
Fast and Efficient Stored Matrix Techniques for
Optical Tomography

Guangzhi Cao, Charles A. Bouman and Kevin J. Webb
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907 USA

{gcao,bouman,webb}@ecn.purdue.edu

Abstract—A barrier to the use of optical tomography in
practical applications is the high computational cost of iterative
image reconstruction. This paper introduces a novel method
for direct reconstruction of the image from a pre-computed
and stored inverse matrix. Since the inverse matrix for optical
tomography is generally quite large and not sparse, it is necessary
to store the inverse matrix using lossy source coding techniques.
A key innovation is the method used for matrix representation
and the technique used for computing the required matrix-vector
product. This representation is based on transforms of the image
and sensor spaces which are designed to minimize reconstructed
image distortion. Simulations indicate that the technique can
dramatically reduce the storage and computation requirements
by exploiting redundancy in the transformed matrix.

I. INTRODUCTION

Optical tomography methods such as optical diffusion to-
mography (ODT), fluorescence optical diffusion tomography
(FODT), and bioluminescence tomography (BLT) potentially
offer a safe, and inexpensive alternative to available tomo-
graphic technologies. However, due to multiple-scatting prop-
erty of light in tissue, reconstruction in optical tomography is a
highly nonlinear and ill-posed inverse problem. Therefore, re-
construction is typically formulated in an optimization frame-
work, and iterative solution methods are used to obtain the
reconstructed image. Although fast reconstruction algorithms
have been developed [1]–[3], iterative reconstruction tends to
be computationally expensive due to both the computation
required for each iteration and the large number of iterations
required for convergence. This computational burden is a
potential barrier to the wide use of optical tomography in real-
time clinical applications.
In this paper we present a novel non-iterative reconstruction

approach for optical tomography with the potential to be much
faster than iterative reconstruction methods. Our approach is
to first pre-compute the linearized inverse system matrix for
known values of the bulk homogeneous material parameters.
The resulting inverse matrix is quite large and non-sparse, so
it is necessary to use lossy compression methods to store it
efficiently. The first step to lossy compression is to derive an
appropriate distortion metric. We show that in order to achieve
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minimum mean squared error in the reconstructed image, it is
first necessary to apply a transformation to the rows of the
inverse system matrix that decorrelates the measurement data.
Next we propose the use of a Karhunnen-Loeve transform of
the inverse-matrix rows, and a wavelet transform of the matrix
columns since the matrix columns correspond to 3D recon-
structed images. Finally, we use the SPIHT wavelet coding
algorithm [4] to quantize and code the wavelet transformed
matrix entrees.
The approach to lossy coding of the inverse matrix not only

dramatically reduces storage, but it also reduces computation
time since the number of entrees in the matrix which are
effectively non-zero is dramatically reduced.
We present simulation results for the problem of FODT.

For this problem, we show that the inverse system matrix
can be compressed by factors of 200:1 with little effect
on reconstruction quality. We also illustrate the reductions
in computation speed and memory usage for a hypothetical
example of an optical imaging surface probe in a FODT
application.

II. INVERSE SYSTEM OF OPTICAL TOMOGRAPHY

First, we briefly review the model for FODT. The transport
of continuous wave (CW) light in a fluorescent, highly scat-
tering medium with an external source at the excitation wave-
length is modelled by use of the coupled diffusion equations
[5]:

∇ · [Dx(r)∇φx(r)]− μax
(r)φx(r) = −δ(r − rsk

) (1)
∇ · [Dm(r)∇φm(r)]− μam

(r)φm(r) = −φx(r)ημaf
(r) (2)

where the subscripts x and m, respectively, denote excitation
and emission wavelengths λx and λm; φ(r) is the photon
density; δ(r) the Dirac function; and rsk

is the location of
the kth excitation point source. The optical parameters are the
diffusion coefficientD(r) and the absorption coefficient μa(r),
and ημaf

(r) is the fluorescence yield which incorporates
the fluorophore’s quantum efficiency η and its absorption
coefficient μaf

(r).
Our goal is to reconstruct the fluorescence distribution

ημaf
(r) using sources at λx and detectors filtered at λm.

