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Abstract. Emission computed tomography is widely applied in
medical diagnostic imaging, especially to determine physiological
function. The available set of measurements is, however, often in-
complete and corrupted, and the quality of image reconstruction is
enhanced by the computation of a statistically optimal estimate.
Most formulations of the estimation problem use the Poisson model
to measure fidelity to data. The intuitive appeal and operational sim-
plicity of quadratic approximations to the Poisson log likelihood
make them an attractive alternative, but they imply a potential loss
of reconstruction quality which has not often been studied. This pa-
per presents quantitative comparisons between the two models and
shows that a judiciously chosen quadratic, as part of a short series
of Newton-style steps, yields reconstructions nearly indistinguish-
able from those under the exact Poisson model. © 2000 SPIE and
IS&T. [S1017-9909(00)00502-X]

1 Introduction

estimates are usually unstable, and have been improved
upon by methods such as regularization, or maximam
posteriori probability (MAP) estimationt With the choice

of convex potential functions for Markov random field
(MRF) style a priori image models, both ML and MAP
reconstructions may be formulated as large scale convex
optimization problems. Many approaches to this challenge
have been proposed, among which popular alternatives
have been variants of expectation maximizati&),? an
approach derived from indirect optimization through the
introduction of the notion of an unobservalglempletedata

set whose conditional expectations form the algorithmic ba-
sis. EM and related methods are called on primarily due to
the Poisson likelihood function, while earlier work on least-
squares solutions resorted to a variety of more classical
numerical method37° the motivation for formulating such

Statistical methods of reconstruction are widely applicable Problems in least squares seems often to have been this
in emission tomography and other photon-limited imaging availability of simple optimization tools. Linearity of the

problems. Unlike the relatively rigid, deterministically
based methods such as filtered back projectiBP), they

resulting estimator also opens the problem to more analyti-
cal scrutiny. Some previous wdfk has considered the dif-

can be used without modification to data with missing pro- ferences between the Poisson and least-squares formula-

jections or low signal-to-noise ratigSNR9. The Poisson

tions in terms of image qualities in final estimates, but most

processes in emission and transmission tomography invitecurrent work follows the Poisson model.

the application of maximum-likelihoodML) estimation.

We study here the visual and quantitative difference be-

However, due to the typical limits in fidelity of data, ML tween MAP emission tomographic estimates under the
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Poisson model and under quadratic approximations to the
log likelihood. The quadratics are derived from Taylor se-
ries expansions of the Poisson log likelihood. As a first
goal, we revisit the issue of the viability of a single, fixed

This paper is a revision of a paper presented at the Conference on Mathematicaapproximation based on an expansion before any iterative

Modeling, Bayesian Estimation, and Inverse Problems, June 1999, Denver, Colo-

rado. The paper presented there appéamsefereeflin Proc. SPIEVol. 3816.
1017-9909/2000/$15.00 © 2000 SPIE and IS&T.

optimization takes place. Although the diagnostic cost of
any loss of quality is not clear from our work, one can
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observe that the simplest of quadratics does not alwaysUsing the convention that; = A, X, the log likelihood may
yield a result indistinguishable from the Poisson. We there-be expressed as the sum of strictly convex continuous and
fore propose a generalization in the form of a short se- differentiable functions

quence of global quadratic approximations whose minima

can be made convergent to the minimum of the Poisson log

likelihood. In its limiting case, this technique is a form of _ _ . o )

Newton iterations in the dimension of the image, and we logP(Y=y}x) 2 (vilogpi—pi—log(y:!)). @
therefore call the method global Newtd@N). However,

as experimental results show, after only a few updates, the ) ) . )
approximation yields final image estimates very close to A variety of system nonidealities, such as varying detector

those of the Poisson model. Thus we expect in practice toSENSitivity, scatter under linearized approximations, and at-
be able to freeze the approximation after, at most, a handfuffénuation and random cqmmde_nces in positron emission to-
of updates. Between the refinements of the global quadratic"°9raphy(PET) can easily be included in this model with
likelihood model, any form of optimization appropriate for Minor modifications. The first three above may typically be
the highly coupled equations for the image pixels may be incorporated into the transform matrid, while pre-
used. This view of, and computational approach to the €stimated random coincidence rates are a simple addition to
MAP reconstruction does not necessarily promise greatthe mean. o
computational savings, since optimization techniques are Maximum-likelihood (ML) estimation methods are by
already in place which converge in few iterations, and consensus poor for most emission problems, since high
which "have per-iteration costs similar to those possible SPatial fre_quezncy noise tends to dominate ML
within GN. Rather, we hope to show that the likelihood is réconstructions? These high frequencies converge slowly
in practice sufficiently close to good quadratic approxima- under EM methods of optimization, well after basic image
tions that choices of numerical methods to solve the Baye-Structure is visible. Some ML estimators are therefore
sian tomographic inversion problem may be made viewing ‘regularized” by a uniform initial image estimate and an
the optimization as one of solving a large system of linear €arly termination of the optimizatiohi. We formulate the
equations. Should a user have available software package&construction instead from the Bayesian point of view,
for quadratic problems, this may allow its application to the With an explicita priori image model stabilizing the esti-
emission problem with negligible loss of quality. mator, and optimization methods which are designed to ap-
While Newton’s method would require that the problem Proach the unique maximum of tiaeposterioriprobability
formed by each successive approximation be solved exactlylensity as rapidly as possible. Iterations are terminated only
before updating the global quadratic, we suggest that avhen the estimate has stopped evolving more than negli-
single update of all image pixels suffices to capture most of9ible amounts visually or quantitatively. .
the per-iteration gain if a relatively fast-converging algo- _ We will use throug??ut this paper the generalized
rithm is applied. Various enhanced gradient methods, for Gaussian MRRGGMRPF)™ as prior model to illustrate our
example, may be well suited to the problétt!Because it methods. The GGMRF model has a density function with
is itself based orlocal quadratic approximations to the the form
Poisson log likelihood and has demonstrated relatively
rapid convergence, we apply a form of iterative coordinate 1 1
descentICD) to the pixel optimization phase. Thus we will g (x)= —exp[ -— > by X=X 9,
discuss two cases of quadratic approximation below; the z Qo {jifec ~
first is global and forms the basis of GN; the second is one
dimensional, iteratively solving functions of single pixel . . . . . .
values. The latter is u)s/ed botrﬁJ to compute the egxactJ mapWhereC is the set of all neighboring pixel pairb;  is the

