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Abstract. Emission computed tomography is widely applied in
medical diagnostic imaging, especially to determine physiological
function. The available set of measurements is, however, often in-
complete and corrupted, and the quality of image reconstruction is
enhanced by the computation of a statistically optimal estimate.
Most formulations of the estimation problem use the Poisson model
to measure fidelity to data. The intuitive appeal and operational sim-
plicity of quadratic approximations to the Poisson log likelihood
make them an attractive alternative, but they imply a potential loss
of reconstruction quality which has not often been studied. This pa-
per presents quantitative comparisons between the two models and
shows that a judiciously chosen quadratic, as part of a short series
of Newton-style steps, yields reconstructions nearly indistinguish-
able from those under the exact Poisson model. © 2000 SPIE and
IS&T. [S1017-9909(00)00502-X]

1 Introduction

Statistical methods of reconstruction are widely applica
in emission tomography and other photon-limited imag
problems. Unlike the relatively rigid, deterministical
based methods such as filtered back projection~FBP!, they
can be used without modification to data with missing p
jections or low signal-to-noise ratios~SNRs!. The Poisson
processes in emission and transmission tomography in
the application of maximum-likelihood~ML ! estimation.
However, due to the typical limits in fidelity of data, M
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estimates are usually unstable, and have been impro
upon by methods such as regularization, or maximuma
posteriori probability ~MAP! estimation.1 With the choice
of convex potential functions for Markov random fie
~MRF! style a priori image models, both ML and MAP
reconstructions may be formulated as large scale con
optimization problems. Many approaches to this challen
have been proposed, among which popular alternat
have been variants of expectation maximization~EM!,2 an
approach derived from indirect optimization through t
introduction of the notion of an unobservablecompletedata
set whose conditional expectations form the algorithmic
sis. EM and related methods are called on primarily due
the Poisson likelihood function, while earlier work on leas
squares solutions resorted to a variety of more class
numerical methods;3–6 the motivation for formulating such
problems in least squares seems often to have been
availability of simple optimization tools. Linearity of the
resulting estimator also opens the problem to more ana
cal scrutiny. Some previous work7–9 has considered the dif
ferences between the Poisson and least-squares form
tions in terms of image qualities in final estimates, but m
current work follows the Poisson model.

We study here the visual and quantitative difference
tween MAP emission tomographic estimates under
Poisson model and under quadratic approximations to
log likelihood. The quadratics are derived from Taylor s
ries expansions of the Poisson log likelihood. As a fi
goal, we revisit the issue of the viability of a single, fixe
approximation based on an expansion before any itera
optimization takes place. Although the diagnostic cost
any loss of quality is not clear from our work, one ca
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Thibault, Sauer, and Bouman
observe that the simplest of quadratics does not alw
yield a result indistinguishable from the Poisson. We the
fore propose a generalization in the form of a short
quence of global quadratic approximations whose mini
can be made convergent to the minimum of the Poisson
likelihood. In its limiting case, this technique is a form
Newton iterations in the dimension of the image, and
therefore call the method global Newton~GN!. However,
as experimental results show, after only a few updates,
approximation yields final image estimates very close
those of the Poisson model. Thus we expect in practic
be able to freeze the approximation after, at most, a han
of updates. Between the refinements of the global quad
likelihood model, any form of optimization appropriate fo
the highly coupled equations for the image pixels may
used. This view of, and computational approach to
MAP reconstruction does not necessarily promise gr
computational savings, since optimization techniques
already in place which converge in few iterations, a
which have per-iteration costs similar to those possi
within GN. Rather, we hope to show that the likelihood
in practice sufficiently close to good quadratic approxim
tions that choices of numerical methods to solve the Ba
sian tomographic inversion problem may be made view
the optimization as one of solving a large system of lin
equations. Should a user have available software pack
for quadratic problems, this may allow its application to t
emission problem with negligible loss of quality.

While Newton’s method would require that the proble
formed by each successive approximation be solved exa
before updating the global quadratic, we suggest tha
single update of all image pixels suffices to capture mos
the per-iteration gain if a relatively fast-converging alg
rithm is applied. Various enhanced gradient methods,
example, may be well suited to the problem.10,11Because it
is itself based onlocal quadratic approximations to th
Poisson log likelihood and has demonstrated relativ
rapid convergence, we apply a form of iterative coordin
descent~ICD! to the pixel optimization phase. Thus we w
discuss two cases of quadratic approximation below;
first is global and forms the basis of GN; the second is o
dimensional, iteratively solving functions of single pix
values. The latter is used both to compute the exact M
estimates below and to optimize under the global quadra
of GN.