We use y ∈ RM to denote the surface measurements. After
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discretizing the domain into N voxels of equal size, one can
regard the unknown parameters as the image vector

x = [ημaf
(r1) · · · ημaf

(rN )]T . (3)

Assuming that the bulk optical parameters of the medium μax
,

μam
, Dx and Dm are known, the diffusion model can be used

to determine the linear transformation A ∈ RM×N from x to
y. This results in the linearized forward model:

y = Ax (4)

where Aij = φ
(i)
x (rj)g

(i)
m (rj), g denotes the Green’s function

of the diffusion equation, and superscript i denotes the ith

source-detector measurement pair.
In a Bayesian framework, the maximum a posteriori (MAP)

estimation of x is given by

x̂ = arg max
x≥0

{log p(y|x) + log p(x)} , (5)

where p(y|x) is the data likelihood and p(x) is the prior
model for image x. Assume that the noise is i.i.d. Gaussian
and that x is a Gaussian Markov Random Field (GMRF).
Then reconstruction can be formulated as the solution to the
following optimization problem:

x̂ = arg min
x≥0

‖ y −Ax ‖2Λ +
1

2σ2

∑
(i,j)∈N

bi−j |xi − xj |2

= arg min
x≥0

‖ y −Ax ‖2Λ +xT Sx , (6)

where
Si,j =

{ −bi−j/4σ2 if i �= j
1/4σ2 if i = j

.

Here, N is the set of all neighboring voxel pairs, σ controls
the trade-off between fitting to the data and the smoothness of
the solution, and bi−j represents the coefficients assigned to
neighbors i and j.
If we do not apply the positivity constraint, then we know

the closed-form solution of (6) is given by

x̂ = (AT ΛA + S)−1AT Λy (7)

Therefore, we can pre-compute the inverse system matrix

H
�
= (AT ΛA + S)−1AT Λ, (8)

and store it. Then reconstruction results from multiplication of
the inverse-system matrix H by the data vector y.

III. OPTIMAL LOSSY COMPRESSION FOR THE INVERSE
SYSTEM MATRIX

In order to store the matrix H for practical problems, we
will need to compress it using lossy compression methods.
However, the performance of any lossy compression method
depends critically on the distortion metric that is used. There-
fore, we first must derive an appropriate distortion metric
which minimizes mean-squared error in the reconstructed
image. A good distortion metric should be a norm on the
distortion of H that is proportional to the MSE of the image

x̂. In order to obtain this metric, we must account for the
distribution of the measurement y.
Let Ry be the auto-correlation matrix of y, i.e.,

Ry
�
= E[yyT ]
= EΛyET (9)

where E and Λy are the matrices of eigenvectors and eigenval-
ues of Ry, respectively. Define the transformed inverse system
and data as

H̃
�
= HEΛ

1
2
y (10)

ỹ
�
= Λ−

1
2

y ET y. (11)

Notice that E[ỹỹT ] = I , and x̂ = H̃ỹ. If we further define
δH as the quantization error in H and δx̂ as the resulting
quantization error in x̂, then we have that

δx̂ = δH̃ỹ . (12)

From this we can obtain an expression for the conditional MSE
in x̂ given δH . Assume the measurement y is independent of
the quantization error δH . Then we have the fact that

E
[‖ δx̂ ‖2| δH]

=‖ δH̃ ‖2=‖ δH ‖2Ry
(13)

where ‖ δH̃ ‖ is the Frobenius norm, and
‖ δH ‖2Ry

= trace{δHT RyδH}
The proof is given as follows.
Proof:

E
[‖ δx̂ ‖2| δH]

= E
[
ỹT δH̃

T
δH̃ỹ | δH̃

]
(14)

= E
[
trace{ỹT δH̃

T
δH̃ỹ} | δH̃

]
= E

[
trace{δH̃ỹỹT δH̃

T } | δH̃
]

= trace{δH̃E[ỹỹT ]δH̃
T }

= trace{δH̃δH̃
T }

= ‖ δH̃ ‖2 .

This means that if we minimize ‖ δH̃ ‖2 we obtain a re-
constructed image x̂+δx̂ with minimum distortion. Therefore,
H̃ is an appropriate representation for the storage and coding
of the inverse system matrix H . Actually H̃ can be computed
directly instead of H . Specifically, the ith column of H̃ can
be computed as below:

ˆ̃
hi = arg min

x
‖ ẽi −Ax ‖2Λ +xT Sx , (15)

where ẽi = EΛ1/2
y ei. Here ei denotes the ith unit vector.

