors of
19 and 13, respectively, as compared with that by the
DBIM. Although most investigations of optical diffusion
imaging consider two-dimensional geometries, the real
problem is three dimensional. Therefore in the bottom
row of Table 2 we show the estimated number of complex
multiplications for a three-dimensional reconstruction
scheme with a similar geometry. The computational
speedup of the ICD–Born method is even more dramatic
in this case.

7. NUMERICAL RESULTS
Simulation results are presented here to assess the per-
formance of the new algorithm. The entire region, V (in-
cluding the homogeneous background), is considered un-
known. A total of 12 sources and 12 detectors are located
uniformly over the boundary of a 8 cm 3 8 cm domain, as
shown in Fig. 1.

To illustrate the effect of noise on the stability of the
algorithm, random noise with a complex Gaussian distri-
bution is added to the measured flux data. Referring to
Eq. (9), the signal-to-noise ratio (SNR) of the current mea-
surement for the mth detector, and the kth source can be
represented by the magnitude of the flux and is given by

SNRmk 5
uE@i#u2

s0
2 .

1

2a
ufk~dm , v!u, (32)

where the constant a and noise current variance s0
2 are

defined in Appendix A. (Note that the signal-to-noise ra-
tio increases proportionally to the magnitude of the flux
at the detector.) To determine the value of a in relation
(32), we consider a 1-MHz bandwidth detection system
(B 5 1 MHz) and a 200-MHz modulation frequency with
a modulation depth of b 5 1.0. For detector parameters,
a common laboratory photomultiplier tube, the R928 from
Hamamatsu, is considered. Here the cathode responsiv-
ity k is 68 mA/W (Ref. 36), and g is set to 1 mm2. This
gives a 5 4.7059 3 1026. The noise is generated by a
Gaussian random-number generator and is added to the
signal as

Re@ymk# 5 Re@fk~dm , v!# 1 @aufk~dm , v!u#1/2

3 N~0, 1 !,

Table 3. Average CPU Time (s) per Interation for
the First Simulation (Fig. 3)

DBIM

ICD–Born

p 5 2.0 p 5 1.1

4.0 0.23 0.32
Im@ymk# 5 Im@fk~dm , v!# 1 @aufk~dm , v!u#1/2

3 N~0, 1 !, (33)

where N(0, 1) is a zero mean Gaussian random variable
with unit variance. The average signal-to-noise ratio
over the detectors was approximately 30 dB for each
simulation. To compare the overall accuracy of the re-
constructions, we introduce the normalized root-mean-
square error (NRMSE) of the reconstructed image as a
function of iteration, defined as

NRMSEn 5 5 (
i51

N

@ma
n~ri! 2 ma~ri!#

2

(
i51

N

@ma~ri!#
2 6

1/2

, (34)

where ma
n(ri) is the reconstructed value of the absorption

coefficient at mesh location ri at the nth iteration and
ma(ri) is the correct value. For the simulations the im-
age is discretized on a 33 3 33 grid. In all the simula-
tions the scattering coefficient is set to a constant value
ms 5 10.0 cm21. The simulation was performed on a Sun
Ultra Sparc 30.

Figure 3(a) shows the original ma image used for the
first numerical experiment. Figure 3(b) shows the DBIM
reconstruction result.8 The reconstruction shows a high
noise level and incorrect peak heights. This is due to the
L2 norm used in each update as a trust-region constraint,
which does not have a noise-smoothing effect. For the
GGMRF prior model, we used an eight-point neighbor-
hood system, with bi2j 5 (2A2 1 4)21 for nearest
neighbors and bi2j 5 (4A2 1 4)21 for diagonal neigh-
bors. The MAP reconstructions were computed by

Fig. 3. Reconstruction results for ma : (a) original absorption
image; (b) reconstruction by the DBIM; (c) reconstruction by
the new algorithm with a Gaussian prior ( p 5 2.0, s

5 1.00 3 1023); (d) reconstruction by the new algorithm with a
GGMRF prior ( p 5 1.1, s 5 2.31 3 1024).
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running the ICD–Born algorithm with a positivity con-
straint. The stopping criterion used was a fixed CPU
time of 60 s (to allow comparison of the two algorithms).
Figure 3(c) shows the MAP reconstruction for a Gaussian

Fig. 4. NRMSE versus CPU time for the ICD–Born method
(with p 5 1.1 and p 5 2) and the DBIM.

Fig. 5. Cost function (log scale) versus iteration for the ICD–
Born algorithm with p 5 1.1 and p 5 2.