2 A Global Newton Algorithm for the MAP
Reconstruction Problem

2.1 Formulation of the MAP Objective

Statistical image reconstruction requires the evalua
and/or optimization of functionals viewing the probabilist
link between observations and the unknown parame
through the log-likelihood function. For the emission pro
lem, X is theN-dimensional vector of emission rates,Y is
the M -dimensional vector of projection data~Poisson dis-
tributed photon counts!. According to the standard emissio
tomographic model, the observed photon countsyi for pro-
jection i follow a Poisson distribution with paramete
Ai* x, whereAi* is the i th row of the projection matrixA.
270 / Journal of Electronic Imaging / July 2000 / Vol. 9(3)
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Using the convention thatpi5Ai* x, the log likelihood may
be expressed as the sum of strictly convex continuous
differentiable functions

logP~Y5yux!5(
i

~yi log pi2pi2 log~yi ! !!. ~1!

A variety of system nonidealities, such as varying detec
sensitivity, scatter under linearized approximations, and
tenuation and random coincidences in positron emission
mography~PET! can easily be included in this model wit
minor modifications. The first three above may typically
incorporated into the transform matrixA, while pre-
estimated random coincidence rates are a simple additio
the mean.

Maximum-likelihood ~ML ! estimation methods are b
consensus poor for most emission problems, since h
spatial frequency noise tends to dominate M
reconstructions.12 These high frequencies converge slow
under EM methods of optimization, well after basic ima
structure is visible. Some ML estimators are therefo
‘‘regularized’’ by a uniform initial image estimate and a
early termination of the optimization.13 We formulate the
reconstruction instead from the Bayesian point of vie
with an explicit a priori image model stabilizing the esti
mator, and optimization methods which are designed to
proach the unique maximum of thea posterioriprobability
density as rapidly as possible. Iterations are terminated o
when the estimate has stopped evolving more than ne
gible amounts visually or quantitatively.

We will use throughout this paper the generaliz
Gaussian MRF~GGMRF!14 as prior model to illustrate ou
methods. The GGMRF model has a density function w
the form

gx~x!5
1

z
expH 2

1

qsq (
$ j ,k%PC

bj ,kuxj2xkuqJ ,

whereC is the set of all neighboring pixel pairs,bj ,k is the
coefficient linking pixelsj andk, s represents the scale o
the prior image, and 1<q<2 is a parameter which control
the smoothness of the reconstruction. This model includ
Gaussian MRF forq52, and an absolute-value potenti
function with q51. In general, smaller values ofq allow
sharper edges to form in reconstructed images. Prior in
mation may also be available in the form of constraints
the reconstructed solution. We will assume that the se
feasible reconstructionsV is convex, and in all experiment
we will chooseV to be the set of positive reconstruction
Combining this prior model with the log-likelihood expre
sion of Eq.~1! yields the expression of the MAP estimat

x̂MAP5arg min
xPV

F(
i 51

M

~pi2yi log pi !

1
1

qsq (
$ j ,k%PC

bj 2kuxj2xkuqG . ~2!
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Newton-style optimization
2.2 A Global Newton Method for Poisson Log
Likelihood

Direct optimization of Eq.~2! can be simplified somewha
by taking advantage of the approximately quadratic nat
of the global log-likelihood function.15 Dealing directly
with the true Poisson during numerical optimization step
then unnecessary, and efficient optimization can
achieved with a variety of well known methods to compu
the descent steps. This is not necessarily motivated by
goal of reducing the number of numerical operations
quired for the reconstructions; optimization methods ex
which converge to the MAP solution rapidly in terms
iteration counts regardless of whether we solve the ex
Poisson or a quadratic approximation. These alterna
methods can be applied with nearly the same cost to
Poisson likelihood as to the quadratics. But the unbou
ness of the Poisson log likelihood at the origin, for e
ample, may prove a nuisance, and enforcement of positi
constraints is more easily understood and analyzed und
well-behaved, convex quadratic cost functional. The au
matic observation of positivity in pixel values seems
have been an important motivation in the widespread ad
tion of the EM algorithm for emission tomography. Whi
EM has been accelerated,16 generalized to the MAP
problem,17 reformulated as a faster sequential algorithm18

and speeded~at the cost of reliable convergence! in the
ordered subsets EM approach,19 its derivation and even
definition are less well understood by most users than
principles of optimizing a quadratic or, equivalently, sol
ing systems of linear equations. It is our hope that freed
to cogitate on this optimization as a quadratic problem m
lead to greater insight into, and greater exploitation of,
unique characteristics of the tomographic inverse probl