Using this distortion metric, our next goal is to find a sparse
representation for H̃ and to use the sparse representation for
efficient coding and storage. Like H , H̃ is a N ×M matrix
whose columns are 3D images corresponding to different
sensor measurements. Therefore, we can decorrelate along
rows with Karhunen-Loeve (KL) transform (which results in
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Fig. 1. Illustration of inverse system matrix compression. Ȟ is a sparse
representation of H̃ through KL and wavelet transforms. The shaded region
represents the effective non-zero entrees in Ȟ .

eigen-images) and decorrelate along columns with wavelet
transform [6]. These transforms can be expressed as follows:

Ȟ = WH̃Φ (16)

where Φ consists of the eigenvectors of H̃T H̃ , and W repre-
sents 3D wavelet transform. Fig. 1 illustrates the representation
of the matrix H̃ . Since both the KL and wavelet transform are
orthonormal, we know ‖ δȞ ‖2=‖ δH̃ ‖2. Accordingly, define
the transform data as

y̌
�
= ΦT ỹ = ΦT Λ−

1
2

y ET y . (17)

Then x̂ can be expressed as:

x̂ = W−1Ȟy̌ (18)

After obtaining the sparse representation Ȟ , Set Partitioning
In Hierarchical Trees algorithm (SPIHT) [4] is used to quantize
and encode each column of the matrix. Note we also need to
correctly implement bit-allocation among different columns.
Since the KL transform is an orthonormal linear transfor-
mation, the wavelet coefficients in each column should be
quantized using the same quantization table. This is realized by
explicitly specifying the same bit-planes in SPIHT encoding
of each column.
Fig. 1 illustrates compression of H̃ , where Ȟ is the sparse

representation of H̃ obtained through KL and wavelet trans-
forms. Due to sparsity of Ȟ , evaluation of Ȟy̌ requires many
fewer multiplications than evaluation of Hy. Therefore, lossy
compression both reduces the data that must be stored, and
reduces computation required to reconstruct the image.

IV. COMPUTATIONAL COMPLEXITY
Here, let us analyze the computational complexity of the

proposed algorithm for reconstruction. First define

T
�
= ΦT Λ−

1
2

y ET . (19)

Then from (18), reconstruction can be rewritten as follows:

x̂ = W−1[Ȟ]Ty (20)

where [Ȟ] denotes the quantized version of Ȟ . The computa-
tional complexity of (20) is straightforward: MM multiplica-
tions are required for calculating Ty, and cNM/r for the prod-
uct to multiply [Ȟ], where r is the compression ratio and c/r

gives the ratio of non-zero coefficients after quantization. An
additional order N multiplications are required for the inverse
wavelet transform, which is small compared to the previous
two terms. Therefore, the total computational complexity of
the proposed algorithm is cNM/r+MM . The memory usage
of the algorithm is as follows: order cNM/r for [Ȟ] and order
N for the reconstructed image x̂.
Note the transform matrix T M×M also needs to be stored

as side information. In optical tomography, the size of T is
small compared to that of Ȟ since typically the number of
measurements M is much less than the number of voxels N .
Therefore, the total memory requirement is cNM/r + MM .
Comparison of the computational complexity based on the
CG method using a stored matrix A and the proposed new
reconstruction method for FODT is given in Table I along
with a numerical example which corresponds to the simulation
example in next section. From the table, we can clearly see
the advantage of the new algorithm over CG both in terms of
computational complexity and memory requirement.