Fig. 6. Reconstructions of ma showing the effect of s for a
GGMRF prior model and with p 5 1.1: (a) original absorption
image, and reconstructions with (b) s 5 2.85 3 1025, (c) s
5 2.31 3 1024, (d) s 5 1.52 3 1022.
prior model ( p 5 2, s 5 1.0 3 1023), and Fig. 3(d) gives
the reconstruction for p 5 1.1 and s 5 2.31 3 1024.
The reconstruction for the Gaussian prior ( p 5 2) re-
duces the background noise compared with the recon-
struction by the DBIM but suffers from some smoothing
of the edges as the price for noise suppression. The
boundaries can be sharpened when a larger value of s is
used, but at the expense of larger noise artifacts.
Sharper edges and good noise suppression are obtained
for p 5 1.1 [Fig. 3(d)]. Here, because of the edge-
preserving nature of the GGMRF prior, the edges are
more noticeable in the reconstruction while the noise is
suppressed.

Figure 4 shows a plot of the NRMSE versus CPU time
for this simulation. With a single-user environment, the
CPU times were ;80% of the wall clock time. The aver-
age CPU time for a single iteration of each algorithm is
also given in Table 3. The relative computational speeds
for the DBIM and the ICD–Born method are consistent
with the results shown in the first two rows of Tables 1
and 2. Note that more CPU time is required for the
ICD–Born method with p 5 1.1 than for p 5 2.0. This is
due to the increased number of the half-interval searches
for p 5 1.1. Figure 4 shows that the DBIM eventually
diverges. This is again due to the insufficient regulariza-
tion of the DBIM.22

Figure 5 shows a plot of the cost function in Eq. (18)
versus the iteration number for the ICD–Born method
with p 5 2.0 and p 5 1.1 for the above simulation. Note
that the ICD–Born method is very stable and has reason-
ably fast convergence. The convergence behavior of the
ICD–Born method is also consistent with a previously de-
scribed single-site update algorithm.18

The problem of choosing p and s is complex, and a
maximum-likelihood estimation technique can be used.29

However, in this paper we empirically choose values that
give the best results. For s, the range of 0 , s
, 0.02 cm21 was considered (note the units of s). In Fig.
6 the reconstructions obtained with the GGMRF prior
with p 5 1.1 for different values of s are shown. A small
value of s 5 2.85 3 1025 cm21 results in an over-
smoothed reconstruction, as is observed in Fig. 6(b).
Note that in this case the amplitude of the inhomogeneity
at the center is underestimated. A larger value of
s 5 1.52 3 1022 cm21 produces background noise in the
reconstruction, even though the edges are improved and
the value of the inhomogeneity at the center is improved
[Fig. 6(d)]. Figure 6(c), with s 5 2.31 3 1024 cm21,
shows the best trade-off between the smoothness of the
image and the edge improvement.

Figure 7 shows a variety of more complicated absorp-
tion images. Reconstructions using the ICD–Born
method for these images are shown in Fig. 8. The pa-
rameters used for the reconstructions and the final
NRMSE are given in the caption of Fig. 8. In each case
the reconstructions are accurate both quantitatively and
qualitatively, demonstrating that our new algorithm per-
forms well on more complex images.

8. CONCLUSION
We have formulated the optical diffusion inverse problem
in a Bayesian framework and implemented a maximum a
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posteriori (MAP) reconstruction of the absorption coeffi-
cient. The Bayesian framework permits the incorpora-
tion of prior knowledge of the unknown parameters as
well as detection statistics. The shot-noise detection sta-
tistics we describe here provide a natural weighting for
the measurement data. As a prior model of the unknown
parameter, we use the generalized Gaussian random field
(GGMRF). This results in stable and edge-preserving
regularization for this inverse problem. As an optimiza-
tion technique for the Bayesian framework, we use a new
method that combines iterative coordinate descent (ICD)
and the Born approximation, which we call the ICD–Born
method. This method significantly reduces the computa-
tional complexity compared with methods such as the
conventional distorted Born iterative method (DBIM).
Numerical simulations for a two-dimensional geometry
show that the Bayesian framework together with the
ICD–Born method significantly improves the quality of
reconstructions. Although practically all simulations of
optical diffusion have considered a two-dimensional ge-
ometry, the problem is fundamentally three dimensional
(unlike x-ray tomography), since the photon paths are not
restricted to a plane. Efficient and effective inversion al-
gorithms for optical diffusion tomography in three dimen-
sions is currently an open problem that needs investiga-
tion. The overall properties of the inversion algorithm
described here are expected to be similar for the three-
dimensional problem. However, the improvement in
computational efficiency over that of existing algorithms
will be even more significant in three dimensions than in
two dimensions because of the large increase in the num-
ber of unknowns in three dimensions. The algorithm,
therefore, has significant potential in practical optical dif-
fusion imaging.
Fig. 7. Variety of true absorption images used for simulations.
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Fig. 8. Reconstructions of the absorption images shown in Fig. 7 by the ICD–Born algorithm with the GGMRF prior with p 5 1.1 and
s 5 2.31 3 1024. NRMSE values for the final reconstructions are (a) 5.83 3 1022, (b) 5.56 3 1022, (c) 1.92 3 1021, (d) 1.25 3 1021, (e)
7.70 3 1022, (f) 2.18 3 1021, (g) 8.34 3 1022, (h) 1.26 3 1021, (i) 2.08 3 1021.
APPENDIX A: DETECTOR NOISE MODEL
We develop in this appendix a noise model for the mea-
sured data ykm . A measurement will sense the optical
power leaving the scattering domain, the photon current
J, which is given by Fick’s law4 as J 5 2D¹f. The av-
erage (dc) optical power P at a detector is therefore

P 5 uJ1~dm!uAe 5 D~dm!u¹fk~dm , v!uAe , (A1)

where J1(dm) is the outward photon current from the do-
main at the detector, Ae is the effective detector aperture,
and D(dm) is the diffusion constant at the receiver loca-
tion dm .