Because edge-preservinga priori models may have
highly nonquadratic cost functionals, all the work belo
includes the exact log priors. Most MRF image models a
relatively little to the per-iteration computational cost in t
tomographic problem, which is dominated by the lo
likelihood component. They also serve as stabilizing fu
tionals for the MAP estimator, and will therefore tend
mute, not amplify, the error due to use of the likeliho
approximation. In the case of the popular Gaussian M
of course, the problem remains entirely quadratic. Thou
the edge-preserving priors have quantitative advanta
the linearity of the reconstruction as a function of the d
in the Gaussian case still may facilitate easier interpreta
of errors than the nonlinear case, and we expect that
Gaussian will remain a common choice as prior.

We first compute the leading two terms of a Taylor s
ries expansion of the log-likelihood function in the sin
gram domain, where independence of the Poisson ph
counts simplifies analysis. Using Eq.~1!, the gradient and
the diagonal Hessian evaluated atp5 p̂ have entries

] logP~Y5yux!

]pi
U

p5 p̂

5211
yi

p̂i
~3!

]2 logP~Y5yux!

]~pi !
2 U

p5 p̂

52
yi

~ p̂i !
2 . ~4!
e

t
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Different approaches may be used to take advantage of
approximation. We may evaluate it once before any pi
update atp̂5y, using the raw measurement data, and ke
this approximation fixed during the convergence proces15

In this case, an approximation to the log likelihood is

logP~Y5yux!'2 (
i PS1

1

2yi
~yi2Ai* x!2

1 (
i PS0

Ai* x1c~y!, ~5!

where S05$ i ,yi50%, S15S2S0 . Since this approxima-
tion converges to the exact log likelihood as( i yi

21/2,15 we
expect the error in the approximation to be far less pr
lematic in high-count data than in low. The FBP image
perhaps the most practical, low-cost starting point for MA
estimation. Therefore one may also profit from an appro
mation at the pointp̂5AxFBP.

A potentially more broadly applicable method involve
updating the point of expansion after solving the given q
dratic problem, in the manner of Newton’s method in
dimensions. Newton’s search takes a quadratic approxi
tion to the objective function at each step to compute
next element of the sequential series

xk115xk2@¹2f ~xk!#21
•¹ f ~xk!. ~6!

The computationally impractical inversion of the Hessian
often approximated through methods such
preconditioning.20 Convergence is also locally quadrat
but generally not assured for nonconvex objective fu
tions, and improvements on the original idea have be
developed to make Newton’s method globally robust.21,22

Applying a similar methodology to the MAP estimatio
problem in Eq.~2!, we may use the previous estimates
globally approximate the log likelihood as quadratic for t
next image iteration. The parameters of the Taylor se
expansion are then evaluated from the forward project
of the current image estimate. Due to its relation to Ne
ton’s method in the dimension of the image, we refer to t
algorithm as global Newton~GN!. Let p̂k be the forward
projection of the image estimate obtained after optimizat
on the approximate objective. The expansion pointp̂k is
kept fixed for all pixel updates in a stage of GN, then
updated to form the next quadratic likelihood approxim
tion. It is computed from the initial image~typically the
FBP reconstruction! for the first iteration. Evaluating Eqs
~3! and~4! at p5 p̂k, we obtain a new approximation to Eq
~1!

logP~Y5yux!'(
i 51

M S yi

p̂i
k 21D ~yi2Ai* x!

1(
i 51

M

2
yi

2~ p̂i
k!2 ~yi2Ai* x!21c~y!. ~7!

To best exploit the nearly quadratic form of the log lik
lihood, we seek to update only to a point where the fin
GN reconstructed image will show no substantial diffe
Journal of Electronic Imaging / July 2000 / Vol. 9(3) / 271