estimates below and to optimize under the global quadraticsC0efficient linking pixelsj andk, o represents the scale of
of GN. the prior image, and£q=2 is a parameter which controls

the smoothness of the reconstruction. This model includes a
Gaussian MRF fog=2, and an absolute-value potential
function with g=1. In general, smaller values of allow

2 A Global Newton Algorithm for the MAP sharper edges to form in reconstructed images. Prior infor-
Reconstruction Problem mation may also be available in the form of constraints on
the reconstructed solution. We will assume that the set of

2.1 Formulation of the MAP Objective feasible reconstructiorfd is convex, and in all experiments

Statistical image reconstruction requires the evaluationWe Will choose() to be the set of positive reconstructions.
and/or optimization of functionals viewing the probabilistic Combining this prior model with the log-likelihood expres-
link between observations and the unknown parameterssion of Eq.(1) yields the expression of the MAP estimate
through the log-likelihood function. For the emission prob-

lem, X is the N-dimensional vector of emission rates,is M

the M-dimensional vector of projection da{&oisson dis- Kuap=arg mir{ (pi—y;logp;)

tributed photon counjsAccording to the standard emission xeQli=1

tomographic model, the observed photon coynt®r pro-

jection i follow a Poisson distribution with parameter n i 2 b — %/ ?)
A, X, whereA,, is theith row of the projection matrid. qodyigec K Tk
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2.2 A Global Newton Method for Poisson Log Different approaches may be used to take advantage of this
Likelihood approximation. We may evaluate it once before any pixel

Direct optimization of Eq(2) can be simplified somewhat UpPdate ap=y, using the raw measurement data, and keep
by taking advantage of the approximately quadratic naturethis approximation fixed during the convergence prqéés&
of the global log-likelihood functioh® Dealing directly ~ In this case, an approximation to the log likelihood is
with the true Poisson during numerical optimization steps is

then unnecessary, and efficient optimization can be

achieved with a variety of well known methods to compute log PY=y]x)~ _iezs Z_Yi(yi ~Aw”

the descent steps. This is not necessarily motivated by the '

goal of reducing the number of numerical operations re-

quired for the reconstructions; optimization methods exist +i§§0 A X+e(y), S
which converge to the MAP solution rapidly in terms of

iteration counts regardless of whether we solve the exac TR o - . ;
Poisson or a quadratic approximation. These aIternativeR'.VhereSO_{"yi_O}’ S1=S=S. Since this ?E,Q“f;“ma'
methods can be applied with nearly the same cost to thellon converges to the exact log likelihood Agy; =, we

Poisson likelihood as to the quadratics. But the unbound-EXPect the error in the approximation to be far less prob-
ness of the Poisson log likelihood at the origin, for ex- lematic in high-count data than in low. The FBP image is

ample, may prove a nuisance, and enforcement of positivityP€naps the most practical, low-cost starting point for MAP
constraints is more easily understood and analyzed under &Stimation. Therefore one may also profit from an approxi-
well-behaved, convex quadratic cost functional. The auto-mation at the poinp=Axegp. . .
matic observation of positivity in pixel values seems to A potentially more broadly applicable method involves
have been an important motivation in the widespread adop-UPdating the point of expansion after solving the given qua-
tion of the EM algorithm for emission tomography. While dratic problem, in the manner of Newton's method in N
EM has been acceleratéll,generalized to the MAP dimensions. Newton's search takes a quadratic approxima-
problem!’ reformulated as a faster sequential algoriftim, tion to the objective function at each step to compute the
and speededat the cost of reliable convergencm the next element of the sequential series
ordered subsets EM approathits derivation and even
definition are less well understood by most users than thex*"1=xX—[V2f(x¥)] 7. Vf(x¥). (6)
principles of optimizing a quadratic or, equivalently, solv-
ing systems of linear equations. It is our hope that freedomThe computationally impractical inversion of the Hessian is
to cogitate on this optimization as a quadratic problem mayoften  approximated through methods such as
lead to greater insight into, and greater exploitation of, the preconditioning?® Convergence is also locally quadratic
unigue characteristics of the tomographic inverse problem.but generally not assured for nonconvex objective func-
Because edge-preservirg priori models may have tions, and improvements on the original idea have been
highly nonquadratic cost functionals, all the work below developed to make Newton’s method globally rotfd$t
includes the exact log priors. Most MRF image models add Applying a similar methodology to the MAP estimation
relatively little to the per-iteration computational cost in the problem in Eq.(2), we may use the previous estimates to
tomographic problem, which is dominated by the log- globally approximate the log likelihood as quadratic for the
likelihood component. They also serve as stabilizing func- next image iteration. The parameters of the Taylor series
tionals for the MAP estimator, and will therefore tend to expansion are then evaluated from the forward projection
mute, not amplify, the error due to use of the likelihood of the current image estimate. Due to its relation to New-
approximation. In the case of the popular Gaussian MRF,ton’s method in the dimension of the image, we refer to this
of course, the problem remains entirely quadratic. Thoughalgorithm as global NewtoiGN). Let p¥ be the forward
the edge-preserving priors have quantitative advantagesprojection of the image estimate obtained after optimization
the linearity of the reconstruction as a function of the data on the approximate objective. The expansion pdihtis
in the Gaussian case still may facilitate easier interpretationkept fixed for all pixe| updates in a stage of GN, then is
of errors than the nonlinear case, and we expect that thq pdated to form the next quadratic likelihood approxima-
Gaussian will remain a common choice as prior. tion. It is computed from the initial imagéypically the
We first compute the leading two terms of a Taylor se- FBP reconstructionfor the first iteration. Evaluating Egs.