V. NUMERICAL RESULTS
Here we give some numerical results of FODT from re-

flectance measurements based on the proposed algorithm.
Reflectance measurement system is clinically appealing, how-
ever, it also provides a very challenging tomography problem
because it is much more ill-conditioned than in the case of the
transmission measurement geometry.
The measurement geometry is shown in Fig. 2(a) where a

6 × 6 cm2 probe scans on top of the semi-infinite medium.
The probe contains 4 sources and 117 detectors as shown in
Fig. 2(b). The background optical values are set to μax,m

=
0.02 cm−1, Dx,m = 0.03 cm and ημaf

= 0 cm−1, which
approximates the optical property of tissue. The measurements
were generated with a spherical heterogeneity of radius 0.5 cm
present 2 cm below the center of the probe. The optical values
of the heterogeneity are μax

= 0.12 cm−1, μam
= 0.02 cm−1,

Dx = Dm = 0.03 cm−1 and ημaf
= 0.05 cm−1. MUDPACK

[7] was used as our forward PDE solver. The size of the
computation domain is 8×8×4 cm3 with a resolution 0.25 cm.
Additive noise was introduced based on the shot noise model
of [2] giving an average SNR of 35.6 dB. The forward system
A was computed using the bulk optical values assuming
homogeneous medium. Use of the reciprocity of the Green
function in the diffusion equation can dramatically reduce the
computation of A.
Since the covariance matrix of the shot-noise model is a

function of the measurements, we are not able to incorporate
it into our pre-computation of the inverse system. Instead,
the average noise variance is used in the noise model for
pre-computation of the inverse system. This is currently a
limitation of our algorithm. But if SNR is not too low,
reconstruction results based on the two different noise models
are usually quite close. In order to obtain better resolution
in the deep medium, the regularization parameter σ was
linearly increased with the depth. To model the statistics of
the measurements, we have Ry = ARxAT . Rx = I was
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TABLE I
COMPUTATIONAL COMPLEXITY ANALYSIS FOR FODT. N = 33 × 33 × 17 - NUMBER OF VOXELS,M = 468 - NUMBER OF MEASUREMENTS, I = 100 -

NUMBER OF ITERATIONS, r = 192 - COMPRESSION RATIO AND c = 6.7.

computational complexity Memory Usage
Order example CPU time Order example RAM usage

CG 2MNI 1.7 × 109 70sec MN 8.6 × 106 70MB
New method cNM/r + M2 5.2 × 105 0.015sec cNM/r + M2 5.2 × 105 4.1MB
Uncompressed NM 8.6 × 106 0.25sec NM 8.6 × 106 70MB

hetergeneity
tissue

Probe

(a) measurement system

0 1 2 3 4 5 6
0

1

2

3

4

5

6

(b) Probe confi gu-
ration: × - source;
◦ - detector

Fig. 2. Reflectance measurement geometry

taken in simulations. The wavelet transform was constructed
with the popular biorthogonal 9/7 tap filters [8] and using a
symmetric boundary extension. We used QccPack library [9]
for implementing 3D wavelet SPIHT coding.
Fig. 3 shows the reconstruction results at the depth of 2 cm

with the stored inverse matrix compressed at different ratios.
The distortion versus compression ratio curve is given in Fig. 4,
where the distortion is calculated in terms of the normalized
root mean squared error (NRMSE) defined as:

NRMSE =

√
‖ [H]y −Hy ‖2

‖ Hy ‖2 . (21)

The distortion-compression curve using Frobeneius norm
‖ δH ‖2 as the distortion metric is also given. For the same
distortion, twice the compression ratio can be achieved using
the correct distortion metric. The simulations were run in a
64bit dual processor Intel machine. Both CPU time and RAM
usage at the compression ratio 192:1 are given in Table I along
with a comparison to both CG and reconstruction using the
uncompressed inverse matrix. We can see that compression
of the inverse matrix both reduces the data storage and
computation effectively.

VI. CONCLUSION
In this paper we presented a novel reconstruction approach

for FODT using the stored matrix techniques. Compared
to conventional iterative reconstruction algorithms, our new
method offers faster and more efficient reconstruction both in
terms of computational complexity and memory usage. This
makes the new method very attractive to real applications. A
method for lossy compression of the inverse matrix is also
provided. Numerical simulations show that compression of the
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Fig. 3. Reconstruction results at different compression ratios
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inverse matrix can be quite high, which in turn leads to more
efficient computation of the matrix-vector product required
for reconstruction. The same approach can be extended to
other optical tomography methodologies, e.g. ODT and BLT.
For future work, we would like to extend our compression
method to the forward model to improve the computation
speed in an iterative reconstruction framework. Also, we would
like to extend our approach to more general tomography
methodologies by addressing the problem when number of
measurements is large.
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