ra-
the
or

r in
on
sar
olu
an
t to
al
lve
ion
ate
o-

to
m-
up
-

no
of
si-

n
ch

ng
lso

er-

-
ge
ize
tly
m
on
-
d
sia
e-

n
nd

di-

li-

e

h
ns

r a

xel

-
It
h by
of

e.
is-

xi-
ua-

e
h

li-

he
’s

m-
n

. A
–
t
ct,
ta-
hod

Thibault, Sauer, and Bouman
ence from the exact MAP estimate, terminating the ite
tions of GN early in the sequence. In Newton’s method,
members of this series of quadratic problems each in the
pose a computational load similar to the direct estimato
Eq. ~2!. Therefore, the complexity of a precise realizati
of GN appears to be the product of the number of neces
updates of the global quadratic and the cost of each s
tion. As discussed below, however, a single iteration of
efficient method on a global quadratic appears sufficien
warrant the next step in GN, eliminating this addition
cost. Though our implementation does not exactly so
each global quadratic before computing a new expans
the updates rapidly bring the minimum of the approxim
objective close to the exact MAP solution point. The pr
jection estimatep̂k may then be fixed, and the solution
the final problem form may be refined to essentially co
plete convergence if desired. The necessary number of
dates ofp̂k may be determined by off-line training appro
priate to the SNRs typical of the given setting.

2.3 Computation of Estimates via ICD

Under formulations such as Eqs.~2! or ~7! large-scale con-
vex optimization must be solved. Such problems are
difficult, but the speed of convergence and simplicity
adaptation to the addition of the regularizing term and po
tivity constraints in Eq.~2! are important considerations i
practice. A variety of techniques may be applied for ea
GN step, including all classic quadratic~constrained! opti-
mization methods.~As mentioned above, edge-preservi
prior models may add a nonquadratic term and may a
affect convergence behavior, but typically add minor p
iteration computational cost.! In light of all the above fac-
tors, we find types of iterative coordinate descent~ICD!
well suited to the problem. The ICD algorithm is imple
mented by sequentially updating each pixel of the ima
With each update, the current pixel is chosen to minim
the MAP cost function. The ICD method can be efficien
applied to the log-likelihood expressions resulting fro
photon-limited imaging systems, is demonstrated to c
verge very rapidly~in our experiments typically 5–10 itera
tions! when initialized with the FBP reconstruction, an
easily incorporates convex constraints and non-Gaus
prior distributions. While use of approximate second d
rivative ~Hessian! information in this optimization has bee
introduced in the form of preconditioners for gradient a
conjugate gradient algorithms,10,11,16 ICD’s greedy update
uses the exact local second derivative directly in one
mension.

Using the exact expression of the emission log like
hood in the MAP estimator, the ICD update of thej th pixel
is

xj
n115arg min

l>0
H (

i 51

M

@Ai j l2yi log~Ai j ~l2xj
n!1Ai* xn!#

1
1

qsq (
kPNj

bj ,kul2xk
nuqJ , ~8!

whereNj is the set of pixels neighboringxj . In this casexn

and xn11 differ at a single pixel, so a full update of th
272 / Journal of Electronic Imaging / July 2000 / Vol. 9(3)
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image requires that Eq.~8! be applied sequentially at eac
pixel. Following each pixel update, the forward projectio
Axn are corrected for the differencexj

n112xj
n . Since n

indexes single pixel updates applied to optimization unde
fixed indexk for GN approximations,$xk% could be written
as a subsequence of$xn%.

Rather than solving the exact equation for each pi
resulting from Eq.~2!, the ICD/Newton–Raphson~ICD/
NR! algorithm15 exploits the approximately quadratic na
ture of the log likelihood to reduce computation time.
uses a technique similar to the Newton–Raphson searc
locally applying a second order Taylor series expansion
the log likelihood as a function of the single pixel valu
We retain, however, the exact expression for the prior d
tribution, because the prior term is often not well appro
mated by a quadratic function. Should this function be q
dratic, we find the exact solution in a single step. W
emphasize that thislocal quadratic approximation for eac
pixel update is a separate process from theglobal approxi-
mation to the log likelihood of the GN approach. Letu1

andu2 be the first and second derivatives of the log like
hood evaluated for the current pixel valuexj

n . Using the
Newton–Raphson-type update, the new pixel value is

xj
n115arg min

l>0
H u1~l2xj

n!1
u2

2
~l2xj

n!2

1
1

qsq (
kPNj

bj 2kul2xk
nuqJ . ~9!

This equation may be solved by analytically calculating t
derivative and then numerically computing the derivative
root. With pi

n as the current forward projections, the para
eters for the update equations for emission data are the

u15(
i 51

M

Ai j S 12
yi

pi
nD , ~10!

u25(
i 51

M

yi S Ai j

pi
n D 2

. ~11!