ries expansion of the log-likelihood function in the sino- (3) and(4) atp=p¥, we obtain a new approximation to Eq.
gram domain, where independence of the Poisson photoql)

counts simplifies analysis. Using E(L.), the gradient and
the diagonal Hessian evaluatedpat p have entries

M
|097’(YZY|X)%E (%&—1) (Yi—AieX)
Yi

i=1

dlogP(Y=y|x) P} @
ap; . i _ A w2
Pi p=p Pi +i:1 _k_Z(f)i)z(y' Ai.x)+c(y). (7)
3 log P(Y=y|x) yi To best exploit the nearly quadratic form of the log like-
—_— = 5 (4) lihood, we seek to update only to a point where the final
a(pi) p=p (P1) GN reconstructed image will show no substantial differ-
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ence from the exact MAP estimate, terminating the itera- image requires that E¢8) be applied sequentially at each
tions of GN early in the sequence. In Newton’s method, the pixel. Following each pixel update, the forward projections

members of this series of quadratic problems each in theoryAx" are corrected for the differenoq““—x]f‘_ Sincen

pose a computational load similar to the direct estimator injndexes single pixel updates applied to optimization under a
Eqg. (2). Therefore, the complexity of a precise realization fixed indexk for GN approximations{x*} could be written

of GN appears to be the product of the number of necessaryg 4 subsequence pi"}.

u_pdates O.f the global quadratic and th? cost of egch solu- Rather than solving the exact equation for each pixel
tion. As discussed below, however, a single iteration of an resulting from Eq.(2), the ICD/Newton—RaphsofiCD/
efficient method on a global quadratic appears sufficient toNg) ‘gigorithm'® exploits the approximately quadratic na-
warrant the next step in GN, eliminating this additional ;-6 of the log likelihood to reduce computation time. It

cost. Though our implementation does not exactly solve ,qeq 5 technique similar to the Newton—Raphson search by
each global quadratic before computing a new expansiony, .|y applying a second order Taylor series expansion of
the updates rapidly bring the minimum of the approximate e |5 Jikelihood as a function of the single pixel value.
objective close o the exact MAP solution point. The pro- \yg regain, however, the exact expression for the prior dis-
jection estimated® may then be fixed, and the solution t0  ipytion, because the prior term is often not well approxi-
the final problem form may be refined to essentially com- mateq by a quadratic function. Should this function be qua-
plete convergence if desired. The necessary number of Upgjratic, we find the exact solution in a single step. We
dates ofp* may be determined by off-line training appro- emphasize that thiecal quadratic approximation for each
priate to the SNRs typical of the given setting. pixel update is a separate process fromgdtubal approxi-
mation to the log likelihood of the GN approach. Let
2.3 Computation of Estimates via ICD ﬁgggzet\)/;Lhaet;:jrsl:fo?f:ﬁeSiECr)rnedntdeflvatlveS of the. log likeli
pixel valup. Using the

Under formulations such as Eq®) or (7) large-scale con-  Newton—Raphson-type update, the new pixel value is
vex optimization must be solved. Such problems are not

difficult, but the speed of convergence and simplicity of )

adaptation to the addition of the regularizing term and posi- n+1_ : n 2 2

tivity constraints in Eq(2) are important considerations in X] —arg)\nlld 0N =)+ 7()\_)(1')

practice. A variety of techniques may be applied for each -

GN step, including all classic quadraticonstrainegl opti- 1 N

mization methods(As mentioned above, edge-preserving + FkEN bj -k N =Xl C)
prior models may add a nonquadratic term and may also =

affect convergence behavior, but typically add minor per-

iteration computational costin light of all the above fac-  This equation may be solved by analytically calculating the
tors, we find types of iterative coordinate descéD) derivative and then numerically computing the derivative’'s
well suited to the problem. The ICD algorithm is imple- root. With p{' as the current forward projections, the param-
mented by sequentially updating each pixel of the image.eters for the update equations for emission data are then
With each update, the current pixel is chosen to minimize

the MAP cost function. The ICD method can be efficiently M

applied to the log-likelihood expressions resulting from P :2 A 1_& (10)
photon-limited imaging systems, is demonstrated to con- "t /&4 "' n

verge very rapidlyin our experiments typically 5—-10 itera-

tions) when initialized with the FBP reconstruction, and M

easily incorporates convex constraints and non-Gaussian Aij 2
prior distributions. While use of approximate second de- ‘92=i=1 yi F :
rivative (Hessian information in this optimization has been '
introduced in the form of preconditioners for gradient and ) )
conjugate gradient algorithni&%¢1CD's greedy update ~We simply choose a half-interval search to solve E9).
uses the exact local second derivative directly in one di- Since the function being rooted is monotone decreasing. A