We consider an absorbing boundary condition as
follows4 (Fig. 9). The detectors are located on a bound-
ary, denoted ]Vd , inside the computational boundary ] V,
such that all the incident photons are absorbed at the de-
tector boundary. This means that the inward photon
current at the detectors J2(dm) 5 0. This boundary con-
dition is implemented by setting the flux f 5 0 on the
computational boundary ]V at a distance 2.131D(dm)
from ]Vd (Ref. 4). Referring to Fig. 9, we can therefore
approximate u¹fk(dm , 0)u by fk(dm , 0)/@2.131D(dm)#
and the optical power by

P 5 gufk~dm , 0 !u, (A2)

where g 5 Ae/2.131.
We assume an ideal photodetector in which thermal

noise is negligible so that the noise is dominated by shot
noise. Shot noise for the photodetector current is de-
scribed by Gaussian statistics in which the variance is
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proportional to the mean.19 The probability density func-
tion for the complex envelope i of the detector current is
then

p~i ! 5
1

2ps0
2 expS 2

ui 2 E@i#u2

2s0
2 D , (A3)

where the noise current variance for shot noise is given by

s0
2 5 2eBi0 , (A4)

with e the electron charge, B the bandwidth and i0
5 E@i# the dc current.19 The current i0 is proportional
to the detector dc optical power, i.e, i0 5 kP, where k is
the detector responsivity,36 so that using Eqs. (A2)–(A4)
allows the probability density function for the data ykm
5 fk(dm , v) to be derived as

p~ ykmux! 5
1

2phfk~dm , 0 !
expF2

uykm 2 fk~dm , v!u2

2hfk~dm , 0 !
G ,

(A5)

where h 5 2eB/(kg) and p( ykmux) is the probability den-
sity function for each measured datum given a particular
image x. Furthermore, we show in Appendix B that, for
typical tissue optical parameters and typical (low) modu-
lation frequencies, fk(dm , 0) . ufk(dm , v)u/b, so that
(A5) can be replaced by

p~ ykmux! 5
1

2paufk~dm , v!u
expF2

uykm 2 fk~dm , v!u2

2aufk~dm , v!u G ,

(A6)

where a 5 h/b.

APPENDIX B: APPROXIMATION OF DC
PHOTON FLUX DENSITY
Consider the time-domain diffusion equation (1) in an in-
finite homogeneous region with S(t) 5 1 1 b exp(2jvt)
located at sk , which yields the closed-form solution37

Fig. 9. Illustration of the zero-input photon current or absorb-
ing boundary condition for the diffusion equation, where all inci-
dent light from within the scattering boundary is lost to free
space. Setting f 5 0 on an extrapolated boundary at
0.7104(3D), where 3D is the mean free path, is equivalent to the
zero-input current condition on the physical boundary. In this
figure z is the distance variable perpendicular to the interface
and az is the unit vector.
ck~r, t ! 5 ReX 1

4pDz
expF2zS ma

D D 1/2G 1
b

4pDz

3 expH 2zS c2ma
2 1 v2

c2D2 D 1/4

3 cosF1

2
arctanS v

cma
D G J

3 expH 2jzS c2ma
2 1 v2

c2D2 D 1/4

3 sinF1

2
arctanS v

cma
D G 1 jvtJ C, (B1)

where z 5 usk 2 dmu. When reference signals 2 cos(vt)
and 2 sin(vt) are used for the in-phase and quadrature
phase of the measured current, respectively, the magni-
tude of the modulation envelope of the current becomes
uiu 5 kgufk(dm , v)u, where, for v Þ 0,

ufk~dm , v!u 5
b

4pDz
expH 2zS c2ma

2 1 v2

c2D2 D 1/4

3 cosF1

2
arctanS v

cma
D G J . (B2)

For typical optical parameters in tissue and modulation
frequencies (v/2p < 2 3 108 Hz), simulations (Fig. 10)
show that Eq. (B2) is nearly independent of v and is equal
to the dc value times b. This is because @(c2ma

2

1 v2)/(c2D2)#1/4 is an increasing function of v, but
cos$1/2 arctan@v/(cma)#% is a decreasing function, for small
v. Therefore fk(dm , 0) . 1/bufk(dm , v)u. We do not
know the exact value of fk(dm , v) because of measure-
ment noise, so we use the estimate fk(dm , v) . ymk .
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