We simply choose a half-interval search to solve Eq.~9!
since the function being rooted is monotone decreasing
full iteration consists of applying a single Newton
Raphson update to each pixel inx. We have observed tha
in all cases, the convergence of ICD/NR is stable. In fa
we have shown that a small modification in the compu
tion of u2 guarantees the global convergence of the met
with any strictly convex prior.23

Using an approximation such as GN, with Eq.~7! in
place of the exact Poisson log likelihood in Eq.~2!, the
computation of the update of thej th pixel is realized as in
Eq. ~9! with new expressions foru1 andu2

u15(
i 51

M

Ai j S 11
yi

p̂i
k S pi

n

p̂i
k 22D D , ~12!
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Newton-style optimization
u25(
i 51

M

yi S Ai j

p̂i
k D 2

. ~13!

We label this form of coordinate descent ICD/GN. Upd
ing this quadratic approximation at each pixel~replacingp̂i

k

with pi
n! would reduce to the exact solution case of E

~10! and ~11!, which means that ICD/GN reduces
ICD/NR in this case. In the present ICD/GN, we keep t
approximation fixed for a whole iteration through the ima
before updating it. Powell20 proved the global convergenc
of an algorithm of this type when the Hessian is posit
definite everywhere in an open convex set. This cor
sponds geometrically to strict convexity as in our case,
we have observed stable convergence in all experimen

Computation time is approximated by the multiplies a
divides required to computeu1 andu2 . Both in ICD/NR of
Sec. 2.3, and in Eqs.~12! and ~13!, noting M0 the number
of nonzero projections, this results in 4M0N operations per
full image update with the appropriate storage ofyi /( p̂i

k)2

and pn. Therefore, ICD/GN and ICD/NR require approx
mately the same time for one iteration, including reeval
tion of the expansion point. If we terminate these eval
tions,u2 is constant. In addition, both are also equivalent
terms of the number of indexings through the project
matrix A, each requiring two, and the use of the appro
mation is not computationally more expensive.

The optimal scan pattern for the sequential pixel upda
of the greedy ICD algorithm is not obvious, since nothi
in the information carried by the sinogram dictates the b
order in which the image pixels should be visited. The
der of pixel updates affects convergence speed, and th
fore may warrant study to determine the best method. Le
cographic scans which iterate in horizontal, then verti
coordinates every other iteration have advanta
analytically,24 but in our experiments here, simple repeat
horizontal scans performed slightly better. Improved co
vergence speed also seems to be achieved using a ra
scan pattern.25 Unless otherwise noted, all results presen
here are from random patterns which visit each pixel o
per scan. We present below comparisons in objective c
vergence between a simple lexicographic pattern and a
dom pattern.

3 Experimental Performances

Three different sets of data have been used to test the
formance of MAP-type estimation with the ICD/GN algo
rithm. We first realized simulations with a synthetic he
phantom in a 2003200 mm field with a total photon coun
'3.03106. The original, with the FBP reconstruction,
shown in Fig. 1. In addition, real medical single phot
emission computed tomography~SPECT! data of a human
thorax from T99 sestamibi heart perfusion was used to
lustrate a medical application. Reconstructions cover
proximately 3203256 mm, with a total photon coun
'1.53105 in this case. Finally, we considered a section
the Derenzo phantom from PET data to study the per
mance of the algorithm in a low SNR case ('8.83104

counts!. The Derenzo estimates were corrected for atte
ation and detector sensitivity by means of a map of corr
tion factors included in the Bayesian model. The atten
-
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tion image itself was a MAP transmission image estim
for the phantom. The projection matrix was subsequen
modified to incorporate the corrections as multiplicati
factors. We also included a simple additive model to c
rect for random coincidences by adding an estimated b
of the emission counts. In addition to correcting phot
statistics for random coincidences, this additive factor he
stabilize the convergence of the objective by moving
unbounded points of the likelihood function outside t
constraint region. We chose an eight-point neighborho
system with normalized weights for the GGMRF, and i
vestigated results for both Gaussian and non-Gaussian
models. ML parameter estimation26 provided the values of
s in the first two cases, while the last was chosen manu
for best visual appearance. All reconstructions were init
ized with the FBP image, and all estimates labeled ‘‘ex
MAP’’ are computed via ICD/NR with random pixel scan
for at least 100 iterations. Independently of the chos
number of updates of the global quadratic approximatio
ICD/GN ran 30 and 40 iterations for the PET data, and
head and heart data, respectively.