(13

mension. full iteration consists of applying a single Newton—
Using the exact expression of the emission log likeli- Raphson update to each pixelxnWe have observed that
hood in the MAP estimator, the ICD update of fith pixel in all cases, the convergence of ICD/NR is stable. In fact,
is we have shown that a small modification in the computa-
tion of 6, guarantees the global convergence of the method
M with any strictly convex priof>
x| "t=arg mi"{i ] [AjjA—yi log(Ajj(N—x]) + A, x™)] Using an approximation such as GN, with Eg) in
A=0(!'T

place of the exact Poisson log likelihood in E®), the

1 computation of the update of thj¢h pixel is realized as in
4+ E b; A —XA9E (8) Eq. (9) with new expressions fof; and 6,
qu kE./\/] '
- ; ; ; : n M [ ph
wherej+\fi |s'the set of plxels nglghborlng . In this case = Ayl 1+ 4 5&—2) ) ' (12)
and x" "+ differ at a single pixel, so a full update of the i=1 Pi \ P;
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M Ai‘ 2
0,= 2, m(ﬁ) : (13)

We label this form of coordinate descent ICD/GN. Updat-
ing this quadratic approximation at each pi(qedplacingf):‘
with pi") would reduce to the exact solution case of Egs.
(100 and (11), which means that ICD/GN reduces to
ICD/NR in this case. In the present ICD/GN, we keep this
approximation fixed for a whole iteration through the image
before updating it. Powéfl proved the global convergence
of an algorithm of this type when the Hessian is positive
definite everywhere in an open convex set. This corre-
sponds geometrically to strict convexity as in our case, and
we have observed stable convergence in all experiments.

Computation time is approximated by the multiplies and
divides required to comput@, and#,. Both in ICD/NR of
Sec. 2.3, and in Eq$12) and(13), noting M, the number
of nonzero projections, this results itV N operations per
full image update with the appropriate s:toraga/p/f(r)ik)2
andp". Therefore, ICD/GN and ICD/NR require approxi-
mately the same time for one iteration, including reevalua-
tion of the expansion point. If we terminate these evalua-
tions, 6, is constant. In addition, both are also equivalent in
terms of the number of indexings through the projection
matrix A, each requiring two, and the use of the approxi-
mation is not computationally more expensive.

The optimal scan pattern for the sequential pixel updates
of the greedy ICD algorithm is not obvious, since nothing
in the information carried by the sinogram dictates the best
order in which the image pixels should be visited. The or-
der of pixel updates affects convergence speed, and thererig. 1 Head phantom used for reconstruction comparisons. (a)
fore may warrant study to determine the best method. Lexi- Criginal phantom, (b) FBP reconstruction.
cographic scans which iterate in horizontal, then vertical
coordinates every other iteration have advantages
analytically?* but in our experiments here, simple repeated
horizontal scans performed slightly better. Improved con-

vergence speed also seems to be achieved using a rando e : ; LN
scan patterR® Unless otherwise noted, all results presented Modified to incorporate the corrections as multiplicative
factors. We also included a simple additive model to cor-

here are from random patterns which visit each pixel once e : : :
per scan. We present below comparisons in objective con-tect for random coincidences by adding an estimated bias

; ; ; of the emission counts. In addition to correcting photon
\é(e):ge;;[?etrﬁtween a simple lexicographic pattern and a ranstatistics for random coincidences, this additive factor helps
stabilize the convergence of the objective by moving the
3 Experimental Performances unbounded pqints of the IikeIihoqd func;ion qutside the
. constraint region. We chose an eight-point neighborhood
Three different sets of data have been used to test the persystem with normalized weights for the GGMRF, and in-
formance of MAP-type estimation with the ICD/GN algo- vestigated results for both Gaussian and non-Gaussian prior
rithm. We first realized simulations with a synthetlc head models. ML parameter estimati%irprovided the values of
phantom in a 208 200 mm field with a total photon count ¢ in the first two cases, while the last was chosen manually
~3.0x1CP. The original, with the FBP reconstruction, is for best visual appearance. All reconstructions were initial-
shown in Fig. 1. In addition, real medical single photon ized with the FBP image, and all estimates labeled “exact
emission computed tomograp@PECT data of a human  MAP” are computed via ICD/NR with random pixel scans
thorax from T99 sestamibi heart perfusion was used to il- for at least 100 iterations. Independently of the chosen
lustrate a medical application. Reconstructions cover ap-number of updates of the global quadratic approximations,
proximately 32 256 mm, with a total photon count [CD/GN ran 30 and 40 iterations for the PET data, and the
~1.5x 10" in this case. Finally, we considered a section of head and heart data, respectively.
the Derenzo phantom from PET data to study the perfor- In each case, we have terminated the GN updates by
mance of the algorithm in a low SNR case-8.8x10*  fixing the quadratic approximation at a point we lalpel
counts. The Derenzo estimates were corrected for attenu-Following arrival atp=p¥, where p* corresponds to the
ation and detector sensitivity by means of a map of correc-forward projection of the image estimate obtained aker
tion factors included in the Bayesian model. The attenua-iterations of the ICD/GN algorithm, the expansion point of

tion image itself was a MAP transmission image estimate
far the phantom. The projection matrix was subsequently
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Fig. 2 Reconstructions of head phantom with Gaussian prior. (a)
Exact MAP image, Gaussian prior and ¢=0.58; (b) Estimate with
quadratic log-likelihood approximation fixed at p=y; (c) ICD/GN re-
sult for quadratic approximation fixed after two iterations (p=p?

Ax?) Fig. 3 MAP reconstruction with GGMRF, Gaussian prior (g=2.0)
=Ax%).

and 0=0.58. (a) Error between original phantom and MAP recon-
struction; (b) difference between MAP and estimate using quadratic

fixed at p=y; (c) difference between MAP and estimate using qua-

the quadratic approximation is kept fixed for the remaining dratic fixed at p= %= Ax.

number of iterations. Referring to the two cases presented

in Sec. 2.2, the parameters of the quadratic approximation

may be computed directly from the measurement data ( ceptible differences between the exact image and its ap-
=y) and kept fixed, as in Eq5), or from the forward  proximation forp=y [(a), (b)], whereas those differences
projection of the FBP image and updated at each iterationare not visible after updating the quadratic approximation
(p=p*=Ax"), as in Eq.(7), until the decision is made to only a small number of timela), (c)]. It is interesting to
stop the updates. In Figs. 2—7, we can see small but perdetermine the smallest number of evaluations of the point
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Fig. 4 Reconstructions of a head phantom with non-Gaussian
GGMREF prior (g=1.1), 0=0.25. (a) Exact MAP image; (b) estimate
with fixed quadratic approximation evaluated at p=y; (c) ICD/GN
result with fixed approximation after two iterations (p= p%=Ax?).

0 0

of expansion that is required to yield negligible difference
between the images computed with ICD/NR and ICD/GN. ©

Keeping the approximation fixed thereafter allows for solv-

ing the simple quadratic problem for the remaining itera-

tions. A set of reconstructions with changipg p* showed

that ‘f"ﬁer 0r_1|y tWO Eeratl%nsthree evalu_atlon_s of .the ex- Fig. 5 MAP reconstruction with GGMRF, g=1.1, ¢=0.25. (a) Error
pansion point, i.e.p=Ax%), the resulting final images pewween original phantom and MAP reconstruction; (b) difference
show essentially no difference from the exact estinele between MAP and estimate using quadratic at p=y; (c) difference
(c), (e)]. For low SNR cases as in our SPECT and PET between MAP and estimate from quadratic using p= p%=Ax>.
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Fig. 6 Reconstructions of SPECT data with Gaussian prior and 0=0.028. (a) Exact MAP image; (b) estimate using quadratic at p=y; (c)
ICD/GN result for two updates of the expansion point (p= p%=Ax?); (d)(e) differences between (a) and (b),(c), respectively. Data courtesy of
T. S. Pan and M. King, University of Massachusetts.

data, the algorithm uses a minimum pixel value exponen-tom appearing in Table 2. The magnitudes of the differ-
tially decreasing to zero with iterations, in order to avoid ences displayed in Table 2 for different numbers of expan-
frequently hitting the positivity constraint during the first sion updates show that the results are sufficiently accurate
iterations. after one or two updates of the expansion first computed
Table 1 shows error measures relative to the original from the FBP image for ICD/GN to be very similar to an
image, to provide context for the magnitude of differences exact MAP reconstruction. It also indicates that with updat-
between the MAP and ICD/GN estimates of the head phan-ing the expansion once per iteration during the complete
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0o 0 o

(d) ()

Fig. 7 Reconstructions of SPECT data with non-Gaussian GGMRF prior, g=1.1 and 0=0.017. (a) Exact MAP image; (b) estimate using

quadratic at p=y; (c) ICD/GN result for two updates of the expansion point (p=p?=Ax?); (d), (e) differences between (a) and (b), (c),
respectively. Data courtesy of T. S. Pan and M. King, University of Massachusetts.

reconstruction process, the ICD/GN image appears to asnot, however, visibly affect the quality of the reconstruc-
ymptotically converge to the exact estimate. Detailed studytion. In fact, differences computed only in the region of the
shows that the largest differences occur about the high fre-object drop by a factor of 10 compared with the computa-
quency regions of the image, at the boundaries and outsid¢ion on the whole image. In the low SNR PET example of
the object, and especially in the regions where the photonFig. 8, we see similarly that after a total of three evalua-
counts are low. This relates to the studies in Refs. 15 and &ions of the Taylor series for the log likelihood, we achieve
showing that the larger the photon counts, the better thea result nearly indistinguishable from the true MAP esti-
quadratic approximation to the log likelihood. This does mate computed by ICD/NR.
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Table 1 Error in estimate relative to the original head phantom. makes the FBP image a good starting point for most itera-
tive estimation algorithms. However, it is quite conceivable
Reconstructed image MSD MAD MAX that in some instances of GN, one might still us®
Head phantom g=2 o=0.584 =Xgp With pO=y in place ofAxggp.