In each case, we have terminated the GN updates
fixing the quadratic approximation at a point we labelp̄.
Following arrival at p̄5 p̂k, where p̂k corresponds to the
forward projection of the image estimate obtained aftek
iterations of the ICD/GN algorithm, the expansion point

Fig. 1 Head phantom used for reconstruction comparisons. (a)
Original phantom, (b) FBP reconstruction.
Journal of Electronic Imaging / July 2000 / Vol. 9(3) / 273
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Thibault, Sauer, and Bouman
the quadratic approximation is kept fixed for the remain
number of iterations. Referring to the two cases presen
in Sec. 2.2, the parameters of the quadratic approxima
may be computed directly from the measurement datap̄
5y) and kept fixed, as in Eq.~5!, or from the forward
projection of the FBP image and updated at each itera
( p̄5 p̂k5Axk), as in Eq.~7!, until the decision is made to
stop the updates. In Figs. 2–7, we can see small but

Fig. 2 Reconstructions of head phantom with Gaussian prior. (a)
Exact MAP image, Gaussian prior and s50.58; (b) Estimate with
quadratic log-likelihood approximation fixed at p̄5y; (c) ICD/GN re-
sult for quadratic approximation fixed after two iterations (p̄5p̂2

5Ax2).
274 / Journal of Electronic Imaging / July 2000 / Vol. 9(3)
d
n

r-

ceptible differences between the exact image and its
proximation for p̄5y @~a!, ~b!#, whereas those difference
are not visible after updating the quadratic approximat
only a small number of times@~a!, ~c!#. It is interesting to
determine the smallest number of evaluations of the po

Fig. 3 MAP reconstruction with GGMRF, Gaussian prior (q52.0)
and s50.58. (a) Error between original phantom and MAP recon-
struction; (b) difference between MAP and estimate using quadratic
fixed at p̄5y; (c) difference between MAP and estimate using qua-
dratic fixed at p̄5p̂25Ax2.



ce
N.
lv-
ra-

-

ET

Newton-style optimization
of expansion that is required to yield negligible differen
between the images computed with ICD/NR and ICD/G
Keeping the approximation fixed thereafter allows for so
ing the simple quadratic problem for the remaining ite
tions. A set of reconstructions with changingp̄5 p̂k showed
that after only two iterations~three evaluations of the ex
pansion point, i.e.,p̄5Ax2!, the resulting final images
show essentially no difference from the exact estimate@~a!,
~c!, ~e!#. For low SNR cases as in our SPECT and P

Fig. 4 Reconstructions of a head phantom with non-Gaussian
GGMRF prior (q51.1), s50.25. (a) Exact MAP image; (b) estimate
with fixed quadratic approximation evaluated at p̄5y; (c) ICD/GN
result with fixed approximation after two iterations (p̄5p̂25Ax2).
Fig. 5 MAP reconstruction with GGMRF, q51.1, s50.25. (a) Error
between original phantom and MAP reconstruction; (b) difference
between MAP and estimate using quadratic at p̄5y; (c) difference
between MAP and estimate from quadratic using p̄5p̂25Ax2.
Journal of Electronic Imaging / July 2000 / Vol. 9(3) / 275
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Fig. 6 Reconstructions of SPECT data with Gaussian prior and s50.028. (a) Exact MAP image; (b) estimate using quadratic at p̄5y; (c)
ICD/GN result for two updates of the expansion point (p̄5p̂25Ax2); (d)(e) differences between (a) and (b),(c), respectively. Data courtesy of
T. S. Pan and M. King, University of Massachusetts.
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data, the algorithm uses a minimum pixel value expon
tially decreasing to zero with iterations, in order to avo
frequently hitting the positivity constraint during the fir
iterations.

Table 1 shows error measures relative to the origi
image, to provide context for the magnitude of differenc
between the MAP and ICD/GN estimates of the head ph
276 / Journal of Electronic Imaging / July 2000 / Vol. 9(3)
-

l

-

tom appearing in Table 2. The magnitudes of the diff
ences displayed in Table 2 for different numbers of exp
sion updates show that the results are sufficiently accu
after one or two updates of the expansion first compu
from the FBP image for ICD/GN to be very similar to a
exact MAP reconstruction. It also indicates that with upd
ing the expansion once per iteration during the compl
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Fig. 7 Reconstructions of SPECT data with non-Gaussian GGMRF prior, q51.1 and s50.017. (a) Exact MAP image; (b) estimate using
quadratic at p̄5y; (c) ICD/GN result for two updates of the expansion point (p̄5p̂25Ax2); (d), (e) differences between (a) and (b), (c),
respectively. Data courtesy of T. S. Pan and M. King, University of Massachusetts.
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reconstruction process, the ICD/GN image appears to
ymptotically converge to the exact estimate. Detailed stu
shows that the largest differences occur about the high
quency regions of the image, at the boundaries and out
the object, and especially in the regions where the pho
counts are low. This relates to the studies in Refs. 15 an
showing that the larger the photon counts, the better
quadratic approximation to the log likelihood. This do
-