The convergence plots of Fig. 9 correspond to the above
D=y 0.0442 0.1076 22722 results. They were obtained for Gaussian priors and used a
== AXrgp 0.0456 0.1085 2.4000 regular scan pattern in horizontal coordinates first. The
5= pl=Axt 0.0434 0.1073 22793 plots are similar in the case of non-Gaussian priprs. For the
5= p2= Ax? 00428 01070 21711 head and the Derenzo phantoms, ICD/GN exhibits the same
5= 59— A0 0.0428 0.1070 21702 behavior as ICD/NR, indicating experimentally that the

global quadratic approximations do not affect the conver-
gence properties of the ICD algorithm. Whatever choice is
made for fixing the quadratic approximation, the objective
function converges quicklgtypically about five iterations

Interestingly, the quantitative results indicate that fixing However, it appears n the S_PEC?T gata plot that 'f. we
the quadratic expansion from the forward projection of the Evaluate the quadratic approximationaty and keep it
FBP image is not necessarily better than using the raw si-ixed thereaftex"0” plots ), the limiting a posterioriprob-
nogram withp=y. The high frequency noise present in the a}b|llty is S|gn|f|cantly dlffer_ent from t.he exact MAP objec-
original sinogram is spread over the entire image by theiVe: Updating the quadratic approximation only once after
FBP reconstruction, and may therefore be spread over thdtS first evaluation from the FBP image leaves only small
entire sinogram resulting from the forward projection of the differences in the objective values of ICD/GN and ICD/
FBP image. In contrast, the vectgrremains as the stan-

dard for the estimate’s fidelity to the data throughout GN  With the exception of the plots in Fig. 9, all the figures
updates. Therefore, it is plausible that the minimum of the Présented thus far result from ICD pixel updates in random

resulting GN quadratic approximation = p°=Axggp order. The patterns analyzed in Ref. 24 were regular, by

may be farther from the MAP estimate than the one made!ines or by columns, but recent results have shown a poten-
atp=y. The use of the FBP image as starting point for tial for improvement in convergence speed with these ran-

ICD/GN has several motivations. The FBP image is a good_domly ordered scarfS.Figure 10 presents the improvement

first estimate of image densities which is quickly computed. In convergence s_peed tha}t a ranplom update pattern offers
In addition, the ICD algorithm is very efficient in converg- ©Ver @ regular lexicographic scan in the case of the Derenzo
ing the high frequencies in the image, while somewhat Phantom. A simple linear congruential random number

slower for low frequencies; the FBP image offers low fre- generator guarantees that each pixel in the image is visited

quency components already near their optimal value. Thisonc€ and only once per iteration. The gain here is signifi-
cant, since after only two iterations the objective has almost

converged when the random scan is used, whereas six it-

ICD/NR exact MAP estimate 0.0428 0.1070 2.1702

Table 2 Difference measurements between MAP and ICD/GN im- erationls_ are necessary \_’Vhen using the Ie_xicographic scan.
ages for varying numbers of evaluations of the global quadratic ap- In addition, it is interesting to study the influence of the
proximation. scan pattern on the ICD/GN results. Figures 10 and 11

compare the image estimates fprep? when using the

Expansion point MSD MAD MAX lexicographic or random update pattern. The magnitude
Head phantom g=2 o—0584 plots show that the random pattern eliminates some of the
differences between the GN estimate and the exact MAP
=y 4.663x107* 8.413x10°% 5.160x10°* image. With a sequential update of the pixels, the first pix-
5= 9= AxXegp 8.393x10-%  6.00x10-3 5.160x10-1 els in. the_ image 'gend to bg overcorrected since the object_ive
o= pl=Axl 1325%10-% 2.208x104 2327%10-: function is greeqny qptlmlzed at each step. A lexicographic
5= 2 AX? 1428x10-7 6.685X10-5 145102 scan, such as in Figs. () and 11a), therefore creates
more low frequency artifacts in the image and tends to
SPECT data q=2 =0.0283 concentrate those pixels on whichever side of the object is
updated first, whereas a random pattern scatters them. The
D=y 3.969x107° 2572x10°° 5.88x10°? differences in the above figures appear in fact to be the
= p°=AXpgp 2.165x107° 1.813x10°% 4.17x10°2 superposition of both the overcorrection discussed above,
5= pl=Axt 3.772%10-® 6.358X10~% 2.43X 102 and the low frequency components which take longer to
== Ax? 5319%10-7 2.165%10-* 1.18X10-2 converge with ICD. Thus the random pattern_may offer
faster convergence of both the global approximations of
Derenzo PET data q=2 0=0.10 GN, and the sweeps of the image under ICD. A potentially
~ interesting variation on the random update would involve a
=y 4.468x107"  6.145X10°° 2.736X 10" nonuniform spatial distribution of updates dependent on the
0= %= AxXrep 9.840x107° 3.105x10°° 1.510x10°* current image estimate.
o= pt=Ax' 2.490x107°% 1.369x107° 1.024x107* These results suggest that any algorithm which con-
h=p2=Ax> 5619x10 ¢ 4.919X10°4 5.87x10 2 verges rapidly for the first few iterations might quickly sup-

ply a final global quadratic likelihood approximation,
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100