-
e

n
8
e

not, however, visibly affect the quality of the reconstru
tion. In fact, differences computed only in the region of t
object drop by a factor of 10 compared with the compu
tion on the whole image. In the low SNR PET example
Fig. 8, we see similarly that after a total of three evalu
tions of the Taylor series for the log likelihood, we achie
a result nearly indistinguishable from the true MAP es
mate computed by ICD/NR.
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Interestingly, the quantitative results indicate that fixi
the quadratic expansion from the forward projection of
FBP image is not necessarily better than using the raw
nogram withp̄5y. The high frequency noise present in th
original sinogram is spread over the entire image by
FBP reconstruction, and may therefore be spread over
entire sinogram resulting from the forward projection of t
FBP image. In contrast, the vectory remains as the stan
dard for the estimate’s fidelity to the data throughout G
updates. Therefore, it is plausible that the minimum of
resulting GN quadratic approximation atp̄5 p̂05AxFBP
may be farther from the MAP estimate than the one m
at p̄5y. The use of the FBP image as starting point
ICD/GN has several motivations. The FBP image is a go
first estimate of image densities which is quickly comput
In addition, the ICD algorithm is very efficient in converg
ing the high frequencies in the image, while somew
slower for low frequencies; the FBP image offers low fr
quency components already near their optimal value. T

Table 1 Error in estimate relative to the original head phantom.

Reconstructed image MSD MAD MAX

Head phantom q52 s50.584

p̄5y 0.0442 0.1076 2.2722

p̄5p̂05AxFBP 0.0456 0.1085 2.4000

p̄5p̂15Ax1 0.0434 0.1073 2.2793

p̄5p̂25Ax2 0.0428 0.1070 2.1711

p̄5p̂405Ax40 0.0428 0.1070 2.1702

ICD/NR exact MAP estimate 0.0428 0.1070 2.1702

Table 2 Difference measurements between MAP and ICD/GN im-
ages for varying numbers of evaluations of the global quadratic ap-
proximation.

Expansion point MSD MAD MAX

Head phantom q52 s50.584

p̄5y 4.66331024 8.41331023 5.16031021

p̄5p̂05AxFBP 8.39331024 6.0031023 5.16031021

p̄5p̂15Ax1 1.32531024 2.20831024 2.32731021

p̄5p̂25Ax2 1.42831027 6.68531025 1.4531022

SPECT data q52 s50.0283

p̄5y 3.96931025 2.57231023 5.8831022

p̄5p̂05AxFBP 2.16531025 1.81331023 4.1731022

p̄5p̂15Ax1 3.77231026 6.35831024 2.4331022

p̄5p̂25Ax2 5.31931027 2.16531024 1.1831022

Derenzo PET data q52 s50.10

p̄5y 4.46831024 6.14531023 2.73631021

p̄5p̂05AxFBP 9.84031025 3.10531023 1.51031021

p̄5p̂15Ax1 2.49031025 1.36931023 1.02431021

p̄5p̂25Ax2 5.61931026 4.91931024 5.8731022
278 / Journal of Electronic Imaging / July 2000 / Vol. 9(3)
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makes the FBP image a good starting point for most ite
tive estimation algorithms. However, it is quite conceivab
that in some instances of GN, one might still usex0

5xFBP with p̂05y in place ofAxFBP.
The convergence plots of Fig. 9 correspond to the ab

results. They were obtained for Gaussian priors and us
regular scan pattern in horizontal coordinates first. T
plots are similar in the case of non-Gaussian priors. For
head and the Derenzo phantoms, ICD/GN exhibits the sa
behavior as ICD/NR, indicating experimentally that th
global quadratic approximations do not affect the conv
gence properties of the ICD algorithm. Whatever choice
made for fixing the quadratic approximation, the objecti
function converges quickly~typically about five iterations!.
However, it appears in the SPECT data plot that if w
evaluate the quadratic approximation atp̄5y and keep it
fixed thereafter~‘‘0’’ plots !, the limiting a posterioriprob-
ability is significantly different from the exact MAP objec
tive. Updating the quadratic approximation only once af
its first evaluation from the FBP image leaves only sm
differences in the objective values of ICD/GN and ICD
NR.