0 o

(e) ®

Fig. 8 Reconstructions of PET data with Gaussian prior. (a) Original Derenzo phantom; (b) MAP reconstruction with 0=0.1; (c) ICD/GN result
for p=y; (d) ICD/GN result for quadratic expansion fixed after two iterations (p= p?=Ax?); (e), (f) differences between MAP image of (b) and
results in (c) and (d), respectively. Data courtesy of G. Hutchins, Indiana University.

which could then be attacked by any numerical algorithm 4 Conclusion

well suited to quadratic objectives. An initially quite rapid, . N :
though nonconvergent, form of EM which cycles among In Bayesian tomography, the substitution of an approxima-

subsets of data, known as ordered subsets(BREM),™° tion to the log-likelihood function allows simpler optimiza-
might be used for the initial estimates, and another, e.g.,tion of the MAP objective without computation under the

conjugate gradient or ICD, might be applied to conver- Poisson model. After only a few updates of the global qua-
gence of the resulting fixed quadratic probl&m. dratic, a coordinate descent method rapidly converges to an
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Fig. 10 Difference in convergence behavior between lexicographic
© scan in horizontal coordinates first, and randomly ordered pixel up-

) — . . dates in ICD, for the D hant ith G i ior. (a) Con-
Fig. 9 Convergence of objective vs iterations for (a) the head phan- ales in orthe Lerenzo phaniom wi aussian prior. (a) Con

. vergence of log a posteriori probability in both cases. Residual dif-
tom, (b) the SPECT data, and () the PET data, for various numbers ference between true MAP estimate and result from quadratic
of evaluations of the expansion point. Convergence plots obtained

h : ; ; L i approximation fixed after two iterations (p=p?=Ax?) under (b)
fror_n ordergd p'X?I l,J’p_dat_es n ho_nzgg tal coordm?t?s_ f'r?t n ICD_‘ 91 regular scan pattern; (c) random scan pattern.

indicates p=y, “1” indicates p=p"=AXggp, “2"” indicates p=p

=Ax!, etc.

high signal-to-noise ratios, our results suggest that viewing

the log likelihood as quadratic may be adequate for any
estimate nearly indistinguishable from the exact MAP esti- visual interpretations, and would open the problem to re-
mate. For emission tomographic problems of medium to searchers and practitioners more accustomed to quadratic
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Fig. 11 Residual difference between true MAP estimate and
ICD/GN result from quadratic approximation fixed after two itera-
tions (p= p?= Ax?) under (a) lexicographic scan pattern; (b) random
scan pattern. (Head phantom with Gaussian prior, g=2.0, o
=0.58.)

18.

constrained optimization than photon-limited image recon-

struction. Even in low-count problems, it appears that little 19.

appreciable quality would be sacrificed in optimizing a qua-
dratic log-likelihood approximation fixed very early in the
process. These claims all assume the use of relatively rap-
idly converging techniques for the first few iterations. Fur-

ther research will evaluate differences between ICD and?21.

OSEM for the initial stages.

23.

Acknowledgment

This work was supported by the National Science Founda-
tion under Grant No. CCR97-07763.

25.

References

26.

1. S. Geman and D. McClure, “Bayesian image analysis: An application
to single photon emission tomography,” roc. Statist. Comput.
Sect. Amer. Stat. Assppp. 12-18, Washington, D(985.

2.

10.

11.

12.

13.

14.

15.

16.

17.

22.

L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for
emission tomography, |EEE Trans. Med. Imaging/l-1, 113-122
(1982.

. R. Gordon and G. Herman, “Three-dimensional reconstruction from

projections: A review of algorithms,” innternational Review of Cy-
tology, G. Bourne and J. Danielli, Eds., Vol. 38, pp. 111-151, Aca-
demic, New York(1974).

. G. T. Herman and A. Lent, “A computer implementation of a Baye-

sian analysis of image reconstruction|iif. Control. 31, 364—384
(1976.

. E. Artzy, T. Elfving, and G. T. Herman, “Quadratic optimization for

image reconstruction,Comput. Graph. Image Proceskl, 242—261
(1979.

. S. L. Wood and M. Morf, “A fast implementation of a minimum

variance estimator for computerized tomography image reconstruc-
tion,” IEEE Trans. Biomed. EndBME-28, 56—-68(1981).

. B. Tsui, E. Frey, and G. Gullberg, “Comparison between ML-EM

and WLS-CG algorithms for SPECT image reconstructiofEEE
Trans. Nucl. Sci38, 1766—-17721991).

. J. Fessler, “Hybrid Poisson/polynomial objective functions for to-

mographic image reconstruction from transmission scanEEE
Trans. Image Procesd, 1439-14501995.

. P. Koulibaly,Regularisation et Corrections Physiques en Tomogra-

phie d’Emission PhD thesis, University of Nice-Sophia Antipolis,
France, Oct. 1996.

N. Clinthorne, T. Pan, P.-C. Chiao, W. Rogers, and J. Stamos, “Pre-
conditioning methods for improved convergence rates in iterative re-
construction,”|[EEE Trans. Med. Imagind2, 78—83(1993.

E. U Mumcuogu, R. Leahy, S. R. Cherry, and Z. Zhou, “Fast
gradient-based methods for Bayesian reconstruction of transmission
and emission pet images/EEE Trans. Med. Imagind 3, 687—-701
(1994.

D. Snyder and M. Miller, “The use of sieves to stabilize images
produced with the EM algorithm for emission tomographyEEE
Trans. Nucl. SciNS-32 3864—-3871(1985.

J. Llacer and E. Veklerov, “Feasible images and practical stopping
rules for iterative algorithms in emission tomographyEEE Trans.
Med. Imaging8, 186—193(1989.

C. A. Bouman and K. Sauer, “A generalized Gaussian image model
for edge-preserving map estimationEEE Trans. Image Procesg,
296-310(1993.

C. A. Bouman and K. Sauer, “A unified approach to statistical to-
mography using coordinate descent optimizatioffEE Trans. Im-
age Processb, 480-492(1996.

L. Kaufman, “Implementing and accelerating the EM algorithm for
positron emission tomographyJEEE Trans. Med. Imaginill-6 (1),
37-51(1987.

A. D. Pierro, “A modified expectation maximization algorithm for
penalized likelihood estimation in emission tomographyEEE
Trans. Med. Imagind.4(1), 132—-137(1995.

J. Fessler and A. Hero, “Complete data spaces and generalized EM
algorithms,” in Proc. IEEE Int'l Conf. on Acoust., Speech and Sig.
Proc, Vol. IV, pp. 1-4, Minneapolis, Minnesotgpril 1993).

H. Hudson and R. Larkin, “Accelerated image reconstruction using
ordered subsets of projection datdEEE Trans. Med. Imagind 3,
601-609(19949.

20. J. Dennis and R. Schnab&umerical Methods for Unconstrained

Optimization and Nonlinear Equations’rentice—Hall, Englewood
Cliffs, NJ (1983.

D. Luenbergerlntroduction to Linear and Nonlinear Programming
Addison—Wesley, Reading, MAL973.

S. Jacoby, J. Kowalik, and J. Pizaterative Methods for Nonlinear
Optimization ProblemsPrentice—Hall, Englewood Cliffs, Nd1972.

S. Saquib, J. Zheng, C. A. Bouman, and K. D. Sauer, “Provably
convergent coordinate descent in statistical tomographic reconstruc-
tion,” in Proc. IEEE Intl Conf. on Image ProgcVol. Il, pp. 741—

744, Lausanne, Switzerlari®eptember 1996

24. K. Sauer and C. A. Bouman, “A local update strategy for iterative

reconstruction from projections,TEEE Trans. Signal Procesgil
(1993.

J. Bowsher, M. Smith, J. Peter, and R. Jaszczak, “A comparison of
OSEM and ICD for iterative reconstruction of SPECT brain images,”
J. Nucl. Med.39, 79P(1998.

C. A. Bouman and K. Sauer, “Maximum likelihood scale estimation
for a class of Markov random fields,” iRroc. IEEE Int’| Conf. on
Acoust., Speech and Sig. Prool. 5, pp. 537-540, Adelaide, South
Australia (April 1994).

Journal of Electronic Imaging / July 2000/ Vol. 9(3) / 281



Thibault, Sauer, and Bouman

Charles A. Bouman received a B.S.E.E.
degree from the University of Pennsylvania
in 1981, and a MS degree in electrical en-
gineering from the University of California
at Berkeley in 1982. From 1982 to 1985, he
was a staff member in the Analog Device
Technology Group at the Massachusetts
Institute of Technology, Lincoln Laboratory.
In 1987 and 1989, he received MA and
Ph.D. degrees in electrical engineering
from Princeton University under the sup-
port of an IBM graduate fellowship. In 1989, he joined the faculty of
Purdue University where he currently holds the position of Associate
Professor in the School of Electrical and Computer Engineering.
Professor Bouman’s research interests include statistical image
modeling and analysis, multiscale processing, and the display and
printing of images. He is particularly interested in the applications of
statistical signal processing techniques to problems such as fast
image search and inspection, tomographic reconstruction, and
document segmentation. Professor Bouman has 20 full journal pub-
lications, over 50 conference publications, and two awarded pat-
ents. He has performed research for numerous government and
industrial organizations including National Science Foundation, U.S.
Army, Hewlett-Packard, NEC Corporation, Apple Computer, Xerox,
and Eastman Kodak. From 1991-1993, he was also an NEC Fac-
ulty Fellow. Professor Bouman is a member of IEEE, SPIE, and
IS&T professional societies. He has been both chapter chair and
vice chair of the IEEE Central Indiana Signal Processing Chapter,
and an associate editor of the IEEE Transactions of Image Process-
ing. He is currently a member of the IEEE Image and Multidimen-
sional Signal Processing Technical Committee.

282 / Journal of Electronic Imaging / July 2000/ Vol. 9(3)

Ken Sauer was born in Decatur, Indiana.
He received the BSEE in 1984 and the
MSEE in 1985 from Purdue University,
West Lafayette, IN, and the Ph.D. from
Princeton University in 1989 as an AT&T
Foundation fellow. He is currently an Asso-
ciate Professor of Electrical Engineering at
the University of Notre Dame. Professor
Sauer is involved in research of statistical
methods for tomographic image estimation
and other nondestructive evaluation prob-
lems, numerical optimization and stochastic image modeling.

Jean-Baptiste Thibault ~was born in
Rouen, France, in 1975. He graduated
from Ecole Superieure d’Electricite, Gif-
sur-Yvette, France, and completed the MS
degree in electrical engineering from the
University of Notre Dame, Indiana, in 1998.
He is currently working in Global Technol-
ogy Operations at General Electric Medical
Systems. His research interests include
numerical methods, Bayesian estimation,
and applications to statistical image recon-
struction.