With the exception of the plots in Fig. 9, all the figure
presented thus far result from ICD pixel updates in rand
order. The patterns analyzed in Ref. 24 were regular,
lines or by columns, but recent results have shown a po
tial for improvement in convergence speed with these r
domly ordered scans.25 Figure 10 presents the improveme
in convergence speed that a random update pattern o
over a regular lexicographic scan in the case of the Dere
phantom. A simple linear congruential random numb
generator guarantees that each pixel in the image is vis
once and only once per iteration. The gain here is sign
cant, since after only two iterations the objective has alm
converged when the random scan is used, whereas si
erations are necessary when using the lexicographic s
In addition, it is interesting to study the influence of th
scan pattern on the ICD/GN results. Figures 10 and
compare the image estimates forp̄5 p̂2 when using the
lexicographic or random update pattern. The magnitu
plots show that the random pattern eliminates some of
differences between the GN estimate and the exact M
image. With a sequential update of the pixels, the first p
els in the image tend to be overcorrected since the objec
function is greedily optimized at each step. A lexicograph
scan, such as in Figs. 10~b! and 11~a!, therefore creates
more low frequency artifacts in the image and tends
concentrate those pixels on whichever side of the objec
updated first, whereas a random pattern scatters them.
differences in the above figures appear in fact to be
superposition of both the overcorrection discussed abo
and the low frequency components which take longer
converge with ICD. Thus the random pattern may of
faster convergence of both the global approximations
GN, and the sweeps of the image under ICD. A potentia
interesting variation on the random update would involv
nonuniform spatial distribution of updates dependent on
current image estimate.

These results suggest that any algorithm which c
verges rapidly for the first few iterations might quickly su
ply a final global quadratic likelihood approximation



Newton-style optimization
Fig. 8 Reconstructions of PET data with Gaussian prior. (a) Original Derenzo phantom; (b) MAP reconstruction with s50.1; (c) ICD/GN result
for p̄5y; (d) ICD/GN result for quadratic expansion fixed after two iterations (p̄5p̂25Ax(2)); (e), (f) differences between MAP image of (b) and
results in (c) and (d), respectively. Data courtesy of G. Hutchins, Indiana University.
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which could then be attacked by any numerical algorit
well suited to quadratic objectives. An initially quite rapi
though nonconvergent, form of EM which cycles amo
subsets of data, known as ordered subsets EM~OSEM!,19

might be used for the initial estimates, and another, e
conjugate gradient or ICD, might be applied to conv
gence of the resulting fixed quadratic problem.25
,

4 Conclusion

In Bayesian tomography, the substitution of an approxim
tion to the log-likelihood function allows simpler optimiza
tion of the MAP objective without computation under th
Poisson model. After only a few updates of the global qu
dratic, a coordinate descent method rapidly converges to
Journal of Electronic Imaging / July 2000 / Vol. 9(3) / 279
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estimate nearly indistinguishable from the exact MAP e
mate. For emission tomographic problems of medium

Fig. 9 Convergence of objective vs iterations for (a) the head phan-
tom, (b) the SPECT data, and (c) the PET data, for various numbers
of evaluations of the expansion point. Convergence plots obtained
from ordered pixel updates in horizontal coordinates first in ICD. ‘‘0’’
indicates p̄5y, ‘‘1’’ indicates p̄5p̂05AxFBP , ‘‘2’’ indicates p̄5p̂1

5Ax1, etc.
280 / Journal of Electronic Imaging / July 2000 / Vol. 9(3)
high signal-to-noise ratios, our results suggest that view
the log likelihood as quadratic may be adequate for a
visual interpretations, and would open the problem to
searchers and practitioners more accustomed to quad

Fig. 10 Difference in convergence behavior between lexicographic
scan in horizontal coordinates first, and randomly ordered pixel up-
dates in ICD, for the Derenzo phantom with Gaussian prior. (a) Con-
vergence of log a posteriori probability in both cases. Residual dif-
ference between true MAP estimate and result from quadratic
approximation fixed after two iterations (p̄5p̂25Ax2) under (b)
regular scan pattern; (c) random scan pattern.
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Newton-style optimization
constrained optimization than photon-limited image rec
struction. Even in low-count problems, it appears that lit
appreciable quality would be sacrificed in optimizing a qu
dratic log-likelihood approximation fixed very early in th
process. These claims all assume the use of relatively
idly converging techniques for the first few iterations. Fu
ther research will evaluate differences between ICD a
OSEM for the initial stages.